github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/p2p/rlpx/rlpx.go (about) 1 // Copyright 2020 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package rlpx implements the RLPx transport protocol. 18 package rlpx 19 20 import ( 21 "bytes" 22 "crypto/aes" 23 "crypto/cipher" 24 "crypto/ecdsa" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 mrand "math/rand" 33 "net" 34 "time" 35 36 "github.com/ethereum/go-ethereum/crypto" 37 "github.com/ethereum/go-ethereum/crypto/ecies" 38 "github.com/ethereum/go-ethereum/rlp" 39 "github.com/golang/snappy" 40 "golang.org/x/crypto/sha3" 41 ) 42 43 // Conn is an RLPx network connection. It wraps a low-level network connection. The 44 // underlying connection should not be used for other activity when it is wrapped by Conn. 45 // 46 // Before sending messages, a handshake must be performed by calling the Handshake method. 47 // This type is not generally safe for concurrent use, but reading and writing of messages 48 // may happen concurrently after the handshake. 49 type Conn struct { 50 dialDest *ecdsa.PublicKey 51 conn net.Conn 52 session *sessionState 53 54 // These are the buffers for snappy compression. 55 // Compression is enabled if they are non-nil. 56 snappyReadBuffer []byte 57 snappyWriteBuffer []byte 58 } 59 60 // sessionState contains the session keys. 61 type sessionState struct { 62 enc cipher.Stream 63 dec cipher.Stream 64 65 egressMAC hashMAC 66 ingressMAC hashMAC 67 rbuf readBuffer 68 wbuf writeBuffer 69 } 70 71 // hashMAC holds the state of the RLPx v4 MAC contraption. 72 type hashMAC struct { 73 cipher cipher.Block 74 hash hash.Hash 75 aesBuffer [16]byte 76 hashBuffer [32]byte 77 seedBuffer [32]byte 78 } 79 80 func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC { 81 m := hashMAC{cipher: cipher, hash: h} 82 if cipher.BlockSize() != len(m.aesBuffer) { 83 panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize())) 84 } 85 if h.Size() != len(m.hashBuffer) { 86 panic(fmt.Errorf("invalid MAC digest size %d", h.Size())) 87 } 88 return m 89 } 90 91 // NewConn wraps the given network connection. If dialDest is non-nil, the connection 92 // behaves as the initiator during the handshake. 93 func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { 94 return &Conn{ 95 dialDest: dialDest, 96 conn: conn, 97 } 98 } 99 100 // SetSnappy enables or disables snappy compression of messages. This is usually called 101 // after the devp2p Hello message exchange when the negotiated version indicates that 102 // compression is available on both ends of the connection. 103 func (c *Conn) SetSnappy(snappy bool) { 104 if snappy { 105 c.snappyReadBuffer = []byte{} 106 c.snappyWriteBuffer = []byte{} 107 } else { 108 c.snappyReadBuffer = nil 109 c.snappyWriteBuffer = nil 110 } 111 } 112 113 // SetReadDeadline sets the deadline for all future read operations. 114 func (c *Conn) SetReadDeadline(time time.Time) error { 115 return c.conn.SetReadDeadline(time) 116 } 117 118 // SetWriteDeadline sets the deadline for all future write operations. 119 func (c *Conn) SetWriteDeadline(time time.Time) error { 120 return c.conn.SetWriteDeadline(time) 121 } 122 123 // SetDeadline sets the deadline for all future read and write operations. 124 func (c *Conn) SetDeadline(time time.Time) error { 125 return c.conn.SetDeadline(time) 126 } 127 128 // Read reads a message from the connection. 129 // The returned data buffer is valid until the next call to Read. 130 func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) { 131 if c.session == nil { 132 panic("can't ReadMsg before handshake") 133 } 134 135 frame, err := c.session.readFrame(c.conn) 136 if err != nil { 137 return 0, nil, 0, err 138 } 139 code, data, err = rlp.SplitUint64(frame) 140 if err != nil { 141 return 0, nil, 0, fmt.Errorf("invalid message code: %v", err) 142 } 143 wireSize = len(data) 144 145 // If snappy is enabled, verify and decompress message. 146 if c.snappyReadBuffer != nil { 147 var actualSize int 148 actualSize, err = snappy.DecodedLen(data) 149 if err != nil { 150 return code, nil, 0, err 151 } 152 if actualSize > maxUint24 { 153 return code, nil, 0, errPlainMessageTooLarge 154 } 155 c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize) 156 data, err = snappy.Decode(c.snappyReadBuffer, data) 157 } 158 return code, data, wireSize, err 159 } 160 161 func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) { 162 h.rbuf.reset() 163 164 // Read the frame header. 165 header, err := h.rbuf.read(conn, 32) 166 if err != nil { 167 return nil, err 168 } 169 170 // Verify header MAC. 171 wantHeaderMAC := h.ingressMAC.computeHeader(header[:16]) 172 if !hmac.Equal(wantHeaderMAC, header[16:]) { 173 return nil, errors.New("bad header MAC") 174 } 175 176 // Decrypt the frame header to get the frame size. 177 h.dec.XORKeyStream(header[:16], header[:16]) 178 fsize := readUint24(header[:16]) 179 // Frame size rounded up to 16 byte boundary for padding. 180 rsize := fsize 181 if padding := fsize % 16; padding > 0 { 182 rsize += 16 - padding 183 } 184 185 // Read the frame content. 186 frame, err := h.rbuf.read(conn, int(rsize)) 187 if err != nil { 188 return nil, err 189 } 190 191 // Validate frame MAC. 192 frameMAC, err := h.rbuf.read(conn, 16) 193 if err != nil { 194 return nil, err 195 } 196 wantFrameMAC := h.ingressMAC.computeFrame(frame) 197 if !hmac.Equal(wantFrameMAC, frameMAC) { 198 return nil, errors.New("bad frame MAC") 199 } 200 201 // Decrypt the frame data. 202 h.dec.XORKeyStream(frame, frame) 203 return frame[:fsize], nil 204 } 205 206 // Write writes a message to the connection. 207 // 208 // Write returns the written size of the message data. This may be less than or equal to 209 // len(data) depending on whether snappy compression is enabled. 210 func (c *Conn) Write(code uint64, data []byte) (uint32, error) { 211 if c.session == nil { 212 panic("can't WriteMsg before handshake") 213 } 214 if len(data) > maxUint24 { 215 return 0, errPlainMessageTooLarge 216 } 217 if c.snappyWriteBuffer != nil { 218 // Ensure the buffer has sufficient size. 219 // Package snappy will allocate its own buffer if the provided 220 // one is smaller than MaxEncodedLen. 221 c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data))) 222 data = snappy.Encode(c.snappyWriteBuffer, data) 223 } 224 225 wireSize := uint32(len(data)) 226 err := c.session.writeFrame(c.conn, code, data) 227 return wireSize, err 228 } 229 230 func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error { 231 h.wbuf.reset() 232 233 // Write header. 234 fsize := rlp.IntSize(code) + len(data) 235 if fsize > maxUint24 { 236 return errPlainMessageTooLarge 237 } 238 header := h.wbuf.appendZero(16) 239 putUint24(uint32(fsize), header) 240 copy(header[3:], zeroHeader) 241 h.enc.XORKeyStream(header, header) 242 243 // Write header MAC. 244 h.wbuf.Write(h.egressMAC.computeHeader(header)) 245 246 // Encode and encrypt the frame data. 247 offset := len(h.wbuf.data) 248 h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code) 249 h.wbuf.Write(data) 250 if padding := fsize % 16; padding > 0 { 251 h.wbuf.appendZero(16 - padding) 252 } 253 framedata := h.wbuf.data[offset:] 254 h.enc.XORKeyStream(framedata, framedata) 255 256 // Write frame MAC. 257 h.wbuf.Write(h.egressMAC.computeFrame(framedata)) 258 259 _, err := conn.Write(h.wbuf.data) 260 return err 261 } 262 263 // computeHeader computes the MAC of a frame header. 264 func (m *hashMAC) computeHeader(header []byte) []byte { 265 sum1 := m.hash.Sum(m.hashBuffer[:0]) 266 return m.compute(sum1, header) 267 } 268 269 // computeFrame computes the MAC of framedata. 270 func (m *hashMAC) computeFrame(framedata []byte) []byte { 271 m.hash.Write(framedata) 272 seed := m.hash.Sum(m.seedBuffer[:0]) 273 return m.compute(seed, seed[:16]) 274 } 275 276 // compute computes the MAC of a 16-byte 'seed'. 277 // 278 // To do this, it encrypts the current value of the hash state, then XORs the ciphertext 279 // with seed. The obtained value is written back into the hash state and hash output is 280 // taken again. The first 16 bytes of the resulting sum are the MAC value. 281 // 282 // This MAC construction is a horrible, legacy thing. 283 func (m *hashMAC) compute(sum1, seed []byte) []byte { 284 if len(seed) != len(m.aesBuffer) { 285 panic("invalid MAC seed") 286 } 287 288 m.cipher.Encrypt(m.aesBuffer[:], sum1) 289 for i := range m.aesBuffer { 290 m.aesBuffer[i] ^= seed[i] 291 } 292 m.hash.Write(m.aesBuffer[:]) 293 sum2 := m.hash.Sum(m.hashBuffer[:0]) 294 return sum2[:16] 295 } 296 297 // Handshake performs the handshake. This must be called before any data is written 298 // or read from the connection. 299 func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { 300 var ( 301 sec Secrets 302 err error 303 h handshakeState 304 ) 305 if c.dialDest != nil { 306 sec, err = h.runInitiator(c.conn, prv, c.dialDest) 307 } else { 308 sec, err = h.runRecipient(c.conn, prv) 309 } 310 if err != nil { 311 return nil, err 312 } 313 c.InitWithSecrets(sec) 314 c.session.rbuf = h.rbuf 315 c.session.wbuf = h.wbuf 316 return sec.remote, err 317 } 318 319 // InitWithSecrets injects connection secrets as if a handshake had 320 // been performed. This cannot be called after the handshake. 321 func (c *Conn) InitWithSecrets(sec Secrets) { 322 if c.session != nil { 323 panic("can't handshake twice") 324 } 325 macc, err := aes.NewCipher(sec.MAC) 326 if err != nil { 327 panic("invalid MAC secret: " + err.Error()) 328 } 329 encc, err := aes.NewCipher(sec.AES) 330 if err != nil { 331 panic("invalid AES secret: " + err.Error()) 332 } 333 // we use an all-zeroes IV for AES because the key used 334 // for encryption is ephemeral. 335 iv := make([]byte, encc.BlockSize()) 336 c.session = &sessionState{ 337 enc: cipher.NewCTR(encc, iv), 338 dec: cipher.NewCTR(encc, iv), 339 egressMAC: newHashMAC(macc, sec.EgressMAC), 340 ingressMAC: newHashMAC(macc, sec.IngressMAC), 341 } 342 } 343 344 // Close closes the underlying network connection. 345 func (c *Conn) Close() error { 346 return c.conn.Close() 347 } 348 349 // Constants for the handshake. 350 const ( 351 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 352 sigLen = crypto.SignatureLength // elliptic S256 353 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 354 shaLen = 32 // hash length (for nonce etc) 355 356 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 357 ) 358 359 var ( 360 // this is used in place of actual frame header data. 361 // TODO: replace this when Msg contains the protocol type code. 362 zeroHeader = []byte{0xC2, 0x80, 0x80} 363 364 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 365 // the allowed 24 bits (i.e. length >= 16MB). 366 errPlainMessageTooLarge = errors.New("message length >= 16MB") 367 ) 368 369 // Secrets represents the connection secrets which are negotiated during the handshake. 370 type Secrets struct { 371 AES, MAC []byte 372 EgressMAC, IngressMAC hash.Hash 373 remote *ecdsa.PublicKey 374 } 375 376 // handshakeState contains the state of the encryption handshake. 377 type handshakeState struct { 378 initiator bool 379 remote *ecies.PublicKey // remote-pubk 380 initNonce, respNonce []byte // nonce 381 randomPrivKey *ecies.PrivateKey // ecdhe-random 382 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 383 384 rbuf readBuffer 385 wbuf writeBuffer 386 } 387 388 // RLPx v4 handshake auth (defined in EIP-8). 389 type authMsgV4 struct { 390 Signature [sigLen]byte 391 InitiatorPubkey [pubLen]byte 392 Nonce [shaLen]byte 393 Version uint 394 395 // Ignore additional fields (forward-compatibility) 396 Rest []rlp.RawValue `rlp:"tail"` 397 } 398 399 // RLPx v4 handshake response (defined in EIP-8). 400 type authRespV4 struct { 401 RandomPubkey [pubLen]byte 402 Nonce [shaLen]byte 403 Version uint 404 405 // Ignore additional fields (forward-compatibility) 406 Rest []rlp.RawValue `rlp:"tail"` 407 } 408 409 // runRecipient negotiates a session token on conn. 410 // it should be called on the listening side of the connection. 411 // 412 // prv is the local client's private key. 413 func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { 414 authMsg := new(authMsgV4) 415 authPacket, err := h.readMsg(authMsg, prv, conn) 416 if err != nil { 417 return s, err 418 } 419 if err := h.handleAuthMsg(authMsg, prv); err != nil { 420 return s, err 421 } 422 423 authRespMsg, err := h.makeAuthResp() 424 if err != nil { 425 return s, err 426 } 427 authRespPacket, err := h.sealEIP8(authRespMsg) 428 if err != nil { 429 return s, err 430 } 431 if _, err = conn.Write(authRespPacket); err != nil { 432 return s, err 433 } 434 435 return h.secrets(authPacket, authRespPacket) 436 } 437 438 func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 439 // Import the remote identity. 440 rpub, err := importPublicKey(msg.InitiatorPubkey[:]) 441 if err != nil { 442 return err 443 } 444 h.initNonce = msg.Nonce[:] 445 h.remote = rpub 446 447 // Generate random keypair for ECDH. 448 // If a private key is already set, use it instead of generating one (for testing). 449 if h.randomPrivKey == nil { 450 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 451 if err != nil { 452 return err 453 } 454 } 455 456 // Check the signature. 457 token, err := h.staticSharedSecret(prv) 458 if err != nil { 459 return err 460 } 461 signedMsg := xor(token, h.initNonce) 462 remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) 463 if err != nil { 464 return err 465 } 466 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 467 return nil 468 } 469 470 // secrets is called after the handshake is completed. 471 // It extracts the connection secrets from the handshake values. 472 func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) { 473 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 474 if err != nil { 475 return Secrets{}, err 476 } 477 478 // derive base secrets from ephemeral key agreement 479 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 480 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 481 s := Secrets{ 482 remote: h.remote.ExportECDSA(), 483 AES: aesSecret, 484 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 485 } 486 487 // setup sha3 instances for the MACs 488 mac1 := sha3.NewLegacyKeccak256() 489 mac1.Write(xor(s.MAC, h.respNonce)) 490 mac1.Write(auth) 491 mac2 := sha3.NewLegacyKeccak256() 492 mac2.Write(xor(s.MAC, h.initNonce)) 493 mac2.Write(authResp) 494 if h.initiator { 495 s.EgressMAC, s.IngressMAC = mac1, mac2 496 } else { 497 s.EgressMAC, s.IngressMAC = mac2, mac1 498 } 499 500 return s, nil 501 } 502 503 // staticSharedSecret returns the static shared secret, the result 504 // of key agreement between the local and remote static node key. 505 func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 506 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 507 } 508 509 // runInitiator negotiates a session token on conn. 510 // it should be called on the dialing side of the connection. 511 // 512 // prv is the local client's private key. 513 func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { 514 h.initiator = true 515 h.remote = ecies.ImportECDSAPublic(remote) 516 517 authMsg, err := h.makeAuthMsg(prv) 518 if err != nil { 519 return s, err 520 } 521 authPacket, err := h.sealEIP8(authMsg) 522 if err != nil { 523 return s, err 524 } 525 526 if _, err = conn.Write(authPacket); err != nil { 527 return s, err 528 } 529 530 authRespMsg := new(authRespV4) 531 authRespPacket, err := h.readMsg(authRespMsg, prv, conn) 532 if err != nil { 533 return s, err 534 } 535 if err := h.handleAuthResp(authRespMsg); err != nil { 536 return s, err 537 } 538 539 return h.secrets(authPacket, authRespPacket) 540 } 541 542 // makeAuthMsg creates the initiator handshake message. 543 func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 544 // Generate random initiator nonce. 545 h.initNonce = make([]byte, shaLen) 546 _, err := rand.Read(h.initNonce) 547 if err != nil { 548 return nil, err 549 } 550 // Generate random keypair to for ECDH. 551 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 552 if err != nil { 553 return nil, err 554 } 555 556 // Sign known message: static-shared-secret ^ nonce 557 token, err := h.staticSharedSecret(prv) 558 if err != nil { 559 return nil, err 560 } 561 signed := xor(token, h.initNonce) 562 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 563 if err != nil { 564 return nil, err 565 } 566 567 msg := new(authMsgV4) 568 copy(msg.Signature[:], signature) 569 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 570 copy(msg.Nonce[:], h.initNonce) 571 msg.Version = 4 572 return msg, nil 573 } 574 575 func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) { 576 h.respNonce = msg.Nonce[:] 577 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 578 return err 579 } 580 581 func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) { 582 // Generate random nonce. 583 h.respNonce = make([]byte, shaLen) 584 if _, err = rand.Read(h.respNonce); err != nil { 585 return nil, err 586 } 587 588 msg = new(authRespV4) 589 copy(msg.Nonce[:], h.respNonce) 590 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 591 msg.Version = 4 592 return msg, nil 593 } 594 595 // readMsg reads an encrypted handshake message, decoding it into msg. 596 func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 597 h.rbuf.reset() 598 h.rbuf.grow(512) 599 600 // Read the size prefix. 601 prefix, err := h.rbuf.read(r, 2) 602 if err != nil { 603 return nil, err 604 } 605 size := binary.BigEndian.Uint16(prefix) 606 607 // Read the handshake packet. 608 packet, err := h.rbuf.read(r, int(size)) 609 if err != nil { 610 return nil, err 611 } 612 dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix) 613 if err != nil { 614 return nil, err 615 } 616 // Can't use rlp.DecodeBytes here because it rejects 617 // trailing data (forward-compatibility). 618 s := rlp.NewStream(bytes.NewReader(dec), 0) 619 err = s.Decode(msg) 620 return h.rbuf.data[:len(prefix)+len(packet)], err 621 } 622 623 // sealEIP8 encrypts a handshake message. 624 func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) { 625 h.wbuf.reset() 626 627 // Write the message plaintext. 628 if err := rlp.Encode(&h.wbuf, msg); err != nil { 629 return nil, err 630 } 631 // Pad with random amount of data. the amount needs to be at least 100 bytes to make 632 // the message distinguishable from pre-EIP-8 handshakes. 633 h.wbuf.appendZero(mrand.Intn(100) + 100) 634 635 prefix := make([]byte, 2) 636 binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead)) 637 638 enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix) 639 return append(prefix, enc...), err 640 } 641 642 // importPublicKey unmarshals 512 bit public keys. 643 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 644 var pubKey65 []byte 645 switch len(pubKey) { 646 case 64: 647 // add 'uncompressed key' flag 648 pubKey65 = append([]byte{0x04}, pubKey...) 649 case 65: 650 pubKey65 = pubKey 651 default: 652 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 653 } 654 // TODO: fewer pointless conversions 655 pub, err := crypto.UnmarshalPubkey(pubKey65) 656 if err != nil { 657 return nil, err 658 } 659 return ecies.ImportECDSAPublic(pub), nil 660 } 661 662 func exportPubkey(pub *ecies.PublicKey) []byte { 663 if pub == nil { 664 panic("nil pubkey") 665 } 666 if curve, ok := pub.Curve.(crypto.EllipticCurve); ok { 667 return curve.Marshal(pub.X, pub.Y)[1:] 668 } 669 return []byte{} 670 } 671 672 func xor(one, other []byte) (xor []byte) { 673 xor = make([]byte, len(one)) 674 for i := 0; i < len(one); i++ { 675 xor[i] = one[i] ^ other[i] 676 } 677 return xor 678 }