github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/eth/protocols/snap/gentrie_test.go (about) 1 // Copyright 2024 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package snap 18 19 import ( 20 "bytes" 21 "math/rand" 22 "slices" 23 "testing" 24 25 "github.com/ethereum/go-ethereum/common" 26 "github.com/ethereum/go-ethereum/core/rawdb" 27 "github.com/ethereum/go-ethereum/crypto" 28 "github.com/ethereum/go-ethereum/ethdb" 29 "github.com/ethereum/go-ethereum/internal/testrand" 30 "github.com/ethereum/go-ethereum/trie" 31 ) 32 33 type replayer struct { 34 paths []string // sort in fifo order 35 hashes []common.Hash // empty for deletion 36 unknowns int // counter for unknown write 37 } 38 39 func newBatchReplay() *replayer { 40 return &replayer{} 41 } 42 43 func (r *replayer) decode(key []byte, value []byte) { 44 account := rawdb.IsAccountTrieNode(key) 45 storage := rawdb.IsStorageTrieNode(key) 46 if !account && !storage { 47 r.unknowns += 1 48 return 49 } 50 var path []byte 51 if account { 52 _, path = rawdb.ResolveAccountTrieNodeKey(key) 53 } else { 54 _, owner, inner := rawdb.ResolveStorageTrieNode(key) 55 path = append(owner.Bytes(), inner...) 56 } 57 r.paths = append(r.paths, string(path)) 58 59 if len(value) == 0 { 60 r.hashes = append(r.hashes, common.Hash{}) 61 } else { 62 r.hashes = append(r.hashes, crypto.Keccak256Hash(value)) 63 } 64 } 65 66 // updates returns a set of effective mutations. Multiple mutations targeting 67 // the same node path will be merged in FIFO order. 68 func (r *replayer) modifies() map[string]common.Hash { 69 set := make(map[string]common.Hash) 70 for i, path := range r.paths { 71 set[path] = r.hashes[i] 72 } 73 return set 74 } 75 76 // updates returns the number of updates. 77 func (r *replayer) updates() int { 78 var count int 79 for _, hash := range r.modifies() { 80 if hash == (common.Hash{}) { 81 continue 82 } 83 count++ 84 } 85 return count 86 } 87 88 // Put inserts the given value into the key-value data store. 89 func (r *replayer) Put(key []byte, value []byte) error { 90 r.decode(key, value) 91 return nil 92 } 93 94 // Delete removes the key from the key-value data store. 95 func (r *replayer) Delete(key []byte) error { 96 r.decode(key, nil) 97 return nil 98 } 99 100 func byteToHex(str []byte) []byte { 101 l := len(str) * 2 102 var nibbles = make([]byte, l) 103 for i, b := range str { 104 nibbles[i*2] = b / 16 105 nibbles[i*2+1] = b % 16 106 } 107 return nibbles 108 } 109 110 // innerNodes returns the internal nodes narrowed by two boundaries along with 111 // the leftmost and rightmost sub-trie roots. 112 func innerNodes(first, last []byte, includeLeft, includeRight bool, nodes map[string]common.Hash, t *testing.T) (map[string]common.Hash, []byte, []byte) { 113 var ( 114 leftRoot []byte 115 rightRoot []byte 116 firstHex = byteToHex(first) 117 lastHex = byteToHex(last) 118 inner = make(map[string]common.Hash) 119 ) 120 for path, hash := range nodes { 121 if hash == (common.Hash{}) { 122 t.Fatalf("Unexpected deletion, %v", []byte(path)) 123 } 124 // Filter out the siblings on the left side or the left boundary nodes. 125 if !includeLeft && (bytes.Compare(firstHex, []byte(path)) > 0 || bytes.HasPrefix(firstHex, []byte(path))) { 126 continue 127 } 128 // Filter out the siblings on the right side or the right boundary nodes. 129 if !includeRight && (bytes.Compare(lastHex, []byte(path)) < 0 || bytes.HasPrefix(lastHex, []byte(path))) { 130 continue 131 } 132 inner[path] = hash 133 134 // Track the path of the leftmost sub trie root 135 if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 { 136 leftRoot = []byte(path) 137 } 138 // Track the path of the rightmost sub trie root 139 if rightRoot == nil || 140 (bytes.Compare(rightRoot, []byte(path)) < 0) || 141 (bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) { 142 rightRoot = []byte(path) 143 } 144 } 145 return inner, leftRoot, rightRoot 146 } 147 148 func buildPartial(owner common.Hash, db ethdb.KeyValueReader, batch ethdb.Batch, entries []*kv, first, last int) *replayer { 149 tr := newPathTrie(owner, first != 0, db, batch) 150 for i := first; i <= last; i++ { 151 tr.update(entries[i].k, entries[i].v) 152 } 153 tr.commit(last == len(entries)-1) 154 155 replay := newBatchReplay() 156 batch.Replay(replay) 157 158 return replay 159 } 160 161 // TestPartialGentree verifies if the trie constructed with partial states can 162 // generate consistent trie nodes that match those of the full trie. 163 func TestPartialGentree(t *testing.T) { 164 for round := 0; round < 100; round++ { 165 var ( 166 n = rand.Intn(1024) + 10 167 entries []*kv 168 ) 169 for i := 0; i < n; i++ { 170 var val []byte 171 if rand.Intn(3) == 0 { 172 val = testrand.Bytes(3) 173 } else { 174 val = testrand.Bytes(32) 175 } 176 entries = append(entries, &kv{ 177 k: testrand.Bytes(32), 178 v: val, 179 }) 180 } 181 slices.SortFunc(entries, (*kv).cmp) 182 183 nodes := make(map[string]common.Hash) 184 tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { 185 nodes[string(path)] = hash 186 }) 187 for i := 0; i < len(entries); i++ { 188 tr.Update(entries[i].k, entries[i].v) 189 } 190 tr.Hash() 191 192 check := func(first, last int) { 193 var ( 194 db = rawdb.NewMemoryDatabase() 195 batch = db.NewBatch() 196 ) 197 // Build the partial tree with specific boundaries 198 r := buildPartial(common.Hash{}, db, batch, entries, first, last) 199 if r.unknowns > 0 { 200 t.Fatalf("Unknown database write: %d", r.unknowns) 201 } 202 203 // Ensure all the internal nodes are produced 204 var ( 205 set = r.modifies() 206 inner, _, _ = innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t) 207 ) 208 for path, hash := range inner { 209 if _, ok := set[path]; !ok { 210 t.Fatalf("Missing nodes %v", []byte(path)) 211 } 212 if hash != set[path] { 213 t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path]) 214 } 215 } 216 if r.updates() != len(inner) { 217 t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates()) 218 } 219 } 220 for j := 0; j < 100; j++ { 221 var ( 222 first int 223 last int 224 ) 225 for { 226 first = rand.Intn(len(entries)) 227 last = rand.Intn(len(entries)) 228 if first <= last { 229 break 230 } 231 } 232 check(first, last) 233 } 234 var cases = []struct { 235 first int 236 last int 237 }{ 238 {0, len(entries) - 1}, // full 239 {1, len(entries) - 1}, // no left 240 {2, len(entries) - 1}, // no left 241 {2, len(entries) - 2}, // no left and right 242 {2, len(entries) - 2}, // no left and right 243 {len(entries) / 2, len(entries) / 2}, // single 244 {0, 0}, // single first 245 {len(entries) - 1, len(entries) - 1}, // single last 246 } 247 for _, c := range cases { 248 check(c.first, c.last) 249 } 250 } 251 } 252 253 // TestGentreeDanglingClearing tests if the dangling nodes falling within the 254 // path space of constructed tree can be correctly removed. 255 func TestGentreeDanglingClearing(t *testing.T) { 256 for round := 0; round < 100; round++ { 257 var ( 258 n = rand.Intn(1024) + 10 259 entries []*kv 260 ) 261 for i := 0; i < n; i++ { 262 var val []byte 263 if rand.Intn(3) == 0 { 264 val = testrand.Bytes(3) 265 } else { 266 val = testrand.Bytes(32) 267 } 268 entries = append(entries, &kv{ 269 k: testrand.Bytes(32), 270 v: val, 271 }) 272 } 273 slices.SortFunc(entries, (*kv).cmp) 274 275 nodes := make(map[string]common.Hash) 276 tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { 277 nodes[string(path)] = hash 278 }) 279 for i := 0; i < len(entries); i++ { 280 tr.Update(entries[i].k, entries[i].v) 281 } 282 tr.Hash() 283 284 check := func(first, last int) { 285 var ( 286 db = rawdb.NewMemoryDatabase() 287 batch = db.NewBatch() 288 ) 289 // Write the junk nodes as the dangling 290 var injects []string 291 for path := range nodes { 292 for i := 0; i < len(path); i++ { 293 _, ok := nodes[path[:i]] 294 if ok { 295 continue 296 } 297 injects = append(injects, path[:i]) 298 } 299 } 300 if len(injects) == 0 { 301 return 302 } 303 for _, path := range injects { 304 rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32)) 305 } 306 307 // Build the partial tree with specific range 308 replay := buildPartial(common.Hash{}, db, batch, entries, first, last) 309 if replay.unknowns > 0 { 310 t.Fatalf("Unknown database write: %d", replay.unknowns) 311 } 312 set := replay.modifies() 313 314 // Make sure the injected junks falling within the path space of 315 // committed trie nodes are correctly deleted. 316 _, leftRoot, rightRoot := innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t) 317 for _, path := range injects { 318 if bytes.Compare([]byte(path), leftRoot) < 0 && !bytes.HasPrefix(leftRoot, []byte(path)) { 319 continue 320 } 321 if bytes.Compare([]byte(path), rightRoot) > 0 { 322 continue 323 } 324 if hash, ok := set[path]; !ok || hash != (common.Hash{}) { 325 t.Fatalf("Missing delete, %v", []byte(path)) 326 } 327 } 328 } 329 for j := 0; j < 100; j++ { 330 var ( 331 first int 332 last int 333 ) 334 for { 335 first = rand.Intn(len(entries)) 336 last = rand.Intn(len(entries)) 337 if first <= last { 338 break 339 } 340 } 341 check(first, last) 342 } 343 var cases = []struct { 344 first int 345 last int 346 }{ 347 {0, len(entries) - 1}, // full 348 {1, len(entries) - 1}, // no left 349 {2, len(entries) - 1}, // no left 350 {2, len(entries) - 2}, // no left and right 351 {2, len(entries) - 2}, // no left and right 352 {len(entries) / 2, len(entries) / 2}, // single 353 {0, 0}, // single first 354 {len(entries) - 1, len(entries) - 1}, // single last 355 } 356 for _, c := range cases { 357 check(c.first, c.last) 358 } 359 } 360 } 361 362 // TestFlushPartialTree tests the gentrie can produce complete inner trie nodes 363 // even with lots of batch flushes. 364 func TestFlushPartialTree(t *testing.T) { 365 var entries []*kv 366 for i := 0; i < 1024; i++ { 367 var val []byte 368 if rand.Intn(3) == 0 { 369 val = testrand.Bytes(3) 370 } else { 371 val = testrand.Bytes(32) 372 } 373 entries = append(entries, &kv{ 374 k: testrand.Bytes(32), 375 v: val, 376 }) 377 } 378 slices.SortFunc(entries, (*kv).cmp) 379 380 nodes := make(map[string]common.Hash) 381 tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { 382 nodes[string(path)] = hash 383 }) 384 for i := 0; i < len(entries); i++ { 385 tr.Update(entries[i].k, entries[i].v) 386 } 387 tr.Hash() 388 389 var cases = []struct { 390 first int 391 last int 392 }{ 393 {0, len(entries) - 1}, // full 394 {1, len(entries) - 1}, // no left 395 {10, len(entries) - 1}, // no left 396 {10, len(entries) - 2}, // no left and right 397 {10, len(entries) - 10}, // no left and right 398 {11, 11}, // single 399 {0, 0}, // single first 400 {len(entries) - 1, len(entries) - 1}, // single last 401 } 402 for _, c := range cases { 403 var ( 404 db = rawdb.NewMemoryDatabase() 405 batch = db.NewBatch() 406 combined = db.NewBatch() 407 ) 408 inner, _, _ := innerNodes(entries[c.first].k, entries[c.last].k, c.first == 0, c.last == len(entries)-1, nodes, t) 409 410 tr := newPathTrie(common.Hash{}, c.first != 0, db, batch) 411 for i := c.first; i <= c.last; i++ { 412 tr.update(entries[i].k, entries[i].v) 413 if rand.Intn(2) == 0 { 414 tr.commit(false) 415 416 batch.Replay(combined) 417 batch.Write() 418 batch.Reset() 419 } 420 } 421 tr.commit(c.last == len(entries)-1) 422 423 batch.Replay(combined) 424 batch.Write() 425 batch.Reset() 426 427 r := newBatchReplay() 428 combined.Replay(r) 429 430 // Ensure all the internal nodes are produced 431 set := r.modifies() 432 for path, hash := range inner { 433 if _, ok := set[path]; !ok { 434 t.Fatalf("Missing nodes %v", []byte(path)) 435 } 436 if hash != set[path] { 437 t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path]) 438 } 439 } 440 if r.updates() != len(inner) { 441 t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates()) 442 } 443 } 444 } 445 446 // TestBoundSplit ensures two consecutive trie chunks are not overlapped with 447 // each other. 448 func TestBoundSplit(t *testing.T) { 449 var entries []*kv 450 for i := 0; i < 1024; i++ { 451 var val []byte 452 if rand.Intn(3) == 0 { 453 val = testrand.Bytes(3) 454 } else { 455 val = testrand.Bytes(32) 456 } 457 entries = append(entries, &kv{ 458 k: testrand.Bytes(32), 459 v: val, 460 }) 461 } 462 slices.SortFunc(entries, (*kv).cmp) 463 464 for j := 0; j < 100; j++ { 465 var ( 466 next int 467 last int 468 db = rawdb.NewMemoryDatabase() 469 470 lastRightRoot []byte 471 ) 472 for { 473 if next == len(entries) { 474 break 475 } 476 last = rand.Intn(len(entries)-next) + next 477 478 r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last) 479 set := r.modifies() 480 481 // Skip if the chunk is zero-size 482 if r.updates() == 0 { 483 next = last + 1 484 continue 485 } 486 487 // Ensure the updates in two consecutive chunks are not overlapped. 488 // The only overlapping part should be deletion. 489 if lastRightRoot != nil && len(set) > 0 { 490 // Derive the path of left-most node in this chunk 491 var leftRoot []byte 492 for path, hash := range r.modifies() { 493 if hash == (common.Hash{}) { 494 t.Fatalf("Unexpected deletion %v", []byte(path)) 495 } 496 if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 { 497 leftRoot = []byte(path) 498 } 499 } 500 if bytes.HasPrefix(lastRightRoot, leftRoot) || bytes.HasPrefix(leftRoot, lastRightRoot) { 501 t.Fatalf("Two chunks are not correctly separated, lastRight: %v, left: %v", lastRightRoot, leftRoot) 502 } 503 } 504 505 // Track the updates as the last chunk 506 var rightRoot []byte 507 for path := range set { 508 if rightRoot == nil || 509 (bytes.Compare(rightRoot, []byte(path)) < 0) || 510 (bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) { 511 rightRoot = []byte(path) 512 } 513 } 514 lastRightRoot = rightRoot 515 next = last + 1 516 } 517 } 518 } 519 520 // TestTinyPartialTree tests if the partial tree is too tiny(has less than two 521 // states), then nothing should be committed. 522 func TestTinyPartialTree(t *testing.T) { 523 var entries []*kv 524 for i := 0; i < 1024; i++ { 525 var val []byte 526 if rand.Intn(3) == 0 { 527 val = testrand.Bytes(3) 528 } else { 529 val = testrand.Bytes(32) 530 } 531 entries = append(entries, &kv{ 532 k: testrand.Bytes(32), 533 v: val, 534 }) 535 } 536 slices.SortFunc(entries, (*kv).cmp) 537 538 for i := 0; i < len(entries); i++ { 539 next := i 540 last := i + 1 541 if last >= len(entries) { 542 last = len(entries) - 1 543 } 544 db := rawdb.NewMemoryDatabase() 545 r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last) 546 547 if next != 0 && last != len(entries)-1 { 548 if r.updates() != 0 { 549 t.Fatalf("Unexpected data writes, got: %d", r.updates()) 550 } 551 } 552 } 553 }