github.com/4000d/go-ethereum@v1.8.2-0.20180223170251-423c8bb1d821/core/tx_pool_test.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package core 18 19 import ( 20 "crypto/ecdsa" 21 "fmt" 22 "io/ioutil" 23 "math/big" 24 "math/rand" 25 "os" 26 "testing" 27 "time" 28 29 "github.com/ethereum/go-ethereum/common" 30 "github.com/ethereum/go-ethereum/core/state" 31 "github.com/ethereum/go-ethereum/core/types" 32 "github.com/ethereum/go-ethereum/crypto" 33 "github.com/ethereum/go-ethereum/ethdb" 34 "github.com/ethereum/go-ethereum/event" 35 "github.com/ethereum/go-ethereum/params" 36 ) 37 38 // testTxPoolConfig is a transaction pool configuration without stateful disk 39 // sideeffects used during testing. 40 var testTxPoolConfig TxPoolConfig 41 42 func init() { 43 testTxPoolConfig = DefaultTxPoolConfig 44 testTxPoolConfig.Journal = "" 45 } 46 47 type testBlockChain struct { 48 statedb *state.StateDB 49 gasLimit uint64 50 chainHeadFeed *event.Feed 51 } 52 53 func (bc *testBlockChain) CurrentBlock() *types.Block { 54 return types.NewBlock(&types.Header{ 55 GasLimit: bc.gasLimit, 56 }, nil, nil, nil) 57 } 58 59 func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { 60 return bc.CurrentBlock() 61 } 62 63 func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) { 64 return bc.statedb, nil 65 } 66 67 func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { 68 return bc.chainHeadFeed.Subscribe(ch) 69 } 70 71 func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction { 72 return pricedTransaction(nonce, gaslimit, big.NewInt(1), key) 73 } 74 75 func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction { 76 tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) 77 return tx 78 } 79 80 func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { 81 diskdb, _ := ethdb.NewMemDatabase() 82 statedb, _ := state.New(common.Hash{}, state.NewDatabase(diskdb)) 83 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 84 85 key, _ := crypto.GenerateKey() 86 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 87 88 return pool, key 89 } 90 91 // validateTxPoolInternals checks various consistency invariants within the pool. 92 func validateTxPoolInternals(pool *TxPool) error { 93 pool.mu.RLock() 94 defer pool.mu.RUnlock() 95 96 // Ensure the total transaction set is consistent with pending + queued 97 pending, queued := pool.stats() 98 if total := len(pool.all); total != pending+queued { 99 return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) 100 } 101 if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued { 102 return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued) 103 } 104 // Ensure the next nonce to assign is the correct one 105 for addr, txs := range pool.pending { 106 // Find the last transaction 107 var last uint64 108 for nonce := range txs.txs.items { 109 if last < nonce { 110 last = nonce 111 } 112 } 113 if nonce := pool.pendingState.GetNonce(addr); nonce != last+1 { 114 return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1) 115 } 116 } 117 return nil 118 } 119 120 // validateEvents checks that the correct number of transaction addition events 121 // were fired on the pool's event feed. 122 func validateEvents(events chan TxPreEvent, count int) error { 123 for i := 0; i < count; i++ { 124 select { 125 case <-events: 126 case <-time.After(time.Second): 127 return fmt.Errorf("event #%d not fired", i) 128 } 129 } 130 select { 131 case tx := <-events: 132 return fmt.Errorf("more than %d events fired: %v", count, tx.Tx) 133 134 case <-time.After(50 * time.Millisecond): 135 // This branch should be "default", but it's a data race between goroutines, 136 // reading the event channel and pushng into it, so better wait a bit ensuring 137 // really nothing gets injected. 138 } 139 return nil 140 } 141 142 func deriveSender(tx *types.Transaction) (common.Address, error) { 143 return types.Sender(types.HomesteadSigner{}, tx) 144 } 145 146 type testChain struct { 147 *testBlockChain 148 address common.Address 149 trigger *bool 150 } 151 152 // testChain.State() is used multiple times to reset the pending state. 153 // when simulate is true it will create a state that indicates 154 // that tx0 and tx1 are included in the chain. 155 func (c *testChain) State() (*state.StateDB, error) { 156 // delay "state change" by one. The tx pool fetches the 157 // state multiple times and by delaying it a bit we simulate 158 // a state change between those fetches. 159 stdb := c.statedb 160 if *c.trigger { 161 db, _ := ethdb.NewMemDatabase() 162 c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(db)) 163 // simulate that the new head block included tx0 and tx1 164 c.statedb.SetNonce(c.address, 2) 165 c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether)) 166 *c.trigger = false 167 } 168 return stdb, nil 169 } 170 171 // This test simulates a scenario where a new block is imported during a 172 // state reset and tests whether the pending state is in sync with the 173 // block head event that initiated the resetState(). 174 func TestStateChangeDuringTransactionPoolReset(t *testing.T) { 175 t.Parallel() 176 177 var ( 178 db, _ = ethdb.NewMemDatabase() 179 key, _ = crypto.GenerateKey() 180 address = crypto.PubkeyToAddress(key.PublicKey) 181 statedb, _ = state.New(common.Hash{}, state.NewDatabase(db)) 182 trigger = false 183 ) 184 185 // setup pool with 2 transaction in it 186 statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether)) 187 blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger} 188 189 tx0 := transaction(0, 100000, key) 190 tx1 := transaction(1, 100000, key) 191 192 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 193 defer pool.Stop() 194 195 nonce := pool.State().GetNonce(address) 196 if nonce != 0 { 197 t.Fatalf("Invalid nonce, want 0, got %d", nonce) 198 } 199 200 pool.AddRemotes(types.Transactions{tx0, tx1}) 201 202 nonce = pool.State().GetNonce(address) 203 if nonce != 2 { 204 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 205 } 206 207 // trigger state change in the background 208 trigger = true 209 210 pool.lockedReset(nil, nil) 211 212 pendingTx, err := pool.Pending() 213 if err != nil { 214 t.Fatalf("Could not fetch pending transactions: %v", err) 215 } 216 217 for addr, txs := range pendingTx { 218 t.Logf("%0x: %d\n", addr, len(txs)) 219 } 220 221 nonce = pool.State().GetNonce(address) 222 if nonce != 2 { 223 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 224 } 225 } 226 227 func TestInvalidTransactions(t *testing.T) { 228 t.Parallel() 229 230 pool, key := setupTxPool() 231 defer pool.Stop() 232 233 tx := transaction(0, 100, key) 234 from, _ := deriveSender(tx) 235 236 pool.currentState.AddBalance(from, big.NewInt(1)) 237 if err := pool.AddRemote(tx); err != ErrInsufficientFunds { 238 t.Error("expected", ErrInsufficientFunds) 239 } 240 241 balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice())) 242 pool.currentState.AddBalance(from, balance) 243 if err := pool.AddRemote(tx); err != ErrIntrinsicGas { 244 t.Error("expected", ErrIntrinsicGas, "got", err) 245 } 246 247 pool.currentState.SetNonce(from, 1) 248 pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) 249 tx = transaction(0, 100000, key) 250 if err := pool.AddRemote(tx); err != ErrNonceTooLow { 251 t.Error("expected", ErrNonceTooLow) 252 } 253 254 tx = transaction(1, 100000, key) 255 pool.gasPrice = big.NewInt(1000) 256 if err := pool.AddRemote(tx); err != ErrUnderpriced { 257 t.Error("expected", ErrUnderpriced, "got", err) 258 } 259 if err := pool.AddLocal(tx); err != nil { 260 t.Error("expected", nil, "got", err) 261 } 262 } 263 264 func TestTransactionQueue(t *testing.T) { 265 t.Parallel() 266 267 pool, key := setupTxPool() 268 defer pool.Stop() 269 270 tx := transaction(0, 100, key) 271 from, _ := deriveSender(tx) 272 pool.currentState.AddBalance(from, big.NewInt(1000)) 273 pool.lockedReset(nil, nil) 274 pool.enqueueTx(tx.Hash(), tx) 275 276 pool.promoteExecutables([]common.Address{from}) 277 if len(pool.pending) != 1 { 278 t.Error("expected valid txs to be 1 is", len(pool.pending)) 279 } 280 281 tx = transaction(1, 100, key) 282 from, _ = deriveSender(tx) 283 pool.currentState.SetNonce(from, 2) 284 pool.enqueueTx(tx.Hash(), tx) 285 pool.promoteExecutables([]common.Address{from}) 286 if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { 287 t.Error("expected transaction to be in tx pool") 288 } 289 290 if len(pool.queue) > 0 { 291 t.Error("expected transaction queue to be empty. is", len(pool.queue)) 292 } 293 294 pool, key = setupTxPool() 295 defer pool.Stop() 296 297 tx1 := transaction(0, 100, key) 298 tx2 := transaction(10, 100, key) 299 tx3 := transaction(11, 100, key) 300 from, _ = deriveSender(tx1) 301 pool.currentState.AddBalance(from, big.NewInt(1000)) 302 pool.lockedReset(nil, nil) 303 304 pool.enqueueTx(tx1.Hash(), tx1) 305 pool.enqueueTx(tx2.Hash(), tx2) 306 pool.enqueueTx(tx3.Hash(), tx3) 307 308 pool.promoteExecutables([]common.Address{from}) 309 310 if len(pool.pending) != 1 { 311 t.Error("expected tx pool to be 1, got", len(pool.pending)) 312 } 313 if pool.queue[from].Len() != 2 { 314 t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) 315 } 316 } 317 318 func TestTransactionNegativeValue(t *testing.T) { 319 t.Parallel() 320 321 pool, key := setupTxPool() 322 defer pool.Stop() 323 324 tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key) 325 from, _ := deriveSender(tx) 326 pool.currentState.AddBalance(from, big.NewInt(1)) 327 if err := pool.AddRemote(tx); err != ErrNegativeValue { 328 t.Error("expected", ErrNegativeValue, "got", err) 329 } 330 } 331 332 func TestTransactionChainFork(t *testing.T) { 333 t.Parallel() 334 335 pool, key := setupTxPool() 336 defer pool.Stop() 337 338 addr := crypto.PubkeyToAddress(key.PublicKey) 339 resetState := func() { 340 db, _ := ethdb.NewMemDatabase() 341 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 342 statedb.AddBalance(addr, big.NewInt(100000000000000)) 343 344 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 345 pool.lockedReset(nil, nil) 346 } 347 resetState() 348 349 tx := transaction(0, 100000, key) 350 if _, err := pool.add(tx, false); err != nil { 351 t.Error("didn't expect error", err) 352 } 353 pool.removeTx(tx.Hash()) 354 355 // reset the pool's internal state 356 resetState() 357 if _, err := pool.add(tx, false); err != nil { 358 t.Error("didn't expect error", err) 359 } 360 } 361 362 func TestTransactionDoubleNonce(t *testing.T) { 363 t.Parallel() 364 365 pool, key := setupTxPool() 366 defer pool.Stop() 367 368 addr := crypto.PubkeyToAddress(key.PublicKey) 369 resetState := func() { 370 db, _ := ethdb.NewMemDatabase() 371 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 372 statedb.AddBalance(addr, big.NewInt(100000000000000)) 373 374 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 375 pool.lockedReset(nil, nil) 376 } 377 resetState() 378 379 signer := types.HomesteadSigner{} 380 tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key) 381 tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key) 382 tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key) 383 384 // Add the first two transaction, ensure higher priced stays only 385 if replace, err := pool.add(tx1, false); err != nil || replace { 386 t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace) 387 } 388 if replace, err := pool.add(tx2, false); err != nil || !replace { 389 t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace) 390 } 391 pool.promoteExecutables([]common.Address{addr}) 392 if pool.pending[addr].Len() != 1 { 393 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 394 } 395 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 396 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 397 } 398 // Add the third transaction and ensure it's not saved (smaller price) 399 pool.add(tx3, false) 400 pool.promoteExecutables([]common.Address{addr}) 401 if pool.pending[addr].Len() != 1 { 402 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 403 } 404 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 405 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 406 } 407 // Ensure the total transaction count is correct 408 if len(pool.all) != 1 { 409 t.Error("expected 1 total transactions, got", len(pool.all)) 410 } 411 } 412 413 func TestTransactionMissingNonce(t *testing.T) { 414 t.Parallel() 415 416 pool, key := setupTxPool() 417 defer pool.Stop() 418 419 addr := crypto.PubkeyToAddress(key.PublicKey) 420 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 421 tx := transaction(1, 100000, key) 422 if _, err := pool.add(tx, false); err != nil { 423 t.Error("didn't expect error", err) 424 } 425 if len(pool.pending) != 0 { 426 t.Error("expected 0 pending transactions, got", len(pool.pending)) 427 } 428 if pool.queue[addr].Len() != 1 { 429 t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) 430 } 431 if len(pool.all) != 1 { 432 t.Error("expected 1 total transactions, got", len(pool.all)) 433 } 434 } 435 436 func TestTransactionNonceRecovery(t *testing.T) { 437 t.Parallel() 438 439 const n = 10 440 pool, key := setupTxPool() 441 defer pool.Stop() 442 443 addr := crypto.PubkeyToAddress(key.PublicKey) 444 pool.currentState.SetNonce(addr, n) 445 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 446 pool.lockedReset(nil, nil) 447 448 tx := transaction(n, 100000, key) 449 if err := pool.AddRemote(tx); err != nil { 450 t.Error(err) 451 } 452 // simulate some weird re-order of transactions and missing nonce(s) 453 pool.currentState.SetNonce(addr, n-1) 454 pool.lockedReset(nil, nil) 455 if fn := pool.pendingState.GetNonce(addr); fn != n-1 { 456 t.Errorf("expected nonce to be %d, got %d", n-1, fn) 457 } 458 } 459 460 // Tests that if an account runs out of funds, any pending and queued transactions 461 // are dropped. 462 func TestTransactionDropping(t *testing.T) { 463 t.Parallel() 464 465 // Create a test account and fund it 466 pool, key := setupTxPool() 467 defer pool.Stop() 468 469 account, _ := deriveSender(transaction(0, 0, key)) 470 pool.currentState.AddBalance(account, big.NewInt(1000)) 471 472 // Add some pending and some queued transactions 473 var ( 474 tx0 = transaction(0, 100, key) 475 tx1 = transaction(1, 200, key) 476 tx2 = transaction(2, 300, key) 477 tx10 = transaction(10, 100, key) 478 tx11 = transaction(11, 200, key) 479 tx12 = transaction(12, 300, key) 480 ) 481 pool.promoteTx(account, tx0.Hash(), tx0) 482 pool.promoteTx(account, tx1.Hash(), tx1) 483 pool.promoteTx(account, tx2.Hash(), tx2) 484 pool.enqueueTx(tx10.Hash(), tx10) 485 pool.enqueueTx(tx11.Hash(), tx11) 486 pool.enqueueTx(tx12.Hash(), tx12) 487 488 // Check that pre and post validations leave the pool as is 489 if pool.pending[account].Len() != 3 { 490 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 491 } 492 if pool.queue[account].Len() != 3 { 493 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 494 } 495 if len(pool.all) != 6 { 496 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 6) 497 } 498 pool.lockedReset(nil, nil) 499 if pool.pending[account].Len() != 3 { 500 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 501 } 502 if pool.queue[account].Len() != 3 { 503 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 504 } 505 if len(pool.all) != 6 { 506 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 6) 507 } 508 // Reduce the balance of the account, and check that invalidated transactions are dropped 509 pool.currentState.AddBalance(account, big.NewInt(-650)) 510 pool.lockedReset(nil, nil) 511 512 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 513 t.Errorf("funded pending transaction missing: %v", tx0) 514 } 515 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok { 516 t.Errorf("funded pending transaction missing: %v", tx0) 517 } 518 if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok { 519 t.Errorf("out-of-fund pending transaction present: %v", tx1) 520 } 521 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 522 t.Errorf("funded queued transaction missing: %v", tx10) 523 } 524 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok { 525 t.Errorf("funded queued transaction missing: %v", tx10) 526 } 527 if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok { 528 t.Errorf("out-of-fund queued transaction present: %v", tx11) 529 } 530 if len(pool.all) != 4 { 531 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4) 532 } 533 // Reduce the block gas limit, check that invalidated transactions are dropped 534 pool.chain.(*testBlockChain).gasLimit = 100 535 pool.lockedReset(nil, nil) 536 537 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 538 t.Errorf("funded pending transaction missing: %v", tx0) 539 } 540 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { 541 t.Errorf("over-gased pending transaction present: %v", tx1) 542 } 543 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 544 t.Errorf("funded queued transaction missing: %v", tx10) 545 } 546 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { 547 t.Errorf("over-gased queued transaction present: %v", tx11) 548 } 549 if len(pool.all) != 2 { 550 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2) 551 } 552 } 553 554 // Tests that if a transaction is dropped from the current pending pool (e.g. out 555 // of fund), all consecutive (still valid, but not executable) transactions are 556 // postponed back into the future queue to prevent broadcasting them. 557 func TestTransactionPostponing(t *testing.T) { 558 t.Parallel() 559 560 // Create a test account and fund it 561 pool, key := setupTxPool() 562 defer pool.Stop() 563 564 account, _ := deriveSender(transaction(0, 0, key)) 565 pool.currentState.AddBalance(account, big.NewInt(1000)) 566 567 // Add a batch consecutive pending transactions for validation 568 txns := []*types.Transaction{} 569 for i := 0; i < 100; i++ { 570 var tx *types.Transaction 571 if i%2 == 0 { 572 tx = transaction(uint64(i), 100, key) 573 } else { 574 tx = transaction(uint64(i), 500, key) 575 } 576 pool.promoteTx(account, tx.Hash(), tx) 577 txns = append(txns, tx) 578 } 579 // Check that pre and post validations leave the pool as is 580 if pool.pending[account].Len() != len(txns) { 581 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns)) 582 } 583 if len(pool.queue) != 0 { 584 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0) 585 } 586 if len(pool.all) != len(txns) { 587 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)) 588 } 589 pool.lockedReset(nil, nil) 590 if pool.pending[account].Len() != len(txns) { 591 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns)) 592 } 593 if len(pool.queue) != 0 { 594 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0) 595 } 596 if len(pool.all) != len(txns) { 597 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)) 598 } 599 // Reduce the balance of the account, and check that transactions are reorganised 600 pool.currentState.AddBalance(account, big.NewInt(-750)) 601 pool.lockedReset(nil, nil) 602 603 if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok { 604 t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0]) 605 } 606 if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok { 607 t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0]) 608 } 609 for i, tx := range txns[1:] { 610 if i%2 == 1 { 611 if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok { 612 t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) 613 } 614 if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok { 615 t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) 616 } 617 } else { 618 if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok { 619 t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) 620 } 621 if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok { 622 t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) 623 } 624 } 625 } 626 if len(pool.all) != len(txns)/2 { 627 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2) 628 } 629 } 630 631 // Tests that if the transaction pool has both executable and non-executable 632 // transactions from an origin account, filling the nonce gap moves all queued 633 // ones into the pending pool. 634 func TestTransactionGapFilling(t *testing.T) { 635 t.Parallel() 636 637 // Create a test account and fund it 638 pool, key := setupTxPool() 639 defer pool.Stop() 640 641 account, _ := deriveSender(transaction(0, 0, key)) 642 pool.currentState.AddBalance(account, big.NewInt(1000000)) 643 644 // Keep track of transaction events to ensure all executables get announced 645 events := make(chan TxPreEvent, testTxPoolConfig.AccountQueue+5) 646 sub := pool.txFeed.Subscribe(events) 647 defer sub.Unsubscribe() 648 649 // Create a pending and a queued transaction with a nonce-gap in between 650 if err := pool.AddRemote(transaction(0, 100000, key)); err != nil { 651 t.Fatalf("failed to add pending transaction: %v", err) 652 } 653 if err := pool.AddRemote(transaction(2, 100000, key)); err != nil { 654 t.Fatalf("failed to add queued transaction: %v", err) 655 } 656 pending, queued := pool.Stats() 657 if pending != 1 { 658 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) 659 } 660 if queued != 1 { 661 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 662 } 663 if err := validateEvents(events, 1); err != nil { 664 t.Fatalf("original event firing failed: %v", err) 665 } 666 if err := validateTxPoolInternals(pool); err != nil { 667 t.Fatalf("pool internal state corrupted: %v", err) 668 } 669 // Fill the nonce gap and ensure all transactions become pending 670 if err := pool.AddRemote(transaction(1, 100000, key)); err != nil { 671 t.Fatalf("failed to add gapped transaction: %v", err) 672 } 673 pending, queued = pool.Stats() 674 if pending != 3 { 675 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 676 } 677 if queued != 0 { 678 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 679 } 680 if err := validateEvents(events, 2); err != nil { 681 t.Fatalf("gap-filling event firing failed: %v", err) 682 } 683 if err := validateTxPoolInternals(pool); err != nil { 684 t.Fatalf("pool internal state corrupted: %v", err) 685 } 686 } 687 688 // Tests that if the transaction count belonging to a single account goes above 689 // some threshold, the higher transactions are dropped to prevent DOS attacks. 690 func TestTransactionQueueAccountLimiting(t *testing.T) { 691 t.Parallel() 692 693 // Create a test account and fund it 694 pool, key := setupTxPool() 695 defer pool.Stop() 696 697 account, _ := deriveSender(transaction(0, 0, key)) 698 pool.currentState.AddBalance(account, big.NewInt(1000000)) 699 700 // Keep queuing up transactions and make sure all above a limit are dropped 701 for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { 702 if err := pool.AddRemote(transaction(i, 100000, key)); err != nil { 703 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 704 } 705 if len(pool.pending) != 0 { 706 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) 707 } 708 if i <= testTxPoolConfig.AccountQueue { 709 if pool.queue[account].Len() != int(i) { 710 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) 711 } 712 } else { 713 if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) { 714 t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue) 715 } 716 } 717 } 718 if len(pool.all) != int(testTxPoolConfig.AccountQueue) { 719 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), testTxPoolConfig.AccountQueue) 720 } 721 } 722 723 // Tests that if the transaction count belonging to multiple accounts go above 724 // some threshold, the higher transactions are dropped to prevent DOS attacks. 725 // 726 // This logic should not hold for local transactions, unless the local tracking 727 // mechanism is disabled. 728 func TestTransactionQueueGlobalLimiting(t *testing.T) { 729 testTransactionQueueGlobalLimiting(t, false) 730 } 731 func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) { 732 testTransactionQueueGlobalLimiting(t, true) 733 } 734 735 func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) { 736 t.Parallel() 737 738 // Create the pool to test the limit enforcement with 739 db, _ := ethdb.NewMemDatabase() 740 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 741 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 742 743 config := testTxPoolConfig 744 config.NoLocals = nolocals 745 config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible) 746 747 pool := NewTxPool(config, params.TestChainConfig, blockchain) 748 defer pool.Stop() 749 750 // Create a number of test accounts and fund them (last one will be the local) 751 keys := make([]*ecdsa.PrivateKey, 5) 752 for i := 0; i < len(keys); i++ { 753 keys[i], _ = crypto.GenerateKey() 754 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 755 } 756 local := keys[len(keys)-1] 757 758 // Generate and queue a batch of transactions 759 nonces := make(map[common.Address]uint64) 760 761 txs := make(types.Transactions, 0, 3*config.GlobalQueue) 762 for len(txs) < cap(txs) { 763 key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account 764 addr := crypto.PubkeyToAddress(key.PublicKey) 765 766 txs = append(txs, transaction(nonces[addr]+1, 100000, key)) 767 nonces[addr]++ 768 } 769 // Import the batch and verify that limits have been enforced 770 pool.AddRemotes(txs) 771 772 queued := 0 773 for addr, list := range pool.queue { 774 if list.Len() > int(config.AccountQueue) { 775 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 776 } 777 queued += list.Len() 778 } 779 if queued > int(config.GlobalQueue) { 780 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 781 } 782 // Generate a batch of transactions from the local account and import them 783 txs = txs[:0] 784 for i := uint64(0); i < 3*config.GlobalQueue; i++ { 785 txs = append(txs, transaction(i+1, 100000, local)) 786 } 787 pool.AddLocals(txs) 788 789 // If locals are disabled, the previous eviction algorithm should apply here too 790 if nolocals { 791 queued := 0 792 for addr, list := range pool.queue { 793 if list.Len() > int(config.AccountQueue) { 794 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 795 } 796 queued += list.Len() 797 } 798 if queued > int(config.GlobalQueue) { 799 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 800 } 801 } else { 802 // Local exemptions are enabled, make sure the local account owned the queue 803 if len(pool.queue) != 1 { 804 t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1) 805 } 806 // Also ensure no local transactions are ever dropped, even if above global limits 807 if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue { 808 t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue) 809 } 810 } 811 } 812 813 // Tests that if an account remains idle for a prolonged amount of time, any 814 // non-executable transactions queued up are dropped to prevent wasting resources 815 // on shuffling them around. 816 // 817 // This logic should not hold for local transactions, unless the local tracking 818 // mechanism is disabled. 819 func TestTransactionQueueTimeLimiting(t *testing.T) { testTransactionQueueTimeLimiting(t, false) } 820 func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { testTransactionQueueTimeLimiting(t, true) } 821 822 func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) { 823 // Reduce the eviction interval to a testable amount 824 defer func(old time.Duration) { evictionInterval = old }(evictionInterval) 825 evictionInterval = time.Second 826 827 // Create the pool to test the non-expiration enforcement 828 db, _ := ethdb.NewMemDatabase() 829 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 830 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 831 832 config := testTxPoolConfig 833 config.Lifetime = time.Second 834 config.NoLocals = nolocals 835 836 pool := NewTxPool(config, params.TestChainConfig, blockchain) 837 defer pool.Stop() 838 839 // Create two test accounts to ensure remotes expire but locals do not 840 local, _ := crypto.GenerateKey() 841 remote, _ := crypto.GenerateKey() 842 843 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 844 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 845 846 // Add the two transactions and ensure they both are queued up 847 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 848 t.Fatalf("failed to add local transaction: %v", err) 849 } 850 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil { 851 t.Fatalf("failed to add remote transaction: %v", err) 852 } 853 pending, queued := pool.Stats() 854 if pending != 0 { 855 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 856 } 857 if queued != 2 { 858 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 859 } 860 if err := validateTxPoolInternals(pool); err != nil { 861 t.Fatalf("pool internal state corrupted: %v", err) 862 } 863 // Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains 864 time.Sleep(2 * config.Lifetime) 865 866 pending, queued = pool.Stats() 867 if pending != 0 { 868 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 869 } 870 if nolocals { 871 if queued != 0 { 872 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 873 } 874 } else { 875 if queued != 1 { 876 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 877 } 878 } 879 if err := validateTxPoolInternals(pool); err != nil { 880 t.Fatalf("pool internal state corrupted: %v", err) 881 } 882 } 883 884 // Tests that even if the transaction count belonging to a single account goes 885 // above some threshold, as long as the transactions are executable, they are 886 // accepted. 887 func TestTransactionPendingLimiting(t *testing.T) { 888 t.Parallel() 889 890 // Create a test account and fund it 891 pool, key := setupTxPool() 892 defer pool.Stop() 893 894 account, _ := deriveSender(transaction(0, 0, key)) 895 pool.currentState.AddBalance(account, big.NewInt(1000000)) 896 897 // Keep track of transaction events to ensure all executables get announced 898 events := make(chan TxPreEvent, testTxPoolConfig.AccountQueue+5) 899 sub := pool.txFeed.Subscribe(events) 900 defer sub.Unsubscribe() 901 902 // Keep queuing up transactions and make sure all above a limit are dropped 903 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 904 if err := pool.AddRemote(transaction(i, 100000, key)); err != nil { 905 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 906 } 907 if pool.pending[account].Len() != int(i)+1 { 908 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1) 909 } 910 if len(pool.queue) != 0 { 911 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0) 912 } 913 } 914 if len(pool.all) != int(testTxPoolConfig.AccountQueue+5) { 915 t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), testTxPoolConfig.AccountQueue+5) 916 } 917 if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil { 918 t.Fatalf("event firing failed: %v", err) 919 } 920 if err := validateTxPoolInternals(pool); err != nil { 921 t.Fatalf("pool internal state corrupted: %v", err) 922 } 923 } 924 925 // Tests that the transaction limits are enforced the same way irrelevant whether 926 // the transactions are added one by one or in batches. 927 func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) } 928 func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) } 929 930 func testTransactionLimitingEquivalency(t *testing.T, origin uint64) { 931 t.Parallel() 932 933 // Add a batch of transactions to a pool one by one 934 pool1, key1 := setupTxPool() 935 defer pool1.Stop() 936 937 account1, _ := deriveSender(transaction(0, 0, key1)) 938 pool1.currentState.AddBalance(account1, big.NewInt(1000000)) 939 940 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 941 if err := pool1.AddRemote(transaction(origin+i, 100000, key1)); err != nil { 942 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 943 } 944 } 945 // Add a batch of transactions to a pool in one big batch 946 pool2, key2 := setupTxPool() 947 defer pool2.Stop() 948 949 account2, _ := deriveSender(transaction(0, 0, key2)) 950 pool2.currentState.AddBalance(account2, big.NewInt(1000000)) 951 952 txns := []*types.Transaction{} 953 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 954 txns = append(txns, transaction(origin+i, 100000, key2)) 955 } 956 pool2.AddRemotes(txns) 957 958 // Ensure the batch optimization honors the same pool mechanics 959 if len(pool1.pending) != len(pool2.pending) { 960 t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending)) 961 } 962 if len(pool1.queue) != len(pool2.queue) { 963 t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue)) 964 } 965 if len(pool1.all) != len(pool2.all) { 966 t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all)) 967 } 968 if err := validateTxPoolInternals(pool1); err != nil { 969 t.Errorf("pool 1 internal state corrupted: %v", err) 970 } 971 if err := validateTxPoolInternals(pool2); err != nil { 972 t.Errorf("pool 2 internal state corrupted: %v", err) 973 } 974 } 975 976 // Tests that if the transaction count belonging to multiple accounts go above 977 // some hard threshold, the higher transactions are dropped to prevent DOS 978 // attacks. 979 func TestTransactionPendingGlobalLimiting(t *testing.T) { 980 t.Parallel() 981 982 // Create the pool to test the limit enforcement with 983 db, _ := ethdb.NewMemDatabase() 984 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 985 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 986 987 config := testTxPoolConfig 988 config.GlobalSlots = config.AccountSlots * 10 989 990 pool := NewTxPool(config, params.TestChainConfig, blockchain) 991 defer pool.Stop() 992 993 // Create a number of test accounts and fund them 994 keys := make([]*ecdsa.PrivateKey, 5) 995 for i := 0; i < len(keys); i++ { 996 keys[i], _ = crypto.GenerateKey() 997 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 998 } 999 // Generate and queue a batch of transactions 1000 nonces := make(map[common.Address]uint64) 1001 1002 txs := types.Transactions{} 1003 for _, key := range keys { 1004 addr := crypto.PubkeyToAddress(key.PublicKey) 1005 for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ { 1006 txs = append(txs, transaction(nonces[addr], 100000, key)) 1007 nonces[addr]++ 1008 } 1009 } 1010 // Import the batch and verify that limits have been enforced 1011 pool.AddRemotes(txs) 1012 1013 pending := 0 1014 for _, list := range pool.pending { 1015 pending += list.Len() 1016 } 1017 if pending > int(config.GlobalSlots) { 1018 t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots) 1019 } 1020 if err := validateTxPoolInternals(pool); err != nil { 1021 t.Fatalf("pool internal state corrupted: %v", err) 1022 } 1023 } 1024 1025 // Tests that if transactions start being capped, transactions are also removed from 'all' 1026 func TestTransactionCapClearsFromAll(t *testing.T) { 1027 t.Parallel() 1028 1029 // Create the pool to test the limit enforcement with 1030 db, _ := ethdb.NewMemDatabase() 1031 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1032 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1033 1034 config := testTxPoolConfig 1035 config.AccountSlots = 2 1036 config.AccountQueue = 2 1037 config.GlobalSlots = 8 1038 1039 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1040 defer pool.Stop() 1041 1042 // Create a number of test accounts and fund them 1043 key, _ := crypto.GenerateKey() 1044 addr := crypto.PubkeyToAddress(key.PublicKey) 1045 pool.currentState.AddBalance(addr, big.NewInt(1000000)) 1046 1047 txs := types.Transactions{} 1048 for j := 0; j < int(config.GlobalSlots)*2; j++ { 1049 txs = append(txs, transaction(uint64(j), 100000, key)) 1050 } 1051 // Import the batch and verify that limits have been enforced 1052 pool.AddRemotes(txs) 1053 if err := validateTxPoolInternals(pool); err != nil { 1054 t.Fatalf("pool internal state corrupted: %v", err) 1055 } 1056 } 1057 1058 // Tests that if the transaction count belonging to multiple accounts go above 1059 // some hard threshold, if they are under the minimum guaranteed slot count then 1060 // the transactions are still kept. 1061 func TestTransactionPendingMinimumAllowance(t *testing.T) { 1062 t.Parallel() 1063 1064 // Create the pool to test the limit enforcement with 1065 db, _ := ethdb.NewMemDatabase() 1066 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1067 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1068 1069 config := testTxPoolConfig 1070 config.GlobalSlots = 0 1071 1072 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1073 defer pool.Stop() 1074 1075 // Create a number of test accounts and fund them 1076 keys := make([]*ecdsa.PrivateKey, 5) 1077 for i := 0; i < len(keys); i++ { 1078 keys[i], _ = crypto.GenerateKey() 1079 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1080 } 1081 // Generate and queue a batch of transactions 1082 nonces := make(map[common.Address]uint64) 1083 1084 txs := types.Transactions{} 1085 for _, key := range keys { 1086 addr := crypto.PubkeyToAddress(key.PublicKey) 1087 for j := 0; j < int(config.AccountSlots)*2; j++ { 1088 txs = append(txs, transaction(nonces[addr], 100000, key)) 1089 nonces[addr]++ 1090 } 1091 } 1092 // Import the batch and verify that limits have been enforced 1093 pool.AddRemotes(txs) 1094 1095 for addr, list := range pool.pending { 1096 if list.Len() != int(config.AccountSlots) { 1097 t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots) 1098 } 1099 } 1100 if err := validateTxPoolInternals(pool); err != nil { 1101 t.Fatalf("pool internal state corrupted: %v", err) 1102 } 1103 } 1104 1105 // Tests that setting the transaction pool gas price to a higher value correctly 1106 // discards everything cheaper than that and moves any gapped transactions back 1107 // from the pending pool to the queue. 1108 // 1109 // Note, local transactions are never allowed to be dropped. 1110 func TestTransactionPoolRepricing(t *testing.T) { 1111 t.Parallel() 1112 1113 // Create the pool to test the pricing enforcement with 1114 db, _ := ethdb.NewMemDatabase() 1115 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1116 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1117 1118 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1119 defer pool.Stop() 1120 1121 // Keep track of transaction events to ensure all executables get announced 1122 events := make(chan TxPreEvent, 32) 1123 sub := pool.txFeed.Subscribe(events) 1124 defer sub.Unsubscribe() 1125 1126 // Create a number of test accounts and fund them 1127 keys := make([]*ecdsa.PrivateKey, 3) 1128 for i := 0; i < len(keys); i++ { 1129 keys[i], _ = crypto.GenerateKey() 1130 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1131 } 1132 // Generate and queue a batch of transactions, both pending and queued 1133 txs := types.Transactions{} 1134 1135 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0])) 1136 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0])) 1137 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0])) 1138 1139 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1])) 1140 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1])) 1141 txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[1])) 1142 1143 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2]) 1144 1145 // Import the batch and that both pending and queued transactions match up 1146 pool.AddRemotes(txs) 1147 pool.AddLocal(ltx) 1148 1149 pending, queued := pool.Stats() 1150 if pending != 4 { 1151 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) 1152 } 1153 if queued != 3 { 1154 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3) 1155 } 1156 if err := validateEvents(events, 4); err != nil { 1157 t.Fatalf("original event firing failed: %v", err) 1158 } 1159 if err := validateTxPoolInternals(pool); err != nil { 1160 t.Fatalf("pool internal state corrupted: %v", err) 1161 } 1162 // Reprice the pool and check that underpriced transactions get dropped 1163 pool.SetGasPrice(big.NewInt(2)) 1164 1165 pending, queued = pool.Stats() 1166 if pending != 2 { 1167 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1168 } 1169 if queued != 3 { 1170 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3) 1171 } 1172 if err := validateEvents(events, 0); err != nil { 1173 t.Fatalf("reprice event firing failed: %v", err) 1174 } 1175 if err := validateTxPoolInternals(pool); err != nil { 1176 t.Fatalf("pool internal state corrupted: %v", err) 1177 } 1178 // Check that we can't add the old transactions back 1179 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced { 1180 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1181 } 1182 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1183 t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1184 } 1185 if err := validateEvents(events, 0); err != nil { 1186 t.Fatalf("post-reprice event firing failed: %v", err) 1187 } 1188 if err := validateTxPoolInternals(pool); err != nil { 1189 t.Fatalf("pool internal state corrupted: %v", err) 1190 } 1191 // However we can add local underpriced transactions 1192 tx := pricedTransaction(1, 100000, big.NewInt(1), keys[2]) 1193 if err := pool.AddLocal(tx); err != nil { 1194 t.Fatalf("failed to add underpriced local transaction: %v", err) 1195 } 1196 if pending, _ = pool.Stats(); pending != 3 { 1197 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1198 } 1199 if err := validateEvents(events, 1); err != nil { 1200 t.Fatalf("post-reprice local event firing failed: %v", err) 1201 } 1202 if err := validateTxPoolInternals(pool); err != nil { 1203 t.Fatalf("pool internal state corrupted: %v", err) 1204 } 1205 } 1206 1207 // Tests that setting the transaction pool gas price to a higher value does not 1208 // remove local transactions. 1209 func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { 1210 t.Parallel() 1211 1212 // Create the pool to test the pricing enforcement with 1213 db, _ := ethdb.NewMemDatabase() 1214 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1215 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1216 1217 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1218 defer pool.Stop() 1219 1220 // Create a number of test accounts and fund them 1221 keys := make([]*ecdsa.PrivateKey, 3) 1222 for i := 0; i < len(keys); i++ { 1223 keys[i], _ = crypto.GenerateKey() 1224 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000)) 1225 } 1226 // Create transaction (both pending and queued) with a linearly growing gasprice 1227 for i := uint64(0); i < 500; i++ { 1228 // Add pending 1229 p_tx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2]) 1230 if err := pool.AddLocal(p_tx); err != nil { 1231 t.Fatal(err) 1232 } 1233 // Add queued 1234 q_tx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2]) 1235 if err := pool.AddLocal(q_tx); err != nil { 1236 t.Fatal(err) 1237 } 1238 } 1239 pending, queued := pool.Stats() 1240 expPending, expQueued := 500, 500 1241 validate := func() { 1242 pending, queued = pool.Stats() 1243 if pending != expPending { 1244 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending) 1245 } 1246 if queued != expQueued { 1247 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued) 1248 } 1249 1250 if err := validateTxPoolInternals(pool); err != nil { 1251 t.Fatalf("pool internal state corrupted: %v", err) 1252 } 1253 } 1254 validate() 1255 1256 // Reprice the pool and check that nothing is dropped 1257 pool.SetGasPrice(big.NewInt(2)) 1258 validate() 1259 1260 pool.SetGasPrice(big.NewInt(2)) 1261 pool.SetGasPrice(big.NewInt(4)) 1262 pool.SetGasPrice(big.NewInt(8)) 1263 pool.SetGasPrice(big.NewInt(100)) 1264 validate() 1265 } 1266 1267 // Tests that when the pool reaches its global transaction limit, underpriced 1268 // transactions are gradually shifted out for more expensive ones and any gapped 1269 // pending transactions are moved into the queue. 1270 // 1271 // Note, local transactions are never allowed to be dropped. 1272 func TestTransactionPoolUnderpricing(t *testing.T) { 1273 t.Parallel() 1274 1275 // Create the pool to test the pricing enforcement with 1276 db, _ := ethdb.NewMemDatabase() 1277 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1278 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1279 1280 config := testTxPoolConfig 1281 config.GlobalSlots = 2 1282 config.GlobalQueue = 2 1283 1284 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1285 defer pool.Stop() 1286 1287 // Keep track of transaction events to ensure all executables get announced 1288 events := make(chan TxPreEvent, 32) 1289 sub := pool.txFeed.Subscribe(events) 1290 defer sub.Unsubscribe() 1291 1292 // Create a number of test accounts and fund them 1293 keys := make([]*ecdsa.PrivateKey, 3) 1294 for i := 0; i < len(keys); i++ { 1295 keys[i], _ = crypto.GenerateKey() 1296 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1297 } 1298 // Generate and queue a batch of transactions, both pending and queued 1299 txs := types.Transactions{} 1300 1301 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) 1302 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0])) 1303 1304 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1])) 1305 1306 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2]) 1307 1308 // Import the batch and that both pending and queued transactions match up 1309 pool.AddRemotes(txs) 1310 pool.AddLocal(ltx) 1311 1312 pending, queued := pool.Stats() 1313 if pending != 3 { 1314 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1315 } 1316 if queued != 1 { 1317 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1318 } 1319 if err := validateEvents(events, 3); err != nil { 1320 t.Fatalf("original event firing failed: %v", err) 1321 } 1322 if err := validateTxPoolInternals(pool); err != nil { 1323 t.Fatalf("pool internal state corrupted: %v", err) 1324 } 1325 // Ensure that adding an underpriced transaction on block limit fails 1326 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1327 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1328 } 1329 // Ensure that adding high priced transactions drops cheap ones, but not own 1330 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { 1331 t.Fatalf("failed to add well priced transaction: %v", err) 1332 } 1333 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { 1334 t.Fatalf("failed to add well priced transaction: %v", err) 1335 } 1336 if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { 1337 t.Fatalf("failed to add well priced transaction: %v", err) 1338 } 1339 pending, queued = pool.Stats() 1340 if pending != 2 { 1341 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1342 } 1343 if queued != 2 { 1344 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1345 } 1346 if err := validateEvents(events, 2); err != nil { 1347 t.Fatalf("additional event firing failed: %v", err) 1348 } 1349 if err := validateTxPoolInternals(pool); err != nil { 1350 t.Fatalf("pool internal state corrupted: %v", err) 1351 } 1352 // Ensure that adding local transactions can push out even higher priced ones 1353 tx := pricedTransaction(1, 100000, big.NewInt(0), keys[2]) 1354 if err := pool.AddLocal(tx); err != nil { 1355 t.Fatalf("failed to add underpriced local transaction: %v", err) 1356 } 1357 pending, queued = pool.Stats() 1358 if pending != 2 { 1359 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1360 } 1361 if queued != 2 { 1362 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1363 } 1364 if err := validateEvents(events, 1); err != nil { 1365 t.Fatalf("local event firing failed: %v", err) 1366 } 1367 if err := validateTxPoolInternals(pool); err != nil { 1368 t.Fatalf("pool internal state corrupted: %v", err) 1369 } 1370 } 1371 1372 // Tests that the pool rejects replacement transactions that don't meet the minimum 1373 // price bump required. 1374 func TestTransactionReplacement(t *testing.T) { 1375 t.Parallel() 1376 1377 // Create the pool to test the pricing enforcement with 1378 db, _ := ethdb.NewMemDatabase() 1379 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1380 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1381 1382 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1383 defer pool.Stop() 1384 1385 // Keep track of transaction events to ensure all executables get announced 1386 events := make(chan TxPreEvent, 32) 1387 sub := pool.txFeed.Subscribe(events) 1388 defer sub.Unsubscribe() 1389 1390 // Create a test account to add transactions with 1391 key, _ := crypto.GenerateKey() 1392 pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) 1393 1394 // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1395 price := int64(100) 1396 threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100 1397 1398 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil { 1399 t.Fatalf("failed to add original cheap pending transaction: %v", err) 1400 } 1401 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1402 t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1403 } 1404 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil { 1405 t.Fatalf("failed to replace original cheap pending transaction: %v", err) 1406 } 1407 if err := validateEvents(events, 2); err != nil { 1408 t.Fatalf("cheap replacement event firing failed: %v", err) 1409 } 1410 1411 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil { 1412 t.Fatalf("failed to add original proper pending transaction: %v", err) 1413 } 1414 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1415 t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1416 } 1417 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil { 1418 t.Fatalf("failed to replace original proper pending transaction: %v", err) 1419 } 1420 if err := validateEvents(events, 2); err != nil { 1421 t.Fatalf("proper replacement event firing failed: %v", err) 1422 } 1423 // Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1424 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil { 1425 t.Fatalf("failed to add original cheap queued transaction: %v", err) 1426 } 1427 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1428 t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1429 } 1430 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil { 1431 t.Fatalf("failed to replace original cheap queued transaction: %v", err) 1432 } 1433 1434 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil { 1435 t.Fatalf("failed to add original proper queued transaction: %v", err) 1436 } 1437 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1438 t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1439 } 1440 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil { 1441 t.Fatalf("failed to replace original proper queued transaction: %v", err) 1442 } 1443 1444 if err := validateEvents(events, 0); err != nil { 1445 t.Fatalf("queued replacement event firing failed: %v", err) 1446 } 1447 if err := validateTxPoolInternals(pool); err != nil { 1448 t.Fatalf("pool internal state corrupted: %v", err) 1449 } 1450 } 1451 1452 // Tests that local transactions are journaled to disk, but remote transactions 1453 // get discarded between restarts. 1454 func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } 1455 func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) } 1456 1457 func testTransactionJournaling(t *testing.T, nolocals bool) { 1458 t.Parallel() 1459 1460 // Create a temporary file for the journal 1461 file, err := ioutil.TempFile("", "") 1462 if err != nil { 1463 t.Fatalf("failed to create temporary journal: %v", err) 1464 } 1465 journal := file.Name() 1466 defer os.Remove(journal) 1467 1468 // Clean up the temporary file, we only need the path for now 1469 file.Close() 1470 os.Remove(journal) 1471 1472 // Create the original pool to inject transaction into the journal 1473 db, _ := ethdb.NewMemDatabase() 1474 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1475 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1476 1477 config := testTxPoolConfig 1478 config.NoLocals = nolocals 1479 config.Journal = journal 1480 config.Rejournal = time.Second 1481 1482 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1483 1484 // Create two test accounts to ensure remotes expire but locals do not 1485 local, _ := crypto.GenerateKey() 1486 remote, _ := crypto.GenerateKey() 1487 1488 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 1489 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 1490 1491 // Add three local and a remote transactions and ensure they are queued up 1492 if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil { 1493 t.Fatalf("failed to add local transaction: %v", err) 1494 } 1495 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 1496 t.Fatalf("failed to add local transaction: %v", err) 1497 } 1498 if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil { 1499 t.Fatalf("failed to add local transaction: %v", err) 1500 } 1501 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil { 1502 t.Fatalf("failed to add remote transaction: %v", err) 1503 } 1504 pending, queued := pool.Stats() 1505 if pending != 4 { 1506 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) 1507 } 1508 if queued != 0 { 1509 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1510 } 1511 if err := validateTxPoolInternals(pool); err != nil { 1512 t.Fatalf("pool internal state corrupted: %v", err) 1513 } 1514 // Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive 1515 pool.Stop() 1516 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1517 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1518 1519 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1520 1521 pending, queued = pool.Stats() 1522 if queued != 0 { 1523 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1524 } 1525 if nolocals { 1526 if pending != 0 { 1527 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1528 } 1529 } else { 1530 if pending != 2 { 1531 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1532 } 1533 } 1534 if err := validateTxPoolInternals(pool); err != nil { 1535 t.Fatalf("pool internal state corrupted: %v", err) 1536 } 1537 // Bump the nonce temporarily and ensure the newly invalidated transaction is removed 1538 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2) 1539 pool.lockedReset(nil, nil) 1540 time.Sleep(2 * config.Rejournal) 1541 pool.Stop() 1542 1543 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1544 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1545 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1546 1547 pending, queued = pool.Stats() 1548 if pending != 0 { 1549 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1550 } 1551 if nolocals { 1552 if queued != 0 { 1553 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1554 } 1555 } else { 1556 if queued != 1 { 1557 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1558 } 1559 } 1560 if err := validateTxPoolInternals(pool); err != nil { 1561 t.Fatalf("pool internal state corrupted: %v", err) 1562 } 1563 pool.Stop() 1564 } 1565 1566 // TestTransactionStatusCheck tests that the pool can correctly retrieve the 1567 // pending status of individual transactions. 1568 func TestTransactionStatusCheck(t *testing.T) { 1569 t.Parallel() 1570 1571 // Create the pool to test the status retrievals with 1572 db, _ := ethdb.NewMemDatabase() 1573 statedb, _ := state.New(common.Hash{}, state.NewDatabase(db)) 1574 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1575 1576 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1577 defer pool.Stop() 1578 1579 // Create the test accounts to check various transaction statuses with 1580 keys := make([]*ecdsa.PrivateKey, 3) 1581 for i := 0; i < len(keys); i++ { 1582 keys[i], _ = crypto.GenerateKey() 1583 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1584 } 1585 // Generate and queue a batch of transactions, both pending and queued 1586 txs := types.Transactions{} 1587 1588 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only 1589 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued 1590 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1])) 1591 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only 1592 1593 // Import the transaction and ensure they are correctly added 1594 pool.AddRemotes(txs) 1595 1596 pending, queued := pool.Stats() 1597 if pending != 2 { 1598 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1599 } 1600 if queued != 2 { 1601 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1602 } 1603 if err := validateTxPoolInternals(pool); err != nil { 1604 t.Fatalf("pool internal state corrupted: %v", err) 1605 } 1606 // Retrieve the status of each transaction and validate them 1607 hashes := make([]common.Hash, len(txs)) 1608 for i, tx := range txs { 1609 hashes[i] = tx.Hash() 1610 } 1611 hashes = append(hashes, common.Hash{}) 1612 1613 statuses := pool.Status(hashes) 1614 expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown} 1615 1616 for i := 0; i < len(statuses); i++ { 1617 if statuses[i] != expect[i] { 1618 t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i]) 1619 } 1620 } 1621 } 1622 1623 // Benchmarks the speed of validating the contents of the pending queue of the 1624 // transaction pool. 1625 func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } 1626 func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } 1627 func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } 1628 1629 func benchmarkPendingDemotion(b *testing.B, size int) { 1630 // Add a batch of transactions to a pool one by one 1631 pool, key := setupTxPool() 1632 defer pool.Stop() 1633 1634 account, _ := deriveSender(transaction(0, 0, key)) 1635 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1636 1637 for i := 0; i < size; i++ { 1638 tx := transaction(uint64(i), 100000, key) 1639 pool.promoteTx(account, tx.Hash(), tx) 1640 } 1641 // Benchmark the speed of pool validation 1642 b.ResetTimer() 1643 for i := 0; i < b.N; i++ { 1644 pool.demoteUnexecutables() 1645 } 1646 } 1647 1648 // Benchmarks the speed of scheduling the contents of the future queue of the 1649 // transaction pool. 1650 func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } 1651 func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } 1652 func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } 1653 1654 func benchmarkFuturePromotion(b *testing.B, size int) { 1655 // Add a batch of transactions to a pool one by one 1656 pool, key := setupTxPool() 1657 defer pool.Stop() 1658 1659 account, _ := deriveSender(transaction(0, 0, key)) 1660 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1661 1662 for i := 0; i < size; i++ { 1663 tx := transaction(uint64(1+i), 100000, key) 1664 pool.enqueueTx(tx.Hash(), tx) 1665 } 1666 // Benchmark the speed of pool validation 1667 b.ResetTimer() 1668 for i := 0; i < b.N; i++ { 1669 pool.promoteExecutables(nil) 1670 } 1671 } 1672 1673 // Benchmarks the speed of iterative transaction insertion. 1674 func BenchmarkPoolInsert(b *testing.B) { 1675 // Generate a batch of transactions to enqueue into the pool 1676 pool, key := setupTxPool() 1677 defer pool.Stop() 1678 1679 account, _ := deriveSender(transaction(0, 0, key)) 1680 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1681 1682 txs := make(types.Transactions, b.N) 1683 for i := 0; i < b.N; i++ { 1684 txs[i] = transaction(uint64(i), 100000, key) 1685 } 1686 // Benchmark importing the transactions into the queue 1687 b.ResetTimer() 1688 for _, tx := range txs { 1689 pool.AddRemote(tx) 1690 } 1691 } 1692 1693 // Benchmarks the speed of batched transaction insertion. 1694 func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } 1695 func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } 1696 func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } 1697 1698 func benchmarkPoolBatchInsert(b *testing.B, size int) { 1699 // Generate a batch of transactions to enqueue into the pool 1700 pool, key := setupTxPool() 1701 defer pool.Stop() 1702 1703 account, _ := deriveSender(transaction(0, 0, key)) 1704 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1705 1706 batches := make([]types.Transactions, b.N) 1707 for i := 0; i < b.N; i++ { 1708 batches[i] = make(types.Transactions, size) 1709 for j := 0; j < size; j++ { 1710 batches[i][j] = transaction(uint64(size*i+j), 100000, key) 1711 } 1712 } 1713 // Benchmark importing the transactions into the queue 1714 b.ResetTimer() 1715 for _, batch := range batches { 1716 pool.AddRemotes(batch) 1717 } 1718 }