github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/crypto/crypto.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package crypto
    18  
    19  import (
    20  	"bufio"
    21  	"crypto/ecdsa"
    22  	"crypto/elliptic"
    23  	"crypto/rand"
    24  	"encoding/hex"
    25  	"errors"
    26  	"fmt"
    27  	"hash"
    28  	"io"
    29  	"math/big"
    30  	"os"
    31  
    32  	"github.com/ethereum/go-ethereum/common"
    33  	"github.com/ethereum/go-ethereum/common/math"
    34  	"github.com/ethereum/go-ethereum/rlp"
    35  	"golang.org/x/crypto/sha3"
    36  )
    37  
    38  // SignatureLength indicates the byte length required to carry a signature with recovery id.
    39  const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
    40  
    41  // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
    42  const RecoveryIDOffset = 64
    43  
    44  // DigestLength sets the signature digest exact length
    45  const DigestLength = 32
    46  
    47  var (
    48  	secp256k1N, _  = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
    49  	secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
    50  )
    51  
    52  var errInvalidPubkey = errors.New("invalid secp256k1 public key")
    53  
    54  // EllipticCurve contains curve operations.
    55  type EllipticCurve interface {
    56  	elliptic.Curve
    57  
    58  	// Point marshaling/unmarshaing.
    59  	Marshal(x, y *big.Int) []byte
    60  	Unmarshal(data []byte) (x, y *big.Int)
    61  }
    62  
    63  // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
    64  // Read to get a variable amount of data from the hash state. Read is faster than Sum
    65  // because it doesn't copy the internal state, but also modifies the internal state.
    66  type KeccakState interface {
    67  	hash.Hash
    68  	Read([]byte) (int, error)
    69  }
    70  
    71  // NewKeccakState creates a new KeccakState
    72  func NewKeccakState() KeccakState {
    73  	return sha3.NewLegacyKeccak256().(KeccakState)
    74  }
    75  
    76  // HashData hashes the provided data using the KeccakState and returns a 32 byte hash
    77  func HashData(kh KeccakState, data []byte) (h common.Hash) {
    78  	kh.Reset()
    79  	kh.Write(data)
    80  	kh.Read(h[:])
    81  	return h
    82  }
    83  
    84  // Keccak256 calculates and returns the Keccak256 hash of the input data.
    85  func Keccak256(data ...[]byte) []byte {
    86  	b := make([]byte, 32)
    87  	d := NewKeccakState()
    88  	for _, b := range data {
    89  		d.Write(b)
    90  	}
    91  	d.Read(b)
    92  	return b
    93  }
    94  
    95  // Keccak256Hash calculates and returns the Keccak256 hash of the input data,
    96  // converting it to an internal Hash data structure.
    97  func Keccak256Hash(data ...[]byte) (h common.Hash) {
    98  	d := NewKeccakState()
    99  	for _, b := range data {
   100  		d.Write(b)
   101  	}
   102  	d.Read(h[:])
   103  	return h
   104  }
   105  
   106  // Keccak512 calculates and returns the Keccak512 hash of the input data.
   107  func Keccak512(data ...[]byte) []byte {
   108  	d := sha3.NewLegacyKeccak512()
   109  	for _, b := range data {
   110  		d.Write(b)
   111  	}
   112  	return d.Sum(nil)
   113  }
   114  
   115  // CreateAddress creates an ethereum address given the bytes and the nonce
   116  func CreateAddress(b common.Address, nonce uint64) common.Address {
   117  	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
   118  	return common.BytesToAddress(Keccak256(data)[12:])
   119  }
   120  
   121  // CreateAddress2 creates an ethereum address given the address bytes, initial
   122  // contract code hash and a salt.
   123  func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
   124  	return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
   125  }
   126  
   127  // ToECDSA creates a private key with the given D value.
   128  func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
   129  	return toECDSA(d, true)
   130  }
   131  
   132  // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
   133  // never be used unless you are sure the input is valid and want to avoid hitting
   134  // errors due to bad origin encoding (0 prefixes cut off).
   135  func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
   136  	priv, _ := toECDSA(d, false)
   137  	return priv
   138  }
   139  
   140  // toECDSA creates a private key with the given D value. The strict parameter
   141  // controls whether the key's length should be enforced at the curve size or
   142  // it can also accept legacy encodings (0 prefixes).
   143  func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
   144  	priv := new(ecdsa.PrivateKey)
   145  	priv.PublicKey.Curve = S256()
   146  	if strict && 8*len(d) != priv.Params().BitSize {
   147  		return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
   148  	}
   149  	priv.D = new(big.Int).SetBytes(d)
   150  
   151  	// The priv.D must < N
   152  	if priv.D.Cmp(secp256k1N) >= 0 {
   153  		return nil, errors.New("invalid private key, >=N")
   154  	}
   155  	// The priv.D must not be zero or negative.
   156  	if priv.D.Sign() <= 0 {
   157  		return nil, errors.New("invalid private key, zero or negative")
   158  	}
   159  
   160  	priv.PublicKey.X, priv.PublicKey.Y = S256().ScalarBaseMult(d)
   161  	if priv.PublicKey.X == nil {
   162  		return nil, errors.New("invalid private key")
   163  	}
   164  	return priv, nil
   165  }
   166  
   167  // FromECDSA exports a private key into a binary dump.
   168  func FromECDSA(priv *ecdsa.PrivateKey) []byte {
   169  	if priv == nil {
   170  		return nil
   171  	}
   172  	return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
   173  }
   174  
   175  // UnmarshalPubkey converts bytes to a secp256k1 public key.
   176  func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
   177  	x, y := S256().Unmarshal(pub)
   178  	if x == nil {
   179  		return nil, errInvalidPubkey
   180  	}
   181  	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
   182  }
   183  
   184  func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
   185  	if pub == nil || pub.X == nil || pub.Y == nil {
   186  		return nil
   187  	}
   188  	return S256().Marshal(pub.X, pub.Y)
   189  }
   190  
   191  // HexToECDSA parses a secp256k1 private key.
   192  func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
   193  	b, err := hex.DecodeString(hexkey)
   194  	if byteErr, ok := err.(hex.InvalidByteError); ok {
   195  		return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
   196  	} else if err != nil {
   197  		return nil, errors.New("invalid hex data for private key")
   198  	}
   199  	return ToECDSA(b)
   200  }
   201  
   202  // LoadECDSA loads a secp256k1 private key from the given file.
   203  func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
   204  	fd, err := os.Open(file)
   205  	if err != nil {
   206  		return nil, err
   207  	}
   208  	defer fd.Close()
   209  
   210  	r := bufio.NewReader(fd)
   211  	buf := make([]byte, 64)
   212  	n, err := readASCII(buf, r)
   213  	if err != nil {
   214  		return nil, err
   215  	} else if n != len(buf) {
   216  		return nil, errors.New("key file too short, want 64 hex characters")
   217  	}
   218  	if err := checkKeyFileEnd(r); err != nil {
   219  		return nil, err
   220  	}
   221  
   222  	return HexToECDSA(string(buf))
   223  }
   224  
   225  // readASCII reads into 'buf', stopping when the buffer is full or
   226  // when a non-printable control character is encountered.
   227  func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
   228  	for ; n < len(buf); n++ {
   229  		buf[n], err = r.ReadByte()
   230  		switch {
   231  		case err == io.EOF || buf[n] < '!':
   232  			return n, nil
   233  		case err != nil:
   234  			return n, err
   235  		}
   236  	}
   237  	return n, nil
   238  }
   239  
   240  // checkKeyFileEnd skips over additional newlines at the end of a key file.
   241  func checkKeyFileEnd(r *bufio.Reader) error {
   242  	for i := 0; ; i++ {
   243  		b, err := r.ReadByte()
   244  		switch {
   245  		case err == io.EOF:
   246  			return nil
   247  		case err != nil:
   248  			return err
   249  		case b != '\n' && b != '\r':
   250  			return fmt.Errorf("invalid character %q at end of key file", b)
   251  		case i >= 2:
   252  			return errors.New("key file too long, want 64 hex characters")
   253  		}
   254  	}
   255  }
   256  
   257  // SaveECDSA saves a secp256k1 private key to the given file with
   258  // restrictive permissions. The key data is saved hex-encoded.
   259  func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
   260  	k := hex.EncodeToString(FromECDSA(key))
   261  	return os.WriteFile(file, []byte(k), 0600)
   262  }
   263  
   264  // GenerateKey generates a new private key.
   265  func GenerateKey() (*ecdsa.PrivateKey, error) {
   266  	return ecdsa.GenerateKey(S256(), rand.Reader)
   267  }
   268  
   269  // ValidateSignatureValues verifies whether the signature values are valid with
   270  // the given chain rules. The v value is assumed to be either 0 or 1.
   271  func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
   272  	if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
   273  		return false
   274  	}
   275  	// reject upper range of s values (ECDSA malleability)
   276  	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
   277  	if homestead && s.Cmp(secp256k1halfN) > 0 {
   278  		return false
   279  	}
   280  	// Frontier: allow s to be in full N range
   281  	return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
   282  }
   283  
   284  func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
   285  	pubBytes := FromECDSAPub(&p)
   286  	return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
   287  }
   288  
   289  func zeroBytes(bytes []byte) {
   290  	clear(bytes)
   291  }