github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/crypto/signature_nocgo.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 //go:build nacl || js || !cgo || gofuzz 18 // +build nacl js !cgo gofuzz 19 20 package crypto 21 22 import ( 23 "crypto/ecdsa" 24 "errors" 25 "fmt" 26 "math/big" 27 28 "github.com/btcsuite/btcd/btcec/v2" 29 btc_ecdsa "github.com/btcsuite/btcd/btcec/v2/ecdsa" 30 ) 31 32 // Ecrecover returns the uncompressed public key that created the given signature. 33 func Ecrecover(hash, sig []byte) ([]byte, error) { 34 pub, err := sigToPub(hash, sig) 35 if err != nil { 36 return nil, err 37 } 38 bytes := pub.SerializeUncompressed() 39 return bytes, err 40 } 41 42 func sigToPub(hash, sig []byte) (*btcec.PublicKey, error) { 43 if len(sig) != SignatureLength { 44 return nil, errors.New("invalid signature") 45 } 46 // Convert to btcec input format with 'recovery id' v at the beginning. 47 btcsig := make([]byte, SignatureLength) 48 btcsig[0] = sig[RecoveryIDOffset] + 27 49 copy(btcsig[1:], sig) 50 51 pub, _, err := btc_ecdsa.RecoverCompact(btcsig, hash) 52 return pub, err 53 } 54 55 // SigToPub returns the public key that created the given signature. 56 func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { 57 pub, err := sigToPub(hash, sig) 58 if err != nil { 59 return nil, err 60 } 61 // We need to explicitly set the curve here, because we're wrapping 62 // the original curve to add (un-)marshalling 63 return &ecdsa.PublicKey{ 64 Curve: S256(), 65 X: pub.X(), 66 Y: pub.Y(), 67 }, nil 68 } 69 70 // Sign calculates an ECDSA signature. 71 // 72 // This function is susceptible to chosen plaintext attacks that can leak 73 // information about the private key that is used for signing. Callers must 74 // be aware that the given hash cannot be chosen by an adversary. Common 75 // solution is to hash any input before calculating the signature. 76 // 77 // The produced signature is in the [R || S || V] format where V is 0 or 1. 78 func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) { 79 if len(hash) != 32 { 80 return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) 81 } 82 if prv.Curve != S256() { 83 return nil, errors.New("private key curve is not secp256k1") 84 } 85 // ecdsa.PrivateKey -> btcec.PrivateKey 86 var priv btcec.PrivateKey 87 if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() { 88 return nil, errors.New("invalid private key") 89 } 90 defer priv.Zero() 91 sig, err := btc_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey 92 if err != nil { 93 return nil, err 94 } 95 // Convert to Ethereum signature format with 'recovery id' v at the end. 96 v := sig[0] - 27 97 copy(sig, sig[1:]) 98 sig[RecoveryIDOffset] = v 99 return sig, nil 100 } 101 102 // VerifySignature checks that the given public key created signature over hash. 103 // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. 104 // The signature should have the 64 byte [R || S] format. 105 func VerifySignature(pubkey, hash, signature []byte) bool { 106 if len(signature) != 64 { 107 return false 108 } 109 var r, s btcec.ModNScalar 110 if r.SetByteSlice(signature[:32]) { 111 return false // overflow 112 } 113 if s.SetByteSlice(signature[32:]) { 114 return false 115 } 116 sig := btc_ecdsa.NewSignature(&r, &s) 117 key, err := btcec.ParsePubKey(pubkey) 118 if err != nil { 119 return false 120 } 121 // Reject malleable signatures. libsecp256k1 does this check but btcec doesn't. 122 if s.IsOverHalfOrder() { 123 return false 124 } 125 return sig.Verify(hash, key) 126 } 127 128 // DecompressPubkey parses a public key in the 33-byte compressed format. 129 func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { 130 if len(pubkey) != 33 { 131 return nil, errors.New("invalid compressed public key length") 132 } 133 key, err := btcec.ParsePubKey(pubkey) 134 if err != nil { 135 return nil, err 136 } 137 // We need to explicitly set the curve here, because we're wrapping 138 // the original curve to add (un-)marshalling 139 return &ecdsa.PublicKey{ 140 Curve: S256(), 141 X: key.X(), 142 Y: key.Y(), 143 }, nil 144 } 145 146 // CompressPubkey encodes a public key to the 33-byte compressed format. The 147 // provided PublicKey must be valid. Namely, the coordinates must not be larger 148 // than 32 bytes each, they must be less than the field prime, and it must be a 149 // point on the secp256k1 curve. This is the case for a PublicKey constructed by 150 // elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey 151 // when constructing a PrivateKey. 152 func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { 153 // NOTE: the coordinates may be validated with 154 // btcec.ParsePubKey(FromECDSAPub(pubkey)) 155 var x, y btcec.FieldVal 156 x.SetByteSlice(pubkey.X.Bytes()) 157 y.SetByteSlice(pubkey.Y.Bytes()) 158 return btcec.NewPublicKey(&x, &y).SerializeCompressed() 159 } 160 161 // S256 returns an instance of the secp256k1 curve. 162 func S256() EllipticCurve { 163 return btCurve{btcec.S256()} 164 } 165 166 type btCurve struct { 167 *btcec.KoblitzCurve 168 } 169 170 // Marshal converts a point given as (x, y) into a byte slice. 171 func (curve btCurve) Marshal(x, y *big.Int) []byte { 172 byteLen := (curve.Params().BitSize + 7) / 8 173 174 ret := make([]byte, 1+2*byteLen) 175 ret[0] = 4 // uncompressed point 176 177 x.FillBytes(ret[1 : 1+byteLen]) 178 y.FillBytes(ret[1+byteLen : 1+2*byteLen]) 179 180 return ret 181 } 182 183 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 184 // error, x = nil. 185 func (curve btCurve) Unmarshal(data []byte) (x, y *big.Int) { 186 byteLen := (curve.Params().BitSize + 7) / 8 187 if len(data) != 1+2*byteLen { 188 return nil, nil 189 } 190 if data[0] != 4 { // uncompressed form 191 return nil, nil 192 } 193 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 194 y = new(big.Int).SetBytes(data[1+byteLen:]) 195 return 196 }