github.com/0xsequence/ethkit@v1.25.0/go-ethereum/crypto/crypto.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package crypto 18 19 import ( 20 "bufio" 21 "crypto/ecdsa" 22 "crypto/elliptic" 23 "crypto/rand" 24 "encoding/hex" 25 "errors" 26 "fmt" 27 "hash" 28 "io" 29 "math/big" 30 "os" 31 32 "github.com/0xsequence/ethkit/go-ethereum/common" 33 "github.com/0xsequence/ethkit/go-ethereum/common/math" 34 "github.com/0xsequence/ethkit/go-ethereum/rlp" 35 "golang.org/x/crypto/sha3" 36 ) 37 38 //SignatureLength indicates the byte length required to carry a signature with recovery id. 39 const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id 40 41 // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id. 42 const RecoveryIDOffset = 64 43 44 // DigestLength sets the signature digest exact length 45 const DigestLength = 32 46 47 var ( 48 secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) 49 secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2)) 50 ) 51 52 var errInvalidPubkey = errors.New("invalid secp256k1 public key") 53 54 // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports 55 // Read to get a variable amount of data from the hash state. Read is faster than Sum 56 // because it doesn't copy the internal state, but also modifies the internal state. 57 type KeccakState interface { 58 hash.Hash 59 Read([]byte) (int, error) 60 } 61 62 // NewKeccakState creates a new KeccakState 63 func NewKeccakState() KeccakState { 64 return sha3.NewLegacyKeccak256().(KeccakState) 65 } 66 67 // HashData hashes the provided data using the KeccakState and returns a 32 byte hash 68 func HashData(kh KeccakState, data []byte) (h common.Hash) { 69 kh.Reset() 70 kh.Write(data) 71 kh.Read(h[:]) 72 return h 73 } 74 75 // Keccak256 calculates and returns the Keccak256 hash of the input data. 76 func Keccak256(data ...[]byte) []byte { 77 b := make([]byte, 32) 78 d := NewKeccakState() 79 for _, b := range data { 80 d.Write(b) 81 } 82 d.Read(b) 83 return b 84 } 85 86 // Keccak256Hash calculates and returns the Keccak256 hash of the input data, 87 // converting it to an internal Hash data structure. 88 func Keccak256Hash(data ...[]byte) (h common.Hash) { 89 d := NewKeccakState() 90 for _, b := range data { 91 d.Write(b) 92 } 93 d.Read(h[:]) 94 return h 95 } 96 97 // Keccak512 calculates and returns the Keccak512 hash of the input data. 98 func Keccak512(data ...[]byte) []byte { 99 d := sha3.NewLegacyKeccak512() 100 for _, b := range data { 101 d.Write(b) 102 } 103 return d.Sum(nil) 104 } 105 106 // CreateAddress creates an ethereum address given the bytes and the nonce 107 func CreateAddress(b common.Address, nonce uint64) common.Address { 108 data, _ := rlp.EncodeToBytes([]interface{}{b, nonce}) 109 return common.BytesToAddress(Keccak256(data)[12:]) 110 } 111 112 // CreateAddress2 creates an ethereum address given the address bytes, initial 113 // contract code hash and a salt. 114 func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address { 115 return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:]) 116 } 117 118 // ToECDSA creates a private key with the given D value. 119 func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) { 120 return toECDSA(d, true) 121 } 122 123 // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost 124 // never be used unless you are sure the input is valid and want to avoid hitting 125 // errors due to bad origin encoding (0 prefixes cut off). 126 func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey { 127 priv, _ := toECDSA(d, false) 128 return priv 129 } 130 131 // toECDSA creates a private key with the given D value. The strict parameter 132 // controls whether the key's length should be enforced at the curve size or 133 // it can also accept legacy encodings (0 prefixes). 134 func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) { 135 priv := new(ecdsa.PrivateKey) 136 priv.PublicKey.Curve = S256() 137 if strict && 8*len(d) != priv.Params().BitSize { 138 return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize) 139 } 140 priv.D = new(big.Int).SetBytes(d) 141 142 // The priv.D must < N 143 if priv.D.Cmp(secp256k1N) >= 0 { 144 return nil, fmt.Errorf("invalid private key, >=N") 145 } 146 // The priv.D must not be zero or negative. 147 if priv.D.Sign() <= 0 { 148 return nil, fmt.Errorf("invalid private key, zero or negative") 149 } 150 151 priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d) 152 if priv.PublicKey.X == nil { 153 return nil, errors.New("invalid private key") 154 } 155 return priv, nil 156 } 157 158 // FromECDSA exports a private key into a binary dump. 159 func FromECDSA(priv *ecdsa.PrivateKey) []byte { 160 if priv == nil { 161 return nil 162 } 163 return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8) 164 } 165 166 // UnmarshalPubkey converts bytes to a secp256k1 public key. 167 func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) { 168 x, y := elliptic.Unmarshal(S256(), pub) 169 if x == nil { 170 return nil, errInvalidPubkey 171 } 172 return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil 173 } 174 175 func FromECDSAPub(pub *ecdsa.PublicKey) []byte { 176 if pub == nil || pub.X == nil || pub.Y == nil { 177 return nil 178 } 179 return elliptic.Marshal(S256(), pub.X, pub.Y) 180 } 181 182 // HexToECDSA parses a secp256k1 private key. 183 func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) { 184 b, err := hex.DecodeString(hexkey) 185 if byteErr, ok := err.(hex.InvalidByteError); ok { 186 return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr)) 187 } else if err != nil { 188 return nil, errors.New("invalid hex data for private key") 189 } 190 return ToECDSA(b) 191 } 192 193 // LoadECDSA loads a secp256k1 private key from the given file. 194 func LoadECDSA(file string) (*ecdsa.PrivateKey, error) { 195 fd, err := os.Open(file) 196 if err != nil { 197 return nil, err 198 } 199 defer fd.Close() 200 201 r := bufio.NewReader(fd) 202 buf := make([]byte, 64) 203 n, err := readASCII(buf, r) 204 if err != nil { 205 return nil, err 206 } else if n != len(buf) { 207 return nil, fmt.Errorf("key file too short, want 64 hex characters") 208 } 209 if err := checkKeyFileEnd(r); err != nil { 210 return nil, err 211 } 212 213 return HexToECDSA(string(buf)) 214 } 215 216 // readASCII reads into 'buf', stopping when the buffer is full or 217 // when a non-printable control character is encountered. 218 func readASCII(buf []byte, r *bufio.Reader) (n int, err error) { 219 for ; n < len(buf); n++ { 220 buf[n], err = r.ReadByte() 221 switch { 222 case err == io.EOF || buf[n] < '!': 223 return n, nil 224 case err != nil: 225 return n, err 226 } 227 } 228 return n, nil 229 } 230 231 // checkKeyFileEnd skips over additional newlines at the end of a key file. 232 func checkKeyFileEnd(r *bufio.Reader) error { 233 for i := 0; ; i++ { 234 b, err := r.ReadByte() 235 switch { 236 case err == io.EOF: 237 return nil 238 case err != nil: 239 return err 240 case b != '\n' && b != '\r': 241 return fmt.Errorf("invalid character %q at end of key file", b) 242 case i >= 2: 243 return errors.New("key file too long, want 64 hex characters") 244 } 245 } 246 } 247 248 // SaveECDSA saves a secp256k1 private key to the given file with 249 // restrictive permissions. The key data is saved hex-encoded. 250 func SaveECDSA(file string, key *ecdsa.PrivateKey) error { 251 k := hex.EncodeToString(FromECDSA(key)) 252 return os.WriteFile(file, []byte(k), 0600) 253 } 254 255 // GenerateKey generates a new private key. 256 func GenerateKey() (*ecdsa.PrivateKey, error) { 257 return ecdsa.GenerateKey(S256(), rand.Reader) 258 } 259 260 // ValidateSignatureValues verifies whether the signature values are valid with 261 // the given chain rules. The v value is assumed to be either 0 or 1. 262 func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool { 263 if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 { 264 return false 265 } 266 // reject upper range of s values (ECDSA malleability) 267 // see discussion in secp256k1/libsecp256k1/include/secp256k1.h 268 if homestead && s.Cmp(secp256k1halfN) > 0 { 269 return false 270 } 271 // Frontier: allow s to be in full N range 272 return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1) 273 } 274 275 func PubkeyToAddress(p ecdsa.PublicKey) common.Address { 276 pubBytes := FromECDSAPub(&p) 277 return common.BytesToAddress(Keccak256(pubBytes[1:])[12:]) 278 } 279 280 func zeroBytes(bytes []byte) { 281 for i := range bytes { 282 bytes[i] = 0 283 } 284 }