github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  
    25  	"github.com/ethereum/go-ethereum/common"
    26  	"github.com/ethereum/go-ethereum/core/types"
    27  	"github.com/ethereum/go-ethereum/log"
    28  	"github.com/ethereum/go-ethereum/trie/trienode"
    29  	"github.com/ethereum/go-ethereum/triedb/database"
    30  )
    31  
    32  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    33  // top of a database. Whenever trie performs a commit operation, the generated
    34  // nodes will be gathered and returned in a set. Once the trie is committed,
    35  // it's not usable anymore. Callers have to re-create the trie with new root
    36  // based on the updated trie database.
    37  //
    38  // Trie is not safe for concurrent use.
    39  type Trie struct {
    40  	root  node
    41  	owner common.Hash
    42  
    43  	// Flag whether the commit operation is already performed. If so the
    44  	// trie is not usable(latest states is invisible).
    45  	committed bool
    46  
    47  	// Keep track of the number leaves which have been inserted since the last
    48  	// hashing operation. This number will not directly map to the number of
    49  	// actually unhashed nodes.
    50  	unhashed int
    51  
    52  	// reader is the handler trie can retrieve nodes from.
    53  	reader *trieReader
    54  
    55  	// tracer is the tool to track the trie changes.
    56  	// It will be reset after each commit operation.
    57  	tracer *tracer
    58  }
    59  
    60  // newFlag returns the cache flag value for a newly created node.
    61  func (t *Trie) newFlag() nodeFlag {
    62  	return nodeFlag{dirty: true}
    63  }
    64  
    65  // Copy returns a copy of Trie.
    66  func (t *Trie) Copy() *Trie {
    67  	return &Trie{
    68  		root:      t.root,
    69  		owner:     t.owner,
    70  		committed: t.committed,
    71  		unhashed:  t.unhashed,
    72  		reader:    t.reader,
    73  		tracer:    t.tracer.copy(),
    74  	}
    75  }
    76  
    77  // New creates the trie instance with provided trie id and the read-only
    78  // database. The state specified by trie id must be available, otherwise
    79  // an error will be returned. The trie root specified by trie id can be
    80  // zero hash or the sha3 hash of an empty string, then trie is initially
    81  // empty, otherwise, the root node must be present in database or returns
    82  // a MissingNodeError if not.
    83  func New(id *ID, db database.Database) (*Trie, error) {
    84  	reader, err := newTrieReader(id.StateRoot, id.Owner, db)
    85  	if err != nil {
    86  		return nil, err
    87  	}
    88  	trie := &Trie{
    89  		owner:  id.Owner,
    90  		reader: reader,
    91  		tracer: newTracer(),
    92  	}
    93  	if id.Root != (common.Hash{}) && id.Root != types.EmptyRootHash {
    94  		rootnode, err := trie.resolveAndTrack(id.Root[:], nil)
    95  		if err != nil {
    96  			return nil, err
    97  		}
    98  		trie.root = rootnode
    99  	}
   100  	return trie, nil
   101  }
   102  
   103  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   104  func NewEmpty(db database.Database) *Trie {
   105  	tr, _ := New(TrieID(types.EmptyRootHash), db)
   106  	return tr
   107  }
   108  
   109  // MustNodeIterator is a wrapper of NodeIterator and will omit any encountered
   110  // error but just print out an error message.
   111  func (t *Trie) MustNodeIterator(start []byte) NodeIterator {
   112  	it, err := t.NodeIterator(start)
   113  	if err != nil {
   114  		log.Error("Unhandled trie error in Trie.NodeIterator", "err", err)
   115  	}
   116  	return it
   117  }
   118  
   119  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   120  // the key after the given start key.
   121  func (t *Trie) NodeIterator(start []byte) (NodeIterator, error) {
   122  	// Short circuit if the trie is already committed and not usable.
   123  	if t.committed {
   124  		return nil, ErrCommitted
   125  	}
   126  	return newNodeIterator(t, start), nil
   127  }
   128  
   129  // MustGet is a wrapper of Get and will omit any encountered error but just
   130  // print out an error message.
   131  func (t *Trie) MustGet(key []byte) []byte {
   132  	res, err := t.Get(key)
   133  	if err != nil {
   134  		log.Error("Unhandled trie error in Trie.Get", "err", err)
   135  	}
   136  	return res
   137  }
   138  
   139  // Get returns the value for key stored in the trie.
   140  // The value bytes must not be modified by the caller.
   141  //
   142  // If the requested node is not present in trie, no error will be returned.
   143  // If the trie is corrupted, a MissingNodeError is returned.
   144  func (t *Trie) Get(key []byte) ([]byte, error) {
   145  	// Short circuit if the trie is already committed and not usable.
   146  	if t.committed {
   147  		return nil, ErrCommitted
   148  	}
   149  	value, newroot, didResolve, err := t.get(t.root, keybytesToHex(key), 0)
   150  	if err == nil && didResolve {
   151  		t.root = newroot
   152  	}
   153  	return value, err
   154  }
   155  
   156  func (t *Trie) get(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   157  	switch n := (origNode).(type) {
   158  	case nil:
   159  		return nil, nil, false, nil
   160  	case valueNode:
   161  		return n, n, false, nil
   162  	case *shortNode:
   163  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   164  			// key not found in trie
   165  			return nil, n, false, nil
   166  		}
   167  		value, newnode, didResolve, err = t.get(n.Val, key, pos+len(n.Key))
   168  		if err == nil && didResolve {
   169  			n = n.copy()
   170  			n.Val = newnode
   171  		}
   172  		return value, n, didResolve, err
   173  	case *fullNode:
   174  		value, newnode, didResolve, err = t.get(n.Children[key[pos]], key, pos+1)
   175  		if err == nil && didResolve {
   176  			n = n.copy()
   177  			n.Children[key[pos]] = newnode
   178  		}
   179  		return value, n, didResolve, err
   180  	case hashNode:
   181  		child, err := t.resolveAndTrack(n, key[:pos])
   182  		if err != nil {
   183  			return nil, n, true, err
   184  		}
   185  		value, newnode, _, err := t.get(child, key, pos)
   186  		return value, newnode, true, err
   187  	default:
   188  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   189  	}
   190  }
   191  
   192  // MustGetNode is a wrapper of GetNode and will omit any encountered error but
   193  // just print out an error message.
   194  func (t *Trie) MustGetNode(path []byte) ([]byte, int) {
   195  	item, resolved, err := t.GetNode(path)
   196  	if err != nil {
   197  		log.Error("Unhandled trie error in Trie.GetNode", "err", err)
   198  	}
   199  	return item, resolved
   200  }
   201  
   202  // GetNode retrieves a trie node by compact-encoded path. It is not possible
   203  // to use keybyte-encoding as the path might contain odd nibbles.
   204  //
   205  // If the requested node is not present in trie, no error will be returned.
   206  // If the trie is corrupted, a MissingNodeError is returned.
   207  func (t *Trie) GetNode(path []byte) ([]byte, int, error) {
   208  	// Short circuit if the trie is already committed and not usable.
   209  	if t.committed {
   210  		return nil, 0, ErrCommitted
   211  	}
   212  	item, newroot, resolved, err := t.getNode(t.root, compactToHex(path), 0)
   213  	if err != nil {
   214  		return nil, resolved, err
   215  	}
   216  	if resolved > 0 {
   217  		t.root = newroot
   218  	}
   219  	if item == nil {
   220  		return nil, resolved, nil
   221  	}
   222  	return item, resolved, nil
   223  }
   224  
   225  func (t *Trie) getNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   226  	// If non-existent path requested, abort
   227  	if origNode == nil {
   228  		return nil, nil, 0, nil
   229  	}
   230  	// If we reached the requested path, return the current node
   231  	if pos >= len(path) {
   232  		// Although we most probably have the original node expanded, encoding
   233  		// that into consensus form can be nasty (needs to cascade down) and
   234  		// time consuming. Instead, just pull the hash up from disk directly.
   235  		var hash hashNode
   236  		if node, ok := origNode.(hashNode); ok {
   237  			hash = node
   238  		} else {
   239  			hash, _ = origNode.cache()
   240  		}
   241  		if hash == nil {
   242  			return nil, origNode, 0, errors.New("non-consensus node")
   243  		}
   244  		blob, err := t.reader.node(path, common.BytesToHash(hash))
   245  		return blob, origNode, 1, err
   246  	}
   247  	// Path still needs to be traversed, descend into children
   248  	switch n := (origNode).(type) {
   249  	case valueNode:
   250  		// Path prematurely ended, abort
   251  		return nil, nil, 0, nil
   252  
   253  	case *shortNode:
   254  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   255  			// Path branches off from short node
   256  			return nil, n, 0, nil
   257  		}
   258  		item, newnode, resolved, err = t.getNode(n.Val, path, pos+len(n.Key))
   259  		if err == nil && resolved > 0 {
   260  			n = n.copy()
   261  			n.Val = newnode
   262  		}
   263  		return item, n, resolved, err
   264  
   265  	case *fullNode:
   266  		item, newnode, resolved, err = t.getNode(n.Children[path[pos]], path, pos+1)
   267  		if err == nil && resolved > 0 {
   268  			n = n.copy()
   269  			n.Children[path[pos]] = newnode
   270  		}
   271  		return item, n, resolved, err
   272  
   273  	case hashNode:
   274  		child, err := t.resolveAndTrack(n, path[:pos])
   275  		if err != nil {
   276  			return nil, n, 1, err
   277  		}
   278  		item, newnode, resolved, err := t.getNode(child, path, pos)
   279  		return item, newnode, resolved + 1, err
   280  
   281  	default:
   282  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   283  	}
   284  }
   285  
   286  // MustUpdate is a wrapper of Update and will omit any encountered error but
   287  // just print out an error message.
   288  func (t *Trie) MustUpdate(key, value []byte) {
   289  	if err := t.Update(key, value); err != nil {
   290  		log.Error("Unhandled trie error in Trie.Update", "err", err)
   291  	}
   292  }
   293  
   294  // Update associates key with value in the trie. Subsequent calls to
   295  // Get will return value. If value has length zero, any existing value
   296  // is deleted from the trie and calls to Get will return nil.
   297  //
   298  // The value bytes must not be modified by the caller while they are
   299  // stored in the trie.
   300  //
   301  // If the requested node is not present in trie, no error will be returned.
   302  // If the trie is corrupted, a MissingNodeError is returned.
   303  func (t *Trie) Update(key, value []byte) error {
   304  	// Short circuit if the trie is already committed and not usable.
   305  	if t.committed {
   306  		return ErrCommitted
   307  	}
   308  	return t.update(key, value)
   309  }
   310  
   311  func (t *Trie) update(key, value []byte) error {
   312  	t.unhashed++
   313  	k := keybytesToHex(key)
   314  	if len(value) != 0 {
   315  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   316  		if err != nil {
   317  			return err
   318  		}
   319  		t.root = n
   320  	} else {
   321  		_, n, err := t.delete(t.root, nil, k)
   322  		if err != nil {
   323  			return err
   324  		}
   325  		t.root = n
   326  	}
   327  	return nil
   328  }
   329  
   330  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   331  	if len(key) == 0 {
   332  		if v, ok := n.(valueNode); ok {
   333  			return !bytes.Equal(v, value.(valueNode)), value, nil
   334  		}
   335  		return true, value, nil
   336  	}
   337  	switch n := n.(type) {
   338  	case *shortNode:
   339  		matchlen := prefixLen(key, n.Key)
   340  		// If the whole key matches, keep this short node as is
   341  		// and only update the value.
   342  		if matchlen == len(n.Key) {
   343  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   344  			if !dirty || err != nil {
   345  				return false, n, err
   346  			}
   347  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   348  		}
   349  		// Otherwise branch out at the index where they differ.
   350  		branch := &fullNode{flags: t.newFlag()}
   351  		var err error
   352  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   353  		if err != nil {
   354  			return false, nil, err
   355  		}
   356  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   357  		if err != nil {
   358  			return false, nil, err
   359  		}
   360  		// Replace this shortNode with the branch if it occurs at index 0.
   361  		if matchlen == 0 {
   362  			return true, branch, nil
   363  		}
   364  		// New branch node is created as a child of the original short node.
   365  		// Track the newly inserted node in the tracer. The node identifier
   366  		// passed is the path from the root node.
   367  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   368  
   369  		// Replace it with a short node leading up to the branch.
   370  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   371  
   372  	case *fullNode:
   373  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   374  		if !dirty || err != nil {
   375  			return false, n, err
   376  		}
   377  		n = n.copy()
   378  		n.flags = t.newFlag()
   379  		n.Children[key[0]] = nn
   380  		return true, n, nil
   381  
   382  	case nil:
   383  		// New short node is created and track it in the tracer. The node identifier
   384  		// passed is the path from the root node. Note the valueNode won't be tracked
   385  		// since it's always embedded in its parent.
   386  		t.tracer.onInsert(prefix)
   387  
   388  		return true, &shortNode{key, value, t.newFlag()}, nil
   389  
   390  	case hashNode:
   391  		// We've hit a part of the trie that isn't loaded yet. Load
   392  		// the node and insert into it. This leaves all child nodes on
   393  		// the path to the value in the trie.
   394  		rn, err := t.resolveAndTrack(n, prefix)
   395  		if err != nil {
   396  			return false, nil, err
   397  		}
   398  		dirty, nn, err := t.insert(rn, prefix, key, value)
   399  		if !dirty || err != nil {
   400  			return false, rn, err
   401  		}
   402  		return true, nn, nil
   403  
   404  	default:
   405  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   406  	}
   407  }
   408  
   409  // MustDelete is a wrapper of Delete and will omit any encountered error but
   410  // just print out an error message.
   411  func (t *Trie) MustDelete(key []byte) {
   412  	if err := t.Delete(key); err != nil {
   413  		log.Error("Unhandled trie error in Trie.Delete", "err", err)
   414  	}
   415  }
   416  
   417  // Delete removes any existing value for key from the trie.
   418  //
   419  // If the requested node is not present in trie, no error will be returned.
   420  // If the trie is corrupted, a MissingNodeError is returned.
   421  func (t *Trie) Delete(key []byte) error {
   422  	// Short circuit if the trie is already committed and not usable.
   423  	if t.committed {
   424  		return ErrCommitted
   425  	}
   426  	t.unhashed++
   427  	k := keybytesToHex(key)
   428  	_, n, err := t.delete(t.root, nil, k)
   429  	if err != nil {
   430  		return err
   431  	}
   432  	t.root = n
   433  	return nil
   434  }
   435  
   436  // delete returns the new root of the trie with key deleted.
   437  // It reduces the trie to minimal form by simplifying
   438  // nodes on the way up after deleting recursively.
   439  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   440  	switch n := n.(type) {
   441  	case *shortNode:
   442  		matchlen := prefixLen(key, n.Key)
   443  		if matchlen < len(n.Key) {
   444  			return false, n, nil // don't replace n on mismatch
   445  		}
   446  		if matchlen == len(key) {
   447  			// The matched short node is deleted entirely and track
   448  			// it in the deletion set. The same the valueNode doesn't
   449  			// need to be tracked at all since it's always embedded.
   450  			t.tracer.onDelete(prefix)
   451  
   452  			return true, nil, nil // remove n entirely for whole matches
   453  		}
   454  		// The key is longer than n.Key. Remove the remaining suffix
   455  		// from the subtrie. Child can never be nil here since the
   456  		// subtrie must contain at least two other values with keys
   457  		// longer than n.Key.
   458  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   459  		if !dirty || err != nil {
   460  			return false, n, err
   461  		}
   462  		switch child := child.(type) {
   463  		case *shortNode:
   464  			// The child shortNode is merged into its parent, track
   465  			// is deleted as well.
   466  			t.tracer.onDelete(append(prefix, n.Key...))
   467  
   468  			// Deleting from the subtrie reduced it to another
   469  			// short node. Merge the nodes to avoid creating a
   470  			// shortNode{..., shortNode{...}}. Use concat (which
   471  			// always creates a new slice) instead of append to
   472  			// avoid modifying n.Key since it might be shared with
   473  			// other nodes.
   474  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   475  		default:
   476  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   477  		}
   478  
   479  	case *fullNode:
   480  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   481  		if !dirty || err != nil {
   482  			return false, n, err
   483  		}
   484  		n = n.copy()
   485  		n.flags = t.newFlag()
   486  		n.Children[key[0]] = nn
   487  
   488  		// Because n is a full node, it must've contained at least two children
   489  		// before the delete operation. If the new child value is non-nil, n still
   490  		// has at least two children after the deletion, and cannot be reduced to
   491  		// a short node.
   492  		if nn != nil {
   493  			return true, n, nil
   494  		}
   495  		// Reduction:
   496  		// Check how many non-nil entries are left after deleting and
   497  		// reduce the full node to a short node if only one entry is
   498  		// left. Since n must've contained at least two children
   499  		// before deletion (otherwise it would not be a full node) n
   500  		// can never be reduced to nil.
   501  		//
   502  		// When the loop is done, pos contains the index of the single
   503  		// value that is left in n or -2 if n contains at least two
   504  		// values.
   505  		pos := -1
   506  		for i, cld := range &n.Children {
   507  			if cld != nil {
   508  				if pos == -1 {
   509  					pos = i
   510  				} else {
   511  					pos = -2
   512  					break
   513  				}
   514  			}
   515  		}
   516  		if pos >= 0 {
   517  			if pos != 16 {
   518  				// If the remaining entry is a short node, it replaces
   519  				// n and its key gets the missing nibble tacked to the
   520  				// front. This avoids creating an invalid
   521  				// shortNode{..., shortNode{...}}.  Since the entry
   522  				// might not be loaded yet, resolve it just for this
   523  				// check.
   524  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   525  				if err != nil {
   526  					return false, nil, err
   527  				}
   528  				if cnode, ok := cnode.(*shortNode); ok {
   529  					// Replace the entire full node with the short node.
   530  					// Mark the original short node as deleted since the
   531  					// value is embedded into the parent now.
   532  					t.tracer.onDelete(append(prefix, byte(pos)))
   533  
   534  					k := append([]byte{byte(pos)}, cnode.Key...)
   535  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   536  				}
   537  			}
   538  			// Otherwise, n is replaced by a one-nibble short node
   539  			// containing the child.
   540  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   541  		}
   542  		// n still contains at least two values and cannot be reduced.
   543  		return true, n, nil
   544  
   545  	case valueNode:
   546  		return true, nil, nil
   547  
   548  	case nil:
   549  		return false, nil, nil
   550  
   551  	case hashNode:
   552  		// We've hit a part of the trie that isn't loaded yet. Load
   553  		// the node and delete from it. This leaves all child nodes on
   554  		// the path to the value in the trie.
   555  		rn, err := t.resolveAndTrack(n, prefix)
   556  		if err != nil {
   557  			return false, nil, err
   558  		}
   559  		dirty, nn, err := t.delete(rn, prefix, key)
   560  		if !dirty || err != nil {
   561  			return false, rn, err
   562  		}
   563  		return true, nn, nil
   564  
   565  	default:
   566  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   567  	}
   568  }
   569  
   570  func concat(s1 []byte, s2 ...byte) []byte {
   571  	r := make([]byte, len(s1)+len(s2))
   572  	copy(r, s1)
   573  	copy(r[len(s1):], s2)
   574  	return r
   575  }
   576  
   577  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   578  	if n, ok := n.(hashNode); ok {
   579  		return t.resolveAndTrack(n, prefix)
   580  	}
   581  	return n, nil
   582  }
   583  
   584  // resolveAndTrack loads node from the underlying store with the given node hash
   585  // and path prefix and also tracks the loaded node blob in tracer treated as the
   586  // node's original value. The rlp-encoded blob is preferred to be loaded from
   587  // database because it's easy to decode node while complex to encode node to blob.
   588  func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) {
   589  	blob, err := t.reader.node(prefix, common.BytesToHash(n))
   590  	if err != nil {
   591  		return nil, err
   592  	}
   593  	t.tracer.onRead(prefix, blob)
   594  	return mustDecodeNode(n, blob), nil
   595  }
   596  
   597  // Hash returns the root hash of the trie. It does not write to the
   598  // database and can be used even if the trie doesn't have one.
   599  func (t *Trie) Hash() common.Hash {
   600  	hash, cached := t.hashRoot()
   601  	t.root = cached
   602  	return common.BytesToHash(hash.(hashNode))
   603  }
   604  
   605  // Commit collects all dirty nodes in the trie and replaces them with the
   606  // corresponding node hash. All collected nodes (including dirty leaves if
   607  // collectLeaf is true) will be encapsulated into a nodeset for return.
   608  // The returned nodeset can be nil if the trie is clean (nothing to commit).
   609  // Once the trie is committed, it's not usable anymore. A new trie must
   610  // be created with new root and updated trie database for following usage
   611  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error) {
   612  	defer t.tracer.reset()
   613  	defer func() {
   614  		t.committed = true
   615  	}()
   616  	// Trie is empty and can be classified into two types of situations:
   617  	// (a) The trie was empty and no update happens => return nil
   618  	// (b) The trie was non-empty and all nodes are dropped => return
   619  	//     the node set includes all deleted nodes
   620  	if t.root == nil {
   621  		paths := t.tracer.deletedNodes()
   622  		if len(paths) == 0 {
   623  			return types.EmptyRootHash, nil, nil // case (a)
   624  		}
   625  		nodes := trienode.NewNodeSet(t.owner)
   626  		for _, path := range paths {
   627  			nodes.AddNode([]byte(path), trienode.NewDeleted())
   628  		}
   629  		return types.EmptyRootHash, nodes, nil // case (b)
   630  	}
   631  	// Derive the hash for all dirty nodes first. We hold the assumption
   632  	// in the following procedure that all nodes are hashed.
   633  	rootHash := t.Hash()
   634  
   635  	// Do a quick check if we really need to commit. This can happen e.g.
   636  	// if we load a trie for reading storage values, but don't write to it.
   637  	if hashedNode, dirty := t.root.cache(); !dirty {
   638  		// Replace the root node with the origin hash in order to
   639  		// ensure all resolved nodes are dropped after the commit.
   640  		t.root = hashedNode
   641  		return rootHash, nil, nil
   642  	}
   643  	nodes := trienode.NewNodeSet(t.owner)
   644  	for _, path := range t.tracer.deletedNodes() {
   645  		nodes.AddNode([]byte(path), trienode.NewDeleted())
   646  	}
   647  	t.root = newCommitter(nodes, t.tracer, collectLeaf).Commit(t.root)
   648  	return rootHash, nodes, nil
   649  }
   650  
   651  // hashRoot calculates the root hash of the given trie
   652  func (t *Trie) hashRoot() (node, node) {
   653  	if t.root == nil {
   654  		return hashNode(types.EmptyRootHash.Bytes()), nil
   655  	}
   656  	// If the number of changes is below 100, we let one thread handle it
   657  	h := newHasher(t.unhashed >= 100)
   658  	defer func() {
   659  		returnHasherToPool(h)
   660  		t.unhashed = 0
   661  	}()
   662  	hashed, cached := h.hash(t.root, true)
   663  	return hashed, cached
   664  }
   665  
   666  // Reset drops the referenced root node and cleans all internal state.
   667  func (t *Trie) Reset() {
   668  	t.root = nil
   669  	t.owner = common.Hash{}
   670  	t.unhashed = 0
   671  	t.tracer.reset()
   672  	t.committed = false
   673  }