github.com/4ad/go@v0.0.0-20161219182952-69a12818b605/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"log"
    35  	"math"
    36  	"sort"
    37  )
    38  
    39  // instruction layout.
    40  const (
    41  	FuncAlign = 16
    42  )
    43  
    44  type Optab struct {
    45  	as    obj.As // opcode
    46  	a1    uint8  // From
    47  	a2    uint8  // Reg
    48  	a3    uint8  // From3
    49  	a4    uint8  // To
    50  	type_ int8
    51  	param int16 // REGSP for auto variables
    52  }
    53  
    54  var optab = []Optab{
    55  	// instruction,  From,   Reg,    From3,  To, type, param
    56  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    57  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    58  
    59  	// move register
    60  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    61  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    62  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    63  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    64  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    65  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    66  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    67  
    68  	// load constant
    69  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    70  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    71  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    72  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    73  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    74  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    75  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    76  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    77  
    78  	// store constant
    79  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_ADDR, 73, 0},
    80  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    81  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    82  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    83  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    84  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    85  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    86  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    87  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    88  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    89  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    90  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    91  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_LOREG, 72, 0},
    92  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    93  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    94  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    95  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    96  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    97  
    98  	// store
    99  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   100  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   101  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   102  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   103  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   104  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   105  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   106  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   107  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   108  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   109  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   110  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   111  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   112  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   113  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   114  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   115  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   116  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   117  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   118  
   119  	// load
   120  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   121  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   122  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   123  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   124  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   125  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   126  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   127  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   128  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   129  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   130  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   131  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   132  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   133  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   134  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   135  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   136  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   137  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   138  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   139  
   140  	// integer arithmetic
   141  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   142  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   143  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   144  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   145  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   146  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   147  	Optab{ASUBC, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   148  	Optab{ASUBC, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   149  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   150  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   151  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   152  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   153  	Optab{AADDME, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   154  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   155  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   156  
   157  	// integer logical
   158  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   159  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   160  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   161  	Optab{AAND, C_LCON, C_REG, C_NONE, C_REG, 23, 0},
   162  	Optab{AOR, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   163  	Optab{AOR, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   164  	Optab{AOR, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   165  	Optab{AOR, C_LCON, C_REG, C_NONE, C_REG, 23, 0},
   166  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   167  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   168  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   169  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   170  
   171  	// compare and swap
   172  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   173  
   174  	// floating point
   175  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 2, 0},
   176  	Optab{AFADD, C_FREG, C_FREG, C_NONE, C_FREG, 2, 0},
   177  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   178  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   179  	Optab{AFMADD, C_FREG, C_FREG, C_FREG, C_FREG, 34, 0},
   180  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   181  	Optab{AFMUL, C_FREG, C_FREG, C_NONE, C_FREG, 32, 0},
   182  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   183  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   184  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   185  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   186  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   187  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   188  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   189  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   190  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   191  
   192  	// load symbol address (plus offset)
   193  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   194  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   195  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   196  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   197  
   198  	// system call
   199  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   200  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   201  
   202  	// branch
   203  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   204  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   205  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   206  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   207  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   208  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   209  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   210  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   211  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   212  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   213  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   214  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   215  
   216  	// compare
   217  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   218  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   219  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   220  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   221  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   222  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   223  
   224  	// 32-bit access registers
   225  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   226  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   227  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   228  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   229  
   230  	// macros
   231  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   232  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   233  
   234  	// load/store multiple
   235  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   236  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   237  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   238  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   239  
   240  	// bytes
   241  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   242  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   243  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   244  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   245  
   246  	// fast synchronization
   247  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 81, 0},
   248  
   249  	// store clock
   250  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   251  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   252  
   253  	// storage and storage
   254  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LOREG, 84, 0},
   255  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   256  	Optab{AMVC, C_LAUTO, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   257  
   258  	// address
   259  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   260  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   261  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   262  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   263  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   264  
   265  	// misc
   266  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   267  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   268  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   269  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   270  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   271  
   272  	// vector instructions
   273  
   274  	// VRX store
   275  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   276  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   277  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SOREG, 100, 0},
   278  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 100, REGSP},
   279  
   280  	// VRX load
   281  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   282  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   283  	Optab{AVLEG, C_SOREG, C_NONE, C_SCON, C_VREG, 101, 0},
   284  	Optab{AVLEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 101, REGSP},
   285  
   286  	// VRV scatter
   287  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SOREG, 102, 0},
   288  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 102, REGSP},
   289  
   290  	// VRV gather
   291  	Optab{AVGEG, C_SOREG, C_NONE, C_SCON, C_VREG, 103, 0},
   292  	Optab{AVGEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 103, REGSP},
   293  
   294  	// VRS element shift/rotate and load gr to/from vr element
   295  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   296  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   297  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   298  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   299  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   300  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   301  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   302  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   303  
   304  	// VRS store multiple
   305  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   306  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   307  
   308  	// VRS load multiple
   309  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   310  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   311  
   312  	// VRS store with length
   313  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SOREG, 107, 0},
   314  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SAUTO, 107, REGSP},
   315  
   316  	// VRS load with length
   317  	Optab{AVLL, C_SOREG, C_NONE, C_REG, C_VREG, 108, 0},
   318  	Optab{AVLL, C_SAUTO, C_NONE, C_REG, C_VREG, 108, REGSP},
   319  
   320  	// VRI-a
   321  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   322  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   323  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   324  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   325  	Optab{AVLEIG, C_ADDCON, C_NONE, C_SCON, C_VREG, 109, 0},
   326  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   327  
   328  	// VRI-b generate mask
   329  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   330  
   331  	// VRI-c replicate
   332  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   333  
   334  	// VRI-d element rotate and insert under mask and
   335  	// shift left double by byte
   336  	Optab{AVERIMG, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   337  	Optab{AVSLDB, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   338  
   339  	// VRI-d fp test data class immediate
   340  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   341  
   342  	// VRR-a load reg
   343  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   344  
   345  	// VRR-a compare
   346  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   347  
   348  	// VRR-b
   349  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   350  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   351  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   352  
   353  	// VRR-c
   354  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   355  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   356  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   357  	Optab{AVPDI, C_VREG, C_VREG, C_SCON, C_VREG, 123, 0},
   358  
   359  	// VRR-c shifts
   360  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   361  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   362  
   363  	// VRR-d
   364  	//             2       3       1       4
   365  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   366  
   367  	// VRR-e
   368  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   369  
   370  	// VRR-f
   371  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   372  }
   373  
   374  var oprange [ALAST & obj.AMask][]Optab
   375  
   376  var xcmp [C_NCLASS][C_NCLASS]bool
   377  
   378  func spanz(ctxt *obj.Link, cursym *obj.LSym) {
   379  	p := cursym.Text
   380  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   381  		return
   382  	}
   383  	ctxt.Cursym = cursym
   384  	ctxt.Autosize = int32(p.To.Offset)
   385  
   386  	if oprange[AANDN&obj.AMask] == nil {
   387  		buildop(ctxt)
   388  	}
   389  
   390  	buffer := make([]byte, 0)
   391  	changed := true
   392  	loop := 0
   393  	for changed {
   394  		if loop > 10 {
   395  			ctxt.Diag("stuck in spanz loop")
   396  			break
   397  		}
   398  		changed = false
   399  		buffer = buffer[:0]
   400  		ctxt.Cursym.R = make([]obj.Reloc, 0)
   401  		for p := cursym.Text; p != nil; p = p.Link {
   402  			pc := int64(len(buffer))
   403  			if pc != p.Pc {
   404  				changed = true
   405  			}
   406  			p.Pc = pc
   407  			ctxt.Pc = p.Pc
   408  			ctxt.Curp = p
   409  			asmout(ctxt, &buffer)
   410  			if pc == int64(len(buffer)) {
   411  				switch p.As {
   412  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   413  					// ok
   414  				default:
   415  					ctxt.Diag("zero-width instruction\n%v", p)
   416  				}
   417  			}
   418  		}
   419  		loop++
   420  	}
   421  
   422  	cursym.Size = int64(len(buffer))
   423  	if cursym.Size%FuncAlign != 0 {
   424  		cursym.Size += FuncAlign - (cursym.Size % FuncAlign)
   425  	}
   426  	cursym.Grow(cursym.Size)
   427  	copy(cursym.P, buffer)
   428  }
   429  
   430  func isint32(v int64) bool {
   431  	return int64(int32(v)) == v
   432  }
   433  
   434  func isuint32(v uint64) bool {
   435  	return uint64(uint32(v)) == v
   436  }
   437  
   438  func aclass(ctxt *obj.Link, a *obj.Addr) int {
   439  	switch a.Type {
   440  	case obj.TYPE_NONE:
   441  		return C_NONE
   442  
   443  	case obj.TYPE_REG:
   444  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   445  			return C_REG
   446  		}
   447  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   448  			return C_FREG
   449  		}
   450  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   451  			return C_AREG
   452  		}
   453  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   454  			return C_VREG
   455  		}
   456  		return C_GOK
   457  
   458  	case obj.TYPE_MEM:
   459  		switch a.Name {
   460  		case obj.NAME_EXTERN,
   461  			obj.NAME_STATIC:
   462  			if a.Sym == nil {
   463  				// must have a symbol
   464  				break
   465  			}
   466  			ctxt.Instoffset = a.Offset
   467  			if a.Sym.Type == obj.STLSBSS {
   468  				if ctxt.Flag_shared {
   469  					return C_TLS_IE // initial exec model
   470  				}
   471  				return C_TLS_LE // local exec model
   472  			}
   473  			return C_ADDR
   474  
   475  		case obj.NAME_GOTREF:
   476  			return C_GOTADDR
   477  
   478  		case obj.NAME_AUTO:
   479  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   480  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   481  				return C_SAUTO
   482  			}
   483  			return C_LAUTO
   484  
   485  		case obj.NAME_PARAM:
   486  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   487  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   488  				return C_SAUTO
   489  			}
   490  			return C_LAUTO
   491  
   492  		case obj.NAME_NONE:
   493  			ctxt.Instoffset = a.Offset
   494  			if ctxt.Instoffset == 0 {
   495  				return C_ZOREG
   496  			}
   497  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   498  				return C_SOREG
   499  			}
   500  			return C_LOREG
   501  		}
   502  
   503  		return C_GOK
   504  
   505  	case obj.TYPE_TEXTSIZE:
   506  		return C_TEXTSIZE
   507  
   508  	case obj.TYPE_FCONST:
   509  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   510  			return C_ZCON
   511  		}
   512  		ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   513  
   514  	case obj.TYPE_CONST,
   515  		obj.TYPE_ADDR:
   516  		switch a.Name {
   517  		case obj.NAME_NONE:
   518  			ctxt.Instoffset = a.Offset
   519  			if a.Reg != 0 {
   520  				if -BIG <= ctxt.Instoffset && ctxt.Instoffset <= BIG {
   521  					return C_SACON
   522  				}
   523  				if isint32(ctxt.Instoffset) {
   524  					return C_LACON
   525  				}
   526  				return C_DACON
   527  			}
   528  			goto consize
   529  
   530  		case obj.NAME_EXTERN,
   531  			obj.NAME_STATIC:
   532  			s := a.Sym
   533  			if s == nil {
   534  				break
   535  			}
   536  			ctxt.Instoffset = a.Offset
   537  			if s.Type == obj.SCONST {
   538  				goto consize
   539  			}
   540  
   541  			return C_SYMADDR
   542  
   543  		case obj.NAME_AUTO:
   544  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   545  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   546  				return C_SACON
   547  			}
   548  			return C_LACON
   549  
   550  		case obj.NAME_PARAM:
   551  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   552  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   553  				return C_SACON
   554  			}
   555  			return C_LACON
   556  		}
   557  
   558  		return C_GOK
   559  
   560  	consize:
   561  		if ctxt.Instoffset == 0 {
   562  			return C_ZCON
   563  		}
   564  		if ctxt.Instoffset >= 0 {
   565  			if ctxt.Instoffset <= 0x7fff {
   566  				return C_SCON
   567  			}
   568  			if ctxt.Instoffset <= 0xffff {
   569  				return C_ANDCON
   570  			}
   571  			if ctxt.Instoffset&0xffff == 0 && isuint32(uint64(ctxt.Instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   572  				return C_UCON
   573  			}
   574  			if isint32(ctxt.Instoffset) || isuint32(uint64(ctxt.Instoffset)) {
   575  				return C_LCON
   576  			}
   577  			return C_DCON
   578  		}
   579  
   580  		if ctxt.Instoffset >= -0x8000 {
   581  			return C_ADDCON
   582  		}
   583  		if ctxt.Instoffset&0xffff == 0 && isint32(ctxt.Instoffset) {
   584  			return C_UCON
   585  		}
   586  		if isint32(ctxt.Instoffset) {
   587  			return C_LCON
   588  		}
   589  		return C_DCON
   590  
   591  	case obj.TYPE_BRANCH:
   592  		return C_SBRA
   593  	}
   594  
   595  	return C_GOK
   596  }
   597  
   598  func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
   599  	a1 := int(p.Optab)
   600  	if a1 != 0 {
   601  		return &optab[a1-1]
   602  	}
   603  	a1 = int(p.From.Class)
   604  	if a1 == 0 {
   605  		a1 = aclass(ctxt, &p.From) + 1
   606  		p.From.Class = int8(a1)
   607  	}
   608  
   609  	a1--
   610  	a3 := C_NONE + 1
   611  	if p.From3 != nil {
   612  		a3 = int(p.From3.Class)
   613  		if a3 == 0 {
   614  			a3 = aclass(ctxt, p.From3) + 1
   615  			p.From3.Class = int8(a3)
   616  		}
   617  	}
   618  
   619  	a3--
   620  	a4 := int(p.To.Class)
   621  	if a4 == 0 {
   622  		a4 = aclass(ctxt, &p.To) + 1
   623  		p.To.Class = int8(a4)
   624  	}
   625  
   626  	a4--
   627  	a2 := C_NONE
   628  	if p.Reg != 0 {
   629  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   630  			a2 = C_REG
   631  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   632  			a2 = C_VREG
   633  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   634  			a2 = C_FREG
   635  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   636  			a2 = C_AREG
   637  		}
   638  	}
   639  
   640  	ops := oprange[p.As&obj.AMask]
   641  	c1 := &xcmp[a1]
   642  	c2 := &xcmp[a2]
   643  	c3 := &xcmp[a3]
   644  	c4 := &xcmp[a4]
   645  	for i := range ops {
   646  		op := &ops[i]
   647  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   648  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   649  			return op
   650  		}
   651  	}
   652  
   653  	// cannot find a case; abort
   654  	ctxt.Diag("illegal combination %v %v %v %v %v\n", obj.Aconv(p.As), DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   655  	ctxt.Diag("prog: %v\n", p)
   656  	return nil
   657  }
   658  
   659  func cmp(a int, b int) bool {
   660  	if a == b {
   661  		return true
   662  	}
   663  	switch a {
   664  	case C_DCON:
   665  		if b == C_LCON {
   666  			return true
   667  		}
   668  		fallthrough
   669  	case C_LCON:
   670  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   671  			return true
   672  		}
   673  
   674  	case C_ADDCON:
   675  		if b == C_ZCON || b == C_SCON {
   676  			return true
   677  		}
   678  
   679  	case C_ANDCON:
   680  		if b == C_ZCON || b == C_SCON {
   681  			return true
   682  		}
   683  
   684  	case C_UCON:
   685  		if b == C_ZCON || b == C_SCON {
   686  			return true
   687  		}
   688  
   689  	case C_SCON:
   690  		if b == C_ZCON {
   691  			return true
   692  		}
   693  
   694  	case C_LACON:
   695  		if b == C_SACON {
   696  			return true
   697  		}
   698  
   699  	case C_LBRA:
   700  		if b == C_SBRA {
   701  			return true
   702  		}
   703  
   704  	case C_LAUTO:
   705  		if b == C_SAUTO {
   706  			return true
   707  		}
   708  
   709  	case C_LOREG:
   710  		if b == C_ZOREG || b == C_SOREG {
   711  			return true
   712  		}
   713  
   714  	case C_SOREG:
   715  		if b == C_ZOREG {
   716  			return true
   717  		}
   718  
   719  	case C_ANY:
   720  		return true
   721  	}
   722  
   723  	return false
   724  }
   725  
   726  type ocmp []Optab
   727  
   728  func (x ocmp) Len() int {
   729  	return len(x)
   730  }
   731  
   732  func (x ocmp) Swap(i, j int) {
   733  	x[i], x[j] = x[j], x[i]
   734  }
   735  
   736  func (x ocmp) Less(i, j int) bool {
   737  	p1 := &x[i]
   738  	p2 := &x[j]
   739  	n := int(p1.as) - int(p2.as)
   740  	if n != 0 {
   741  		return n < 0
   742  	}
   743  	n = int(p1.a1) - int(p2.a1)
   744  	if n != 0 {
   745  		return n < 0
   746  	}
   747  	n = int(p1.a2) - int(p2.a2)
   748  	if n != 0 {
   749  		return n < 0
   750  	}
   751  	n = int(p1.a3) - int(p2.a3)
   752  	if n != 0 {
   753  		return n < 0
   754  	}
   755  	n = int(p1.a4) - int(p2.a4)
   756  	if n != 0 {
   757  		return n < 0
   758  	}
   759  	return false
   760  }
   761  func opset(a, b obj.As) {
   762  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   763  }
   764  
   765  func buildop(ctxt *obj.Link) {
   766  	for i := 0; i < C_NCLASS; i++ {
   767  		for n := 0; n < C_NCLASS; n++ {
   768  			if cmp(n, i) {
   769  				xcmp[i][n] = true
   770  			}
   771  		}
   772  	}
   773  	sort.Sort(ocmp(optab))
   774  	for i := 0; i < len(optab); i++ {
   775  		r := optab[i].as
   776  		start := i
   777  		for ; i+1 < len(optab); i++ {
   778  			if optab[i+1].as != r {
   779  				break
   780  			}
   781  		}
   782  		oprange[r&obj.AMask] = optab[start : i+1]
   783  
   784  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   785  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   786  		switch r {
   787  		case AADD:
   788  			opset(AADDC, r)
   789  			opset(AMULLD, r)
   790  			opset(AMULLW, r)
   791  		case ADIVW:
   792  			opset(AADDE, r)
   793  			opset(ADIVD, r)
   794  			opset(ADIVDU, r)
   795  			opset(ADIVWU, r)
   796  		case AMULHD:
   797  			opset(AMULHDU, r)
   798  		case AMOVBZ:
   799  			opset(AMOVH, r)
   800  			opset(AMOVHZ, r)
   801  		case ALA:
   802  			opset(ALAY, r)
   803  		case AMVC:
   804  			opset(ACLC, r)
   805  			opset(AXC, r)
   806  			opset(AOC, r)
   807  			opset(ANC, r)
   808  		case ASTCK:
   809  			opset(ASTCKC, r)
   810  			opset(ASTCKE, r)
   811  			opset(ASTCKF, r)
   812  		case ASTMG:
   813  			opset(ASTMY, r)
   814  		case ALMG:
   815  			opset(ALMY, r)
   816  		case AAND:
   817  			opset(AANDN, r)
   818  			opset(ANAND, r)
   819  			opset(ANOR, r)
   820  			opset(AORN, r)
   821  		case AADDME:
   822  			opset(AADDZE, r)
   823  			opset(ASUBME, r)
   824  			opset(ASUBZE, r)
   825  		case ABEQ:
   826  			opset(ABGE, r)
   827  			opset(ABGT, r)
   828  			opset(ABLE, r)
   829  			opset(ABLT, r)
   830  			opset(ABNE, r)
   831  			opset(ABVC, r)
   832  			opset(ABVS, r)
   833  		case ABR:
   834  			opset(ABL, r)
   835  		case ABC:
   836  			opset(ABCL, r)
   837  		case AFABS:
   838  			opset(AFNABS, r)
   839  			opset(AFNEG, r)
   840  			opset(ALEDBR, r)
   841  			opset(ALDEBR, r)
   842  			opset(AFSQRT, r)
   843  			opset(AFSQRTS, r)
   844  		case AFADD:
   845  			opset(AFADDS, r)
   846  			opset(AFDIV, r)
   847  			opset(AFDIVS, r)
   848  			opset(AFSUB, r)
   849  			opset(AFSUBS, r)
   850  		case AFMADD:
   851  			opset(AFMADDS, r)
   852  			opset(AFMSUB, r)
   853  			opset(AFMSUBS, r)
   854  			opset(AFNMADD, r)
   855  			opset(AFNMADDS, r)
   856  			opset(AFNMSUB, r)
   857  			opset(AFNMSUBS, r)
   858  		case AFMUL:
   859  			opset(AFMULS, r)
   860  		case AFCMPO:
   861  			opset(AFCMPU, r)
   862  			opset(ACEBR, r)
   863  		case AOR:
   864  			opset(AXOR, r)
   865  		case ASLD:
   866  			opset(ASRD, r)
   867  			opset(ASLW, r)
   868  			opset(ASRW, r)
   869  			opset(ASRAD, r)
   870  			opset(ASRAW, r)
   871  			opset(ARLL, r)
   872  			opset(ARLLG, r)
   873  		case ACSG:
   874  			opset(ACS, r)
   875  		case ASUB:
   876  			opset(ASUBC, r)
   877  			opset(ASUBE, r)
   878  		case AFMOVD:
   879  			opset(AFMOVS, r)
   880  		case AMOVDBR:
   881  			opset(AMOVWBR, r)
   882  		case ACMP:
   883  			opset(ACMPW, r)
   884  		case ACMPU:
   885  			opset(ACMPWU, r)
   886  		case ACEFBRA:
   887  			opset(ACDFBRA, r)
   888  			opset(ACEGBRA, r)
   889  			opset(ACDGBRA, r)
   890  			opset(ACELFBR, r)
   891  			opset(ACDLFBR, r)
   892  			opset(ACELGBR, r)
   893  			opset(ACDLGBR, r)
   894  		case ACFEBRA:
   895  			opset(ACFDBRA, r)
   896  			opset(ACGEBRA, r)
   897  			opset(ACGDBRA, r)
   898  			opset(ACLFEBR, r)
   899  			opset(ACLFDBR, r)
   900  			opset(ACLGEBR, r)
   901  			opset(ACLGDBR, r)
   902  		case ACMPBEQ:
   903  			opset(ACMPBGE, r)
   904  			opset(ACMPBGT, r)
   905  			opset(ACMPBLE, r)
   906  			opset(ACMPBLT, r)
   907  			opset(ACMPBNE, r)
   908  		case ACMPUBEQ:
   909  			opset(ACMPUBGE, r)
   910  			opset(ACMPUBGT, r)
   911  			opset(ACMPUBLE, r)
   912  			opset(ACMPUBLT, r)
   913  			opset(ACMPUBNE, r)
   914  		case AVL:
   915  			opset(AVLLEZB, r)
   916  			opset(AVLLEZH, r)
   917  			opset(AVLLEZF, r)
   918  			opset(AVLLEZG, r)
   919  			opset(AVLREPB, r)
   920  			opset(AVLREPH, r)
   921  			opset(AVLREPF, r)
   922  			opset(AVLREPG, r)
   923  		case AVLEG:
   924  			opset(AVLBB, r)
   925  			opset(AVLEB, r)
   926  			opset(AVLEH, r)
   927  			opset(AVLEF, r)
   928  			opset(AVLEG, r)
   929  			opset(AVLREP, r)
   930  		case AVSTEG:
   931  			opset(AVSTEB, r)
   932  			opset(AVSTEH, r)
   933  			opset(AVSTEF, r)
   934  		case AVSCEG:
   935  			opset(AVSCEF, r)
   936  		case AVGEG:
   937  			opset(AVGEF, r)
   938  		case AVESLG:
   939  			opset(AVESLB, r)
   940  			opset(AVESLH, r)
   941  			opset(AVESLF, r)
   942  			opset(AVERLLB, r)
   943  			opset(AVERLLH, r)
   944  			opset(AVERLLF, r)
   945  			opset(AVERLLG, r)
   946  			opset(AVESRAB, r)
   947  			opset(AVESRAH, r)
   948  			opset(AVESRAF, r)
   949  			opset(AVESRAG, r)
   950  			opset(AVESRLB, r)
   951  			opset(AVESRLH, r)
   952  			opset(AVESRLF, r)
   953  			opset(AVESRLG, r)
   954  		case AVLGVG:
   955  			opset(AVLGVB, r)
   956  			opset(AVLGVH, r)
   957  			opset(AVLGVF, r)
   958  		case AVLVGG:
   959  			opset(AVLVGB, r)
   960  			opset(AVLVGH, r)
   961  			opset(AVLVGF, r)
   962  		case AVZERO:
   963  			opset(AVONE, r)
   964  		case AVREPIG:
   965  			opset(AVREPIB, r)
   966  			opset(AVREPIH, r)
   967  			opset(AVREPIF, r)
   968  		case AVLEIG:
   969  			opset(AVLEIB, r)
   970  			opset(AVLEIH, r)
   971  			opset(AVLEIF, r)
   972  		case AVGMG:
   973  			opset(AVGMB, r)
   974  			opset(AVGMH, r)
   975  			opset(AVGMF, r)
   976  		case AVREPG:
   977  			opset(AVREPB, r)
   978  			opset(AVREPH, r)
   979  			opset(AVREPF, r)
   980  		case AVERIMG:
   981  			opset(AVERIMB, r)
   982  			opset(AVERIMH, r)
   983  			opset(AVERIMF, r)
   984  		case AVFTCIDB:
   985  			opset(AWFTCIDB, r)
   986  		case AVLR:
   987  			opset(AVUPHB, r)
   988  			opset(AVUPHH, r)
   989  			opset(AVUPHF, r)
   990  			opset(AVUPLHB, r)
   991  			opset(AVUPLHH, r)
   992  			opset(AVUPLHF, r)
   993  			opset(AVUPLB, r)
   994  			opset(AVUPLHW, r)
   995  			opset(AVUPLF, r)
   996  			opset(AVUPLLB, r)
   997  			opset(AVUPLLH, r)
   998  			opset(AVUPLLF, r)
   999  			opset(AVCLZB, r)
  1000  			opset(AVCLZH, r)
  1001  			opset(AVCLZF, r)
  1002  			opset(AVCLZG, r)
  1003  			opset(AVCTZB, r)
  1004  			opset(AVCTZH, r)
  1005  			opset(AVCTZF, r)
  1006  			opset(AVCTZG, r)
  1007  			opset(AVLDEB, r)
  1008  			opset(AWLDEB, r)
  1009  			opset(AVFLCDB, r)
  1010  			opset(AWFLCDB, r)
  1011  			opset(AVFLNDB, r)
  1012  			opset(AWFLNDB, r)
  1013  			opset(AVFLPDB, r)
  1014  			opset(AWFLPDB, r)
  1015  			opset(AVFSQDB, r)
  1016  			opset(AWFSQDB, r)
  1017  			opset(AVISTRB, r)
  1018  			opset(AVISTRH, r)
  1019  			opset(AVISTRF, r)
  1020  			opset(AVISTRBS, r)
  1021  			opset(AVISTRHS, r)
  1022  			opset(AVISTRFS, r)
  1023  			opset(AVLCB, r)
  1024  			opset(AVLCH, r)
  1025  			opset(AVLCF, r)
  1026  			opset(AVLCG, r)
  1027  			opset(AVLPB, r)
  1028  			opset(AVLPH, r)
  1029  			opset(AVLPF, r)
  1030  			opset(AVLPG, r)
  1031  			opset(AVPOPCT, r)
  1032  			opset(AVSEGB, r)
  1033  			opset(AVSEGH, r)
  1034  			opset(AVSEGF, r)
  1035  		case AVECG:
  1036  			opset(AVECB, r)
  1037  			opset(AVECH, r)
  1038  			opset(AVECF, r)
  1039  			opset(AVECLB, r)
  1040  			opset(AVECLH, r)
  1041  			opset(AVECLF, r)
  1042  			opset(AVECLG, r)
  1043  			opset(AWFCDB, r)
  1044  			opset(AWFKDB, r)
  1045  		case AVCEQG:
  1046  			opset(AVCEQB, r)
  1047  			opset(AVCEQH, r)
  1048  			opset(AVCEQF, r)
  1049  			opset(AVCEQBS, r)
  1050  			opset(AVCEQHS, r)
  1051  			opset(AVCEQFS, r)
  1052  			opset(AVCEQGS, r)
  1053  			opset(AVCHB, r)
  1054  			opset(AVCHH, r)
  1055  			opset(AVCHF, r)
  1056  			opset(AVCHG, r)
  1057  			opset(AVCHBS, r)
  1058  			opset(AVCHHS, r)
  1059  			opset(AVCHFS, r)
  1060  			opset(AVCHGS, r)
  1061  			opset(AVCHLB, r)
  1062  			opset(AVCHLH, r)
  1063  			opset(AVCHLF, r)
  1064  			opset(AVCHLG, r)
  1065  			opset(AVCHLBS, r)
  1066  			opset(AVCHLHS, r)
  1067  			opset(AVCHLFS, r)
  1068  			opset(AVCHLGS, r)
  1069  		case AVFAEF:
  1070  			opset(AVFAEB, r)
  1071  			opset(AVFAEH, r)
  1072  			opset(AVFAEBS, r)
  1073  			opset(AVFAEHS, r)
  1074  			opset(AVFAEFS, r)
  1075  			opset(AVFAEZB, r)
  1076  			opset(AVFAEZH, r)
  1077  			opset(AVFAEZF, r)
  1078  			opset(AVFAEZBS, r)
  1079  			opset(AVFAEZHS, r)
  1080  			opset(AVFAEZFS, r)
  1081  			opset(AVFEEB, r)
  1082  			opset(AVFEEH, r)
  1083  			opset(AVFEEF, r)
  1084  			opset(AVFEEBS, r)
  1085  			opset(AVFEEHS, r)
  1086  			opset(AVFEEFS, r)
  1087  			opset(AVFEEZB, r)
  1088  			opset(AVFEEZH, r)
  1089  			opset(AVFEEZF, r)
  1090  			opset(AVFEEZBS, r)
  1091  			opset(AVFEEZHS, r)
  1092  			opset(AVFEEZFS, r)
  1093  			opset(AVFENEB, r)
  1094  			opset(AVFENEH, r)
  1095  			opset(AVFENEF, r)
  1096  			opset(AVFENEBS, r)
  1097  			opset(AVFENEHS, r)
  1098  			opset(AVFENEFS, r)
  1099  			opset(AVFENEZB, r)
  1100  			opset(AVFENEZH, r)
  1101  			opset(AVFENEZF, r)
  1102  			opset(AVFENEZBS, r)
  1103  			opset(AVFENEZHS, r)
  1104  			opset(AVFENEZFS, r)
  1105  		case AVPKSG:
  1106  			opset(AVPKSH, r)
  1107  			opset(AVPKSF, r)
  1108  			opset(AVPKSHS, r)
  1109  			opset(AVPKSFS, r)
  1110  			opset(AVPKSGS, r)
  1111  			opset(AVPKLSH, r)
  1112  			opset(AVPKLSF, r)
  1113  			opset(AVPKLSG, r)
  1114  			opset(AVPKLSHS, r)
  1115  			opset(AVPKLSFS, r)
  1116  			opset(AVPKLSGS, r)
  1117  		case AVAQ:
  1118  			opset(AVAB, r)
  1119  			opset(AVAH, r)
  1120  			opset(AVAF, r)
  1121  			opset(AVAG, r)
  1122  			opset(AVACCB, r)
  1123  			opset(AVACCH, r)
  1124  			opset(AVACCF, r)
  1125  			opset(AVACCG, r)
  1126  			opset(AVACCQ, r)
  1127  			opset(AVN, r)
  1128  			opset(AVNC, r)
  1129  			opset(AVAVGB, r)
  1130  			opset(AVAVGH, r)
  1131  			opset(AVAVGF, r)
  1132  			opset(AVAVGG, r)
  1133  			opset(AVAVGLB, r)
  1134  			opset(AVAVGLH, r)
  1135  			opset(AVAVGLF, r)
  1136  			opset(AVAVGLG, r)
  1137  			opset(AVCKSM, r)
  1138  			opset(AVX, r)
  1139  			opset(AVFADB, r)
  1140  			opset(AWFADB, r)
  1141  			opset(AVFCEDB, r)
  1142  			opset(AVFCEDBS, r)
  1143  			opset(AWFCEDB, r)
  1144  			opset(AWFCEDBS, r)
  1145  			opset(AVFCHDB, r)
  1146  			opset(AVFCHDBS, r)
  1147  			opset(AWFCHDB, r)
  1148  			opset(AWFCHDBS, r)
  1149  			opset(AVFCHEDB, r)
  1150  			opset(AVFCHEDBS, r)
  1151  			opset(AWFCHEDB, r)
  1152  			opset(AWFCHEDBS, r)
  1153  			opset(AVFMDB, r)
  1154  			opset(AWFMDB, r)
  1155  			opset(AVGFMB, r)
  1156  			opset(AVGFMH, r)
  1157  			opset(AVGFMF, r)
  1158  			opset(AVGFMG, r)
  1159  			opset(AVMXB, r)
  1160  			opset(AVMXH, r)
  1161  			opset(AVMXF, r)
  1162  			opset(AVMXG, r)
  1163  			opset(AVMXLB, r)
  1164  			opset(AVMXLH, r)
  1165  			opset(AVMXLF, r)
  1166  			opset(AVMXLG, r)
  1167  			opset(AVMNB, r)
  1168  			opset(AVMNH, r)
  1169  			opset(AVMNF, r)
  1170  			opset(AVMNG, r)
  1171  			opset(AVMNLB, r)
  1172  			opset(AVMNLH, r)
  1173  			opset(AVMNLF, r)
  1174  			opset(AVMNLG, r)
  1175  			opset(AVMRHB, r)
  1176  			opset(AVMRHH, r)
  1177  			opset(AVMRHF, r)
  1178  			opset(AVMRHG, r)
  1179  			opset(AVMRLB, r)
  1180  			opset(AVMRLH, r)
  1181  			opset(AVMRLF, r)
  1182  			opset(AVMRLG, r)
  1183  			opset(AVMEB, r)
  1184  			opset(AVMEH, r)
  1185  			opset(AVMEF, r)
  1186  			opset(AVMLEB, r)
  1187  			opset(AVMLEH, r)
  1188  			opset(AVMLEF, r)
  1189  			opset(AVMOB, r)
  1190  			opset(AVMOH, r)
  1191  			opset(AVMOF, r)
  1192  			opset(AVMLOB, r)
  1193  			opset(AVMLOH, r)
  1194  			opset(AVMLOF, r)
  1195  			opset(AVMHB, r)
  1196  			opset(AVMHH, r)
  1197  			opset(AVMHF, r)
  1198  			opset(AVMLHB, r)
  1199  			opset(AVMLHH, r)
  1200  			opset(AVMLHF, r)
  1201  			opset(AVMLH, r)
  1202  			opset(AVMLHW, r)
  1203  			opset(AVMLF, r)
  1204  			opset(AVNO, r)
  1205  			opset(AVO, r)
  1206  			opset(AVPKH, r)
  1207  			opset(AVPKF, r)
  1208  			opset(AVPKG, r)
  1209  			opset(AVSUMGH, r)
  1210  			opset(AVSUMGF, r)
  1211  			opset(AVSUMQF, r)
  1212  			opset(AVSUMQG, r)
  1213  			opset(AVSUMB, r)
  1214  			opset(AVSUMH, r)
  1215  		case AVERLLVG:
  1216  			opset(AVERLLVB, r)
  1217  			opset(AVERLLVH, r)
  1218  			opset(AVERLLVF, r)
  1219  			opset(AVESLVB, r)
  1220  			opset(AVESLVH, r)
  1221  			opset(AVESLVF, r)
  1222  			opset(AVESLVG, r)
  1223  			opset(AVESRAVB, r)
  1224  			opset(AVESRAVH, r)
  1225  			opset(AVESRAVF, r)
  1226  			opset(AVESRAVG, r)
  1227  			opset(AVESRLVB, r)
  1228  			opset(AVESRLVH, r)
  1229  			opset(AVESRLVF, r)
  1230  			opset(AVESRLVG, r)
  1231  			opset(AVFDDB, r)
  1232  			opset(AWFDDB, r)
  1233  			opset(AVFSDB, r)
  1234  			opset(AWFSDB, r)
  1235  			opset(AVSL, r)
  1236  			opset(AVSLB, r)
  1237  			opset(AVSRA, r)
  1238  			opset(AVSRAB, r)
  1239  			opset(AVSRL, r)
  1240  			opset(AVSRLB, r)
  1241  			opset(AVSF, r)
  1242  			opset(AVSG, r)
  1243  			opset(AVSQ, r)
  1244  			opset(AVSCBIB, r)
  1245  			opset(AVSCBIH, r)
  1246  			opset(AVSCBIF, r)
  1247  			opset(AVSCBIG, r)
  1248  			opset(AVSCBIQ, r)
  1249  		case AVACQ:
  1250  			opset(AVACCCQ, r)
  1251  			opset(AVGFMAB, r)
  1252  			opset(AVGFMAH, r)
  1253  			opset(AVGFMAF, r)
  1254  			opset(AVGFMAG, r)
  1255  			opset(AVMALB, r)
  1256  			opset(AVMALHW, r)
  1257  			opset(AVMALF, r)
  1258  			opset(AVMAHB, r)
  1259  			opset(AVMAHH, r)
  1260  			opset(AVMAHF, r)
  1261  			opset(AVMALHB, r)
  1262  			opset(AVMALHH, r)
  1263  			opset(AVMALHF, r)
  1264  			opset(AVMAEB, r)
  1265  			opset(AVMAEH, r)
  1266  			opset(AVMAEF, r)
  1267  			opset(AVMALEB, r)
  1268  			opset(AVMALEH, r)
  1269  			opset(AVMALEF, r)
  1270  			opset(AVMAOB, r)
  1271  			opset(AVMAOH, r)
  1272  			opset(AVMAOF, r)
  1273  			opset(AVMALOB, r)
  1274  			opset(AVMALOH, r)
  1275  			opset(AVMALOF, r)
  1276  			opset(AVSTRCB, r)
  1277  			opset(AVSTRCH, r)
  1278  			opset(AVSTRCF, r)
  1279  			opset(AVSTRCBS, r)
  1280  			opset(AVSTRCHS, r)
  1281  			opset(AVSTRCFS, r)
  1282  			opset(AVSTRCZB, r)
  1283  			opset(AVSTRCZH, r)
  1284  			opset(AVSTRCZF, r)
  1285  			opset(AVSTRCZBS, r)
  1286  			opset(AVSTRCZHS, r)
  1287  			opset(AVSTRCZFS, r)
  1288  			opset(AVSBCBIQ, r)
  1289  			opset(AVSBIQ, r)
  1290  		case AVSEL:
  1291  			opset(AVFMADB, r)
  1292  			opset(AWFMADB, r)
  1293  			opset(AVFMSDB, r)
  1294  			opset(AWFMSDB, r)
  1295  			opset(AVPERM, r)
  1296  		}
  1297  	}
  1298  }
  1299  
  1300  const (
  1301  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1302  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1303  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1304  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1305  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1306  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1307  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1308  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1309  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1310  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1311  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1312  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1313  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1314  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1315  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1316  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1317  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1318  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1319  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1320  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1321  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1322  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1323  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1324  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1325  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1326  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1327  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1328  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1329  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1330  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1331  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1332  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1333  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1334  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1335  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1336  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1337  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1338  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1339  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1340  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1341  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1342  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1343  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1344  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1345  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1346  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1347  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1348  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1349  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1350  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1351  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1352  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1353  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1354  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1355  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1356  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1357  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1358  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1359  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1360  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1361  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1362  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1363  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1364  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1365  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1366  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1367  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1368  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1369  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1370  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1371  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1372  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1373  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1374  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1375  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1376  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1377  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1378  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1379  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1380  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1381  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1382  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1383  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1384  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1385  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1386  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1387  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1388  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1389  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1390  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1391  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1392  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1393  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1394  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1395  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1396  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1397  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1398  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1399  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1400  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1401  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1402  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1403  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1404  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1405  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1406  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1407  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1408  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1409  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1410  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1411  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1412  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1413  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1414  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1415  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1416  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1417  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1418  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1419  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1420  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1421  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1422  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1423  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1424  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1425  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1426  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1427  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1428  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1429  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1430  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1431  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1432  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1433  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1434  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1435  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1436  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1437  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1438  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1439  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1440  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1441  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1442  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1443  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1444  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1445  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1446  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1447  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1448  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1449  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1450  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1451  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1452  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1453  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1454  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1455  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1456  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1457  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1458  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1459  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1460  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1461  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1462  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1463  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1464  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1465  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1466  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1467  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1468  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1469  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1470  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1471  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1472  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1473  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1474  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1475  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1476  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1477  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1478  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1479  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1480  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1481  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1482  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1483  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1484  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1485  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1486  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1487  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1488  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1489  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1490  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1491  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1492  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1493  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1494  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1495  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1496  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1497  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1498  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1499  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1500  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1501  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1502  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1503  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1504  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1505  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1506  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1507  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1508  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1509  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1510  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1511  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1512  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1513  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1514  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1515  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1516  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1517  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1518  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1519  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1520  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1521  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1522  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1523  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1524  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1525  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1526  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1527  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1528  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1529  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1530  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1531  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1532  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1533  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1534  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1535  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1536  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1537  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1538  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1539  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1540  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1541  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1542  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1543  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1544  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1545  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1546  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1547  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1548  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1549  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1550  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1551  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1552  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1553  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1554  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1555  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1556  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1557  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1558  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1559  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1560  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1561  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1562  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1563  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1564  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1565  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1566  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1567  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1568  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1569  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1570  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1571  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1572  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1573  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1574  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1575  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1576  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1577  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1578  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1579  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1580  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1581  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1582  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1583  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1584  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1585  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1586  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1587  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1588  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1589  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1590  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1591  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1592  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1593  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1594  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1595  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1596  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1597  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1598  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1599  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1600  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1601  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1602  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1603  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1604  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1605  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1606  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1607  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1608  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1609  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1610  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1611  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1612  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1613  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1614  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1615  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1616  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1617  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1618  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1619  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1620  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1621  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1622  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1623  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1624  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1625  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1626  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1627  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1628  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1629  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1630  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1631  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1632  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1633  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1634  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1635  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1636  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1637  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1638  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1639  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1640  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1641  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1642  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1643  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1644  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1645  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1646  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1647  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1648  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1649  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1650  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1651  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1652  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1653  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1654  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1655  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1656  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1657  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1658  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1659  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1660  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1661  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1662  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1663  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1664  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1665  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1666  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1667  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1668  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1669  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1670  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1671  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1672  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1673  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1674  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1675  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1676  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1677  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1678  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1679  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1680  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1681  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1682  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1683  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1684  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1685  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1686  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1687  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1688  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1689  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1690  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1691  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1692  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1693  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1694  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1695  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1696  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1697  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1698  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1699  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1700  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1701  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1702  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1703  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1704  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1705  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1706  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1707  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1708  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1709  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1710  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1711  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1712  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1713  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1714  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1715  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1716  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1717  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1718  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1719  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1720  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1721  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1722  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1723  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1724  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1725  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1726  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1727  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1728  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1729  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1730  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1731  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1732  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1733  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1734  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1735  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1736  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1737  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1738  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1739  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1740  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1741  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1742  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1743  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1744  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1745  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1746  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1747  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1748  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1749  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1750  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1751  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1752  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1753  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1754  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1755  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1756  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1757  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1758  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1759  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1760  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1761  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1762  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1763  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1764  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1765  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1766  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1767  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1768  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1769  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1770  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1771  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1772  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1773  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1774  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1775  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1776  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1777  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1778  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1779  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1780  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1781  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1782  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1783  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1784  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1785  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1786  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1787  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1788  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1789  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1790  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1791  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1792  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1793  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1794  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1795  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1796  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1797  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1798  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1799  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1800  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1801  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1802  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1803  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1804  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1805  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1806  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1807  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1808  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1809  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1810  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1811  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1812  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1813  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1814  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1815  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1816  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1817  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1818  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1819  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1820  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1821  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1822  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1823  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1824  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1825  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1826  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1827  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1828  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1829  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1830  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1831  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1832  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1833  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1834  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1835  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1836  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1837  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1838  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1839  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1840  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1841  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1842  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1843  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1844  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1845  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1846  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1847  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1848  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1849  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1850  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1851  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1852  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1853  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1854  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1855  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1856  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1857  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1858  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1859  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1860  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1861  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1862  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1863  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1864  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1865  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1866  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1867  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1868  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1869  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1870  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1871  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1872  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1873  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1874  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1875  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1876  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1877  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1878  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1879  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1880  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1881  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1882  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1883  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1884  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1885  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1886  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1887  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1888  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1889  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1890  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1891  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1892  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1893  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1894  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1895  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1896  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1897  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1898  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1899  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1900  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1901  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1902  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1903  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1904  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1905  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1906  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1907  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1908  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1909  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1910  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1911  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1912  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1913  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1914  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1915  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1916  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1917  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1918  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1919  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1920  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1921  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1922  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1923  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1924  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1925  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1926  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1927  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1928  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1929  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1930  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1931  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1932  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1933  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1934  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1935  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1936  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1937  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1938  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1939  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1940  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1941  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1942  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1943  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1944  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1945  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1946  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1947  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1948  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  1949  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  1950  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  1951  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  1952  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  1953  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  1954  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  1955  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  1956  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  1957  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  1958  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  1959  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  1960  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  1961  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  1962  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  1963  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  1964  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  1965  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  1966  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  1967  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  1968  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  1969  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  1970  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  1971  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  1972  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  1973  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  1974  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  1975  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  1976  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  1977  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  1978  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  1979  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  1980  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  1981  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  1982  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  1983  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  1984  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  1985  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  1986  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  1987  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  1988  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  1989  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  1990  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  1991  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  1992  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  1993  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  1994  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  1995  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  1996  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  1997  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  1998  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  1999  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2000  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2001  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2002  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2003  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2004  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2005  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2006  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2007  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2008  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2009  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2010  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2011  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2012  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2013  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2014  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2015  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2016  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2017  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2018  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2019  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2020  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2021  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2022  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2023  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2024  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2025  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2026  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2027  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2028  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2029  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2030  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2031  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2032  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2033  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2034  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2035  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2036  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2037  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2038  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2039  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2040  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2041  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2042  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2043  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2044  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2045  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2046  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2047  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2048  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2049  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2050  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2051  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2052  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2053  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2054  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2055  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2056  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2057  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2058  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2059  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2060  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2061  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2062  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2063  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2064  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2065  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2066  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2067  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2068  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2069  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2070  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2071  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2072  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2073  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2074  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2075  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2076  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2077  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2078  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2079  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2080  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2081  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2082  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2083  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2084  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2085  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2086  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2087  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2088  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2089  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2090  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2091  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2092  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2093  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2094  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2095  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2096  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2097  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2098  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2099  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2100  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2101  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2102  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2103  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2104  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2105  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2106  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2107  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2108  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2109  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2110  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2111  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2112  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2113  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2114  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2115  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2116  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2117  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2118  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2119  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2120  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2121  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2122  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2123  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2124  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2125  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2126  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2127  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2128  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2129  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2130  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2131  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2132  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2133  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2134  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2135  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2136  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2137  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2138  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2139  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2140  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2141  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2142  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2143  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2144  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2145  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2146  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2147  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2148  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2149  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2150  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2151  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2152  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2153  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2154  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2155  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2156  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2157  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2158  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2159  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2160  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2161  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2162  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2163  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2164  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2165  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2166  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2167  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2168  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2169  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2170  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2171  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2172  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2173  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2174  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2175  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2176  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2177  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2178  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2179  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2180  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2181  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2182  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2183  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2184  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2185  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2186  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2187  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2188  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2189  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2190  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2191  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2192  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2193  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2194  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2195  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2196  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2197  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2198  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2199  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2200  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2201  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2202  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2203  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2204  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2205  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2206  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2207  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2208  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2209  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2210  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2211  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2212  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2213  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2214  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2215  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2216  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2217  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2218  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2219  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2220  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2221  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2222  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2223  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2224  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2225  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2226  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2227  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2228  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2229  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2230  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2231  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2232  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2233  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2234  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2235  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2236  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2237  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2238  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2239  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2240  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2241  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2242  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2243  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2244  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2245  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2246  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2247  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2248  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2249  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2250  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2251  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2252  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2253  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2254  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2255  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2256  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2257  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2258  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2259  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2260  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2261  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2262  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2263  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2264  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2265  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2266  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2267  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2268  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2269  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2270  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2271  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2272  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2273  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2274  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2275  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2276  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2277  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2278  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2279  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2280  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2281  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2282  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2283  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2284  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2285  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2286  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2287  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2288  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2289  
  2290  	// added in z13
  2291  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2292  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2293  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2294  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2295  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2296  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2297  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2298  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2299  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2300  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2301  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2302  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2303  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2304  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2305  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2306  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2307  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2308  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2309  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2310  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2311  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2312  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2313  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2314  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2315  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2316  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2317  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2318  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2319  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2320  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2321  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2322  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2323  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2324  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2325  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2326  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2327  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2328  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2329  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2330  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2331  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2332  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2333  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2334  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2335  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2336  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2337  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2338  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2339  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2340  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2341  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2342  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2343  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2344  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2345  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2346  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2347  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2348  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2349  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2350  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2351  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2352  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2353  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2354  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2355  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2356  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2357  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2358  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2359  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2360  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2361  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2362  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2363  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2364  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2365  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2366  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2367  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2368  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2369  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2370  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2371  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2372  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2373  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2374  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2375  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2376  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2377  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2378  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2379  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2380  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2381  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2382  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2383  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2384  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2385  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2386  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2387  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2388  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2389  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2390  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2391  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2392  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2393  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2394  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2395  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2396  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2397  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2398  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2399  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2400  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2401  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2402  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2403  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2404  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2405  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2406  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2407  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2408  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2409  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2410  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2411  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2412  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2413  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2414  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2415  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2416  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2417  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2418  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2419  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2420  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2421  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2422  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2423  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2424  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2425  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2426  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2427  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2428  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2429  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2430  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2431  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2432  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2433  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2434  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2435  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2436  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2437  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2438  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2439  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2440  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2441  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2442  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2443  )
  2444  
  2445  func oclass(a *obj.Addr) int {
  2446  	return int(a.Class) - 1
  2447  }
  2448  
  2449  // Add a relocation for the immediate in a RIL style instruction.
  2450  // The addend will be adjusted as required.
  2451  func addrilreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2452  	if sym == nil {
  2453  		ctxt.Diag("require symbol to apply relocation")
  2454  	}
  2455  	offset := int64(2) // relocation offset from start of instruction
  2456  	rel := obj.Addrel(ctxt.Cursym)
  2457  	rel.Off = int32(ctxt.Pc + offset)
  2458  	rel.Siz = 4
  2459  	rel.Sym = sym
  2460  	rel.Add = add + offset + int64(rel.Siz)
  2461  	rel.Type = obj.R_PCRELDBL
  2462  	return rel
  2463  }
  2464  
  2465  func addrilrelocoffset(ctxt *obj.Link, sym *obj.LSym, add, offset int64) *obj.Reloc {
  2466  	if sym == nil {
  2467  		ctxt.Diag("require symbol to apply relocation")
  2468  	}
  2469  	offset += int64(2) // relocation offset from start of instruction
  2470  	rel := obj.Addrel(ctxt.Cursym)
  2471  	rel.Off = int32(ctxt.Pc + offset)
  2472  	rel.Siz = 4
  2473  	rel.Sym = sym
  2474  	rel.Add = add + offset + int64(rel.Siz)
  2475  	rel.Type = obj.R_PCRELDBL
  2476  	return rel
  2477  }
  2478  
  2479  // Add a CALL relocation for the immediate in a RIL style instruction.
  2480  // The addend will be adjusted as required.
  2481  func addcallreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2482  	if sym == nil {
  2483  		ctxt.Diag("require symbol to apply relocation")
  2484  	}
  2485  	offset := int64(2) // relocation offset from start of instruction
  2486  	rel := obj.Addrel(ctxt.Cursym)
  2487  	rel.Off = int32(ctxt.Pc + offset)
  2488  	rel.Siz = 4
  2489  	rel.Sym = sym
  2490  	rel.Add = add + offset + int64(rel.Siz)
  2491  	rel.Type = obj.R_CALL
  2492  	return rel
  2493  }
  2494  
  2495  func branchMask(ctxt *obj.Link, p *obj.Prog) uint32 {
  2496  	switch p.As {
  2497  	case ABEQ, ACMPBEQ, ACMPUBEQ:
  2498  		return 0x8
  2499  	case ABGE, ACMPBGE, ACMPUBGE:
  2500  		return 0xA
  2501  	case ABGT, ACMPBGT, ACMPUBGT:
  2502  		return 0x2
  2503  	case ABLE, ACMPBLE, ACMPUBLE:
  2504  		return 0xC
  2505  	case ABLT, ACMPBLT, ACMPUBLT:
  2506  		return 0x4
  2507  	case ABNE, ACMPBNE, ACMPUBNE:
  2508  		return 0x7
  2509  	case ABVC:
  2510  		return 0x0 //needs extra instruction
  2511  	case ABVS:
  2512  		return 0x1
  2513  	}
  2514  	ctxt.Diag("unknown conditional branch %v", p.As)
  2515  	return 0xF
  2516  }
  2517  
  2518  func asmout(ctxt *obj.Link, asm *[]byte) {
  2519  	p := ctxt.Curp
  2520  	o := oplook(ctxt, p)
  2521  	ctxt.Printp = p
  2522  
  2523  	switch o.type_ {
  2524  	default:
  2525  		ctxt.Diag("unknown type %d", o.type_)
  2526  
  2527  	case 0: // PSEUDO OPS
  2528  		break
  2529  
  2530  	case 1: // mov reg reg
  2531  		switch p.As {
  2532  		default:
  2533  			ctxt.Diag("unhandled operation: %v", p.As)
  2534  		case AMOVD:
  2535  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2536  		// sign extend
  2537  		case AMOVW:
  2538  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2539  		case AMOVH:
  2540  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2541  		case AMOVB:
  2542  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2543  		// zero extend
  2544  		case AMOVWZ:
  2545  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2546  		case AMOVHZ:
  2547  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2548  		case AMOVBZ:
  2549  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2550  		// reverse bytes
  2551  		case AMOVDBR:
  2552  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2553  		case AMOVWBR:
  2554  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2555  		// floating point
  2556  		case AFMOVD, AFMOVS:
  2557  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2558  		}
  2559  
  2560  	case 2: // arithmetic op reg [reg] reg
  2561  		r := int(p.Reg)
  2562  		if r == 0 {
  2563  			r = int(p.To.Reg)
  2564  		}
  2565  
  2566  		var opcode uint32
  2567  
  2568  		switch p.As {
  2569  		default:
  2570  			ctxt.Diag("invalid opcode")
  2571  		case AADD:
  2572  			opcode = op_AGRK
  2573  		case AADDC:
  2574  			opcode = op_ALGRK
  2575  		case AADDE:
  2576  			opcode = op_ALCGR
  2577  		case AMULLW:
  2578  			opcode = op_MSGFR
  2579  		case AMULLD:
  2580  			opcode = op_MSGR
  2581  		case ADIVW:
  2582  			opcode = op_DSGFR
  2583  		case ADIVWU:
  2584  			opcode = op_DLR
  2585  		case ADIVD:
  2586  			opcode = op_DSGR
  2587  		case ADIVDU:
  2588  			opcode = op_DLGR
  2589  		case AFADD:
  2590  			opcode = op_ADBR
  2591  		case AFADDS:
  2592  			opcode = op_AEBR
  2593  		case AFSUB:
  2594  			opcode = op_SDBR
  2595  		case AFSUBS:
  2596  			opcode = op_SEBR
  2597  		case AFDIV:
  2598  			opcode = op_DDBR
  2599  		case AFDIVS:
  2600  			opcode = op_DEBR
  2601  		}
  2602  
  2603  		switch p.As {
  2604  		default:
  2605  
  2606  		case AADD, AADDC:
  2607  			zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2608  
  2609  		case AADDE, AMULLW, AMULLD:
  2610  			if r == int(p.To.Reg) {
  2611  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2612  			} else if p.From.Reg == p.To.Reg {
  2613  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2614  			} else {
  2615  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2616  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2617  			}
  2618  
  2619  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2620  			if p.As == ADIVWU || p.As == ADIVDU {
  2621  				zRRE(op_LGR, REGTMP, REGZERO, asm)
  2622  			}
  2623  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2624  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2625  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2626  
  2627  		case AFADD, AFADDS:
  2628  			if r == int(p.To.Reg) {
  2629  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2630  			} else if p.From.Reg == p.To.Reg {
  2631  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2632  			} else {
  2633  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2634  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2635  			}
  2636  
  2637  		case AFSUB, AFSUBS, AFDIV, AFDIVS:
  2638  			if r == int(p.To.Reg) {
  2639  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2640  			} else if p.From.Reg == p.To.Reg {
  2641  				zRRE(op_LGDR, REGTMP, uint32(r), asm)
  2642  				zRRE(opcode, uint32(r), uint32(p.From.Reg), asm)
  2643  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2644  				zRRE(op_LDGR, uint32(r), REGTMP, asm)
  2645  			} else {
  2646  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2647  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2648  			}
  2649  
  2650  		}
  2651  
  2652  	case 3: // mov $constant reg
  2653  		v := vregoff(ctxt, &p.From)
  2654  		switch p.As {
  2655  		case AMOVBZ:
  2656  			v = int64(uint8(v))
  2657  		case AMOVHZ:
  2658  			v = int64(uint16(v))
  2659  		case AMOVWZ:
  2660  			v = int64(uint32(v))
  2661  		case AMOVB:
  2662  			v = int64(int8(v))
  2663  		case AMOVH:
  2664  			v = int64(int16(v))
  2665  		case AMOVW:
  2666  			v = int64(int32(v))
  2667  		}
  2668  		if v&0xffff == v {
  2669  			zRI(op_LLILL, uint32(p.To.Reg), uint32(v), asm)
  2670  		} else if v&0xffff0000 == v {
  2671  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2672  		} else if v&0xffff00000000 == v {
  2673  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2674  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2675  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2676  		} else if int64(int16(v)) == v {
  2677  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2678  		} else if int64(int32(v)) == v {
  2679  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2680  		} else if int64(uint32(v)) == v {
  2681  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2682  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2683  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2684  		} else {
  2685  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2686  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2687  		}
  2688  
  2689  	case 4: // multiply high (a*b)>>64
  2690  		r := p.Reg
  2691  		if r == 0 {
  2692  			r = p.To.Reg
  2693  		}
  2694  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2695  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2696  		switch p.As {
  2697  		case AMULHDU:
  2698  			// Unsigned: move result into correct register.
  2699  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2700  		case AMULHD:
  2701  			// Signed: need to convert result.
  2702  			// See Hacker's Delight 8-3.
  2703  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2704  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2705  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2706  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2707  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2708  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2709  		}
  2710  
  2711  	case 5: // syscall
  2712  		zI(op_SVC, 0, asm)
  2713  
  2714  	case 6: // logical op reg [reg] reg
  2715  		if p.To.Reg == 0 {
  2716  			ctxt.Diag("literal operation on R0\n%v", p)
  2717  		}
  2718  
  2719  		switch p.As {
  2720  		case AAND, AOR, AXOR:
  2721  			var opcode1, opcode2 uint32
  2722  			switch p.As {
  2723  			default:
  2724  			case AAND:
  2725  				opcode1 = op_NGR
  2726  				opcode2 = op_NGRK
  2727  			case AOR:
  2728  				opcode1 = op_OGR
  2729  				opcode2 = op_OGRK
  2730  			case AXOR:
  2731  				opcode1 = op_XGR
  2732  				opcode2 = op_XGRK
  2733  			}
  2734  
  2735  			r := int(p.Reg)
  2736  			if r == 0 {
  2737  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2738  			} else {
  2739  				zRRF(opcode2, uint32(r), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2740  			}
  2741  
  2742  		case AANDN, AORN:
  2743  			var opcode1, opcode2 uint32
  2744  			switch p.As {
  2745  			default:
  2746  			case AANDN:
  2747  				opcode1 = op_NGR
  2748  				opcode2 = op_NGRK
  2749  			case AORN:
  2750  				opcode1 = op_OGR
  2751  				opcode2 = op_OGRK
  2752  			}
  2753  
  2754  			r := int(p.Reg)
  2755  			if r == 0 {
  2756  				zRRE(op_LCGR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  2757  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2758  			} else {
  2759  				zRRE(op_LCGR, REGTMP, uint32(r), asm)
  2760  				zRRF(opcode2, REGTMP, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2761  			}
  2762  
  2763  		case ANAND, ANOR:
  2764  			var opcode1, opcode2 uint32
  2765  			switch p.As {
  2766  			default:
  2767  			case ANAND:
  2768  				opcode1 = op_NGR
  2769  				opcode2 = op_NGRK
  2770  			case ANOR:
  2771  				opcode1 = op_OGR
  2772  				opcode2 = op_OGRK
  2773  			}
  2774  
  2775  			r := int(p.Reg)
  2776  			if r == 0 {
  2777  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2778  			} else {
  2779  				zRRF(opcode2, uint32(r), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2780  			}
  2781  
  2782  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  2783  		}
  2784  
  2785  	case 7: // shift/rotate reg [reg] reg
  2786  		d2 := vregoff(ctxt, &p.From)
  2787  		b2 := p.From.Reg
  2788  		r3 := p.Reg
  2789  		if r3 == 0 {
  2790  			r3 = p.To.Reg
  2791  		}
  2792  		r1 := p.To.Reg
  2793  		var opcode uint32
  2794  		switch p.As {
  2795  		default:
  2796  		case ASLD:
  2797  			opcode = op_SLLG
  2798  		case ASRD:
  2799  			opcode = op_SRLG
  2800  		case ASLW:
  2801  			opcode = op_SLLK
  2802  		case ASRW:
  2803  			opcode = op_SRLK
  2804  		case ARLL:
  2805  			opcode = op_RLL
  2806  		case ARLLG:
  2807  			opcode = op_RLLG
  2808  		case ASRAW:
  2809  			opcode = op_SRAK
  2810  		case ASRAD:
  2811  			opcode = op_SRAG
  2812  		}
  2813  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2814  
  2815  	case 10: // subtract reg [reg] reg
  2816  		r := int(p.Reg)
  2817  
  2818  		switch p.As {
  2819  		default:
  2820  		case ASUB:
  2821  			if r == 0 {
  2822  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2823  			} else {
  2824  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2825  			}
  2826  		case ASUBC:
  2827  			if r == 0 {
  2828  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2829  			} else {
  2830  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2831  			}
  2832  
  2833  		case ASUBE:
  2834  			if r == 0 {
  2835  				r = int(p.To.Reg)
  2836  			}
  2837  			if r == int(p.To.Reg) {
  2838  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2839  			} else if p.From.Reg == p.To.Reg {
  2840  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2841  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2842  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2843  			} else {
  2844  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2845  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2846  			}
  2847  		}
  2848  
  2849  	case 11: // br/bl
  2850  		v := int32(0)
  2851  
  2852  		if p.Pcond != nil {
  2853  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2854  		}
  2855  
  2856  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2857  			zRI(op_BRC, 0xF, uint32(v), asm)
  2858  		} else {
  2859  			if p.As == ABL {
  2860  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2861  			} else {
  2862  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2863  			}
  2864  			if p.To.Sym != nil {
  2865  				addcallreloc(ctxt, p.To.Sym, p.To.Offset)
  2866  			}
  2867  		}
  2868  
  2869  	case 15: // br/bl (reg)
  2870  		r := p.To.Reg
  2871  		if p.As == ABCL || p.As == ABL {
  2872  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2873  		} else {
  2874  			zRR(op_BCR, 0xF, uint32(r), asm)
  2875  		}
  2876  
  2877  	case 16: // conditional branch
  2878  		v := int32(0)
  2879  		if p.Pcond != nil {
  2880  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2881  		}
  2882  		mask := branchMask(ctxt, p)
  2883  		if p.To.Sym == nil && int32(int16(v)) == v {
  2884  			zRI(op_BRC, mask, uint32(v), asm)
  2885  		} else {
  2886  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2887  		}
  2888  		if p.To.Sym != nil {
  2889  			addrilreloc(ctxt, p.To.Sym, p.To.Offset)
  2890  		}
  2891  
  2892  	case 18: // br/bl reg
  2893  		if p.As == ABL {
  2894  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2895  		} else {
  2896  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2897  		}
  2898  
  2899  	case 19: // mov $sym+n(SB) reg
  2900  		d := vregoff(ctxt, &p.From)
  2901  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2902  		if d&1 != 0 {
  2903  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2904  			d -= 1
  2905  		}
  2906  		addrilreloc(ctxt, p.From.Sym, d)
  2907  
  2908  	case 22: // arithmetic op $constant [reg] reg
  2909  		if p.From.Sym != nil {
  2910  			ctxt.Diag("%v is not supported", p)
  2911  		}
  2912  		v := vregoff(ctxt, &p.From)
  2913  		r := p.Reg
  2914  		if r == 0 {
  2915  			r = p.To.Reg
  2916  		}
  2917  		switch p.As {
  2918  		default:
  2919  		case AADD:
  2920  			if r == p.To.Reg {
  2921  				zRIL(_a, op_AGFI, uint32(p.To.Reg), uint32(v), asm)
  2922  			} else if int64(int16(v)) == v {
  2923  				zRIE(_d, op_AGHIK, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  2924  			} else {
  2925  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2926  				zRIL(_a, op_AGFI, uint32(p.To.Reg), uint32(v), asm)
  2927  			}
  2928  		case AADDC:
  2929  			if r != p.To.Reg {
  2930  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2931  			}
  2932  			zRIL(_a, op_ALGFI, uint32(p.To.Reg), uint32(v), asm)
  2933  		case AMULLW, AMULLD:
  2934  			if r != p.To.Reg {
  2935  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2936  			}
  2937  			if int64(int16(v)) == v {
  2938  				zRI(op_MGHI, uint32(p.To.Reg), uint32(v), asm)
  2939  			} else {
  2940  				zRIL(_a, op_MSGFI, uint32(p.To.Reg), uint32(v), asm)
  2941  			}
  2942  		}
  2943  
  2944  	case 23: // logical op $constant [reg] reg
  2945  		v := vregoff(ctxt, &p.From)
  2946  		var opcode uint32
  2947  		r := p.Reg
  2948  		if r == 0 {
  2949  			r = p.To.Reg
  2950  		}
  2951  		if r == p.To.Reg {
  2952  			switch p.As {
  2953  			default:
  2954  				ctxt.Diag("%v is not supported", p)
  2955  			case AAND:
  2956  				if v >= 0 { // needs zero extend
  2957  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2958  					zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  2959  				} else if int64(int16(v)) == v {
  2960  					zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  2961  				} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  2962  					zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  2963  				}
  2964  			case AOR:
  2965  				if int64(uint32(v)) != v { // needs sign extend
  2966  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2967  					zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  2968  				} else if int64(uint16(v)) == v {
  2969  					zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  2970  				} else {
  2971  					zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  2972  				}
  2973  			case AXOR:
  2974  				if int64(uint32(v)) != v { // needs sign extend
  2975  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2976  					zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  2977  				} else {
  2978  					zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  2979  				}
  2980  			}
  2981  		} else {
  2982  			switch p.As {
  2983  			default:
  2984  				ctxt.Diag("%v is not supported", p)
  2985  			case AAND:
  2986  				opcode = op_NGRK
  2987  			case AOR:
  2988  				opcode = op_OGRK
  2989  			case AXOR:
  2990  				opcode = op_XGRK
  2991  			}
  2992  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2993  			zRRF(opcode, uint32(r), 0, uint32(p.To.Reg), REGTMP, asm)
  2994  		}
  2995  
  2996  	case 26: // mov $addr/sym reg
  2997  		v := regoff(ctxt, &p.From)
  2998  		r := p.From.Reg
  2999  		if r == 0 {
  3000  			r = o.param
  3001  		}
  3002  		if v >= 0 && v < DISP12 {
  3003  			zRX(op_LA, uint32(p.To.Reg), uint32(r), 0, uint32(v), asm)
  3004  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3005  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), 0, uint32(v), asm)
  3006  		} else {
  3007  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3008  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, 0, asm)
  3009  		}
  3010  
  3011  	case 31: // dword
  3012  		wd := uint64(vregoff(ctxt, &p.From))
  3013  		*asm = append(*asm,
  3014  			uint8(wd>>56),
  3015  			uint8(wd>>48),
  3016  			uint8(wd>>40),
  3017  			uint8(wd>>32),
  3018  			uint8(wd>>24),
  3019  			uint8(wd>>16),
  3020  			uint8(wd>>8),
  3021  			uint8(wd))
  3022  
  3023  	case 32: // fmul freg [freg] freg
  3024  		r := int(p.Reg)
  3025  		if r == 0 {
  3026  			r = int(p.To.Reg)
  3027  		}
  3028  
  3029  		var opcode uint32
  3030  
  3031  		switch p.As {
  3032  		default:
  3033  			ctxt.Diag("invalid opcode")
  3034  		case AFMUL:
  3035  			opcode = op_MDBR
  3036  		case AFMULS:
  3037  			opcode = op_MEEBR
  3038  		}
  3039  
  3040  		if r == int(p.To.Reg) {
  3041  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3042  		} else if p.From.Reg == p.To.Reg {
  3043  			zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3044  		} else {
  3045  			zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  3046  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3047  		}
  3048  
  3049  	case 33: // float op [freg] freg
  3050  		r := p.From.Reg
  3051  		if oclass(&p.From) == C_NONE {
  3052  			r = p.To.Reg
  3053  		}
  3054  		var opcode uint32
  3055  		switch p.As {
  3056  		default:
  3057  		case AFABS:
  3058  			opcode = op_LPDBR
  3059  		case AFNABS:
  3060  			opcode = op_LNDBR
  3061  		case AFNEG:
  3062  			opcode = op_LCDFR
  3063  		case ALEDBR:
  3064  			opcode = op_LEDBR
  3065  		case ALDEBR:
  3066  			opcode = op_LDEBR
  3067  		case AFSQRT:
  3068  			opcode = op_SQDBR
  3069  		case AFSQRTS:
  3070  			opcode = op_SQEBR
  3071  		}
  3072  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3073  
  3074  	case 34: // float multiply-add freg freg freg freg
  3075  		var opcode uint32
  3076  
  3077  		switch p.As {
  3078  		default:
  3079  			ctxt.Diag("invalid opcode")
  3080  		case AFMADD:
  3081  			opcode = op_MADBR
  3082  		case AFMADDS:
  3083  			opcode = op_MAEBR
  3084  		case AFMSUB:
  3085  			opcode = op_MSDBR
  3086  		case AFMSUBS:
  3087  			opcode = op_MSEBR
  3088  		case AFNMADD:
  3089  			opcode = op_MADBR
  3090  		case AFNMADDS:
  3091  			opcode = op_MAEBR
  3092  		case AFNMSUB:
  3093  			opcode = op_MSDBR
  3094  		case AFNMSUBS:
  3095  			opcode = op_MSEBR
  3096  		}
  3097  
  3098  		zRR(op_LDR, uint32(p.To.Reg), uint32(p.Reg), asm)
  3099  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.From3.Reg), asm)
  3100  
  3101  		if p.As == AFNMADD || p.As == AFNMADDS || p.As == AFNMSUB || p.As == AFNMSUBS {
  3102  			zRRE(op_LCDFR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  3103  		}
  3104  
  3105  	case 35: // mov reg mem (no relocation)
  3106  		d2 := regoff(ctxt, &p.To)
  3107  		b2 := p.To.Reg
  3108  		if b2 == 0 {
  3109  			b2 = o.param
  3110  		}
  3111  		x2 := p.To.Index
  3112  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3113  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3114  			if x2 != 0 {
  3115  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3116  			}
  3117  			x2 = REGTMP
  3118  			d2 = 0
  3119  		}
  3120  		zRXY(zopstore(ctxt, p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3121  
  3122  	case 36: // mov mem reg (no relocation)
  3123  		d2 := regoff(ctxt, &p.From)
  3124  		b2 := p.From.Reg
  3125  		if b2 == 0 {
  3126  			b2 = o.param
  3127  		}
  3128  		x2 := p.From.Index
  3129  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3130  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3131  			if x2 != 0 {
  3132  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3133  			}
  3134  			x2 = REGTMP
  3135  			d2 = 0
  3136  		}
  3137  		zRXY(zopload(ctxt, p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3138  
  3139  	case 40: // word/byte
  3140  		wd := uint32(regoff(ctxt, &p.From))
  3141  		if p.As == AWORD { //WORD
  3142  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3143  		} else { //BYTE
  3144  			*asm = append(*asm, uint8(wd))
  3145  		}
  3146  
  3147  	case 47: // arithmetic op (carry) reg [reg] reg
  3148  		switch p.As {
  3149  		default:
  3150  
  3151  		case AADDME:
  3152  			r := int(p.From.Reg)
  3153  			if p.To.Reg == p.From.Reg {
  3154  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3155  				r = REGTMP
  3156  			}
  3157  			zRIL(_a, op_LGFI, uint32(p.To.Reg), 0xffffffff, asm) // p.To.Reg <- -1
  3158  			zRRE(op_ALCGR, uint32(p.To.Reg), uint32(r), asm)
  3159  
  3160  		case AADDZE:
  3161  			r := int(p.From.Reg)
  3162  			if p.To.Reg == p.From.Reg {
  3163  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3164  				r = REGTMP
  3165  			}
  3166  			zRRE(op_LGR, uint32(p.To.Reg), REGZERO, asm) // p.To.Reg <- 0
  3167  			zRRE(op_ALCGR, uint32(p.To.Reg), uint32(r), asm)
  3168  
  3169  		case ASUBME:
  3170  			r := int(p.From.Reg)
  3171  			if p.To.Reg == p.From.Reg {
  3172  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3173  				r = REGTMP
  3174  			}
  3175  			zRIL(_a, op_LGFI, uint32(p.To.Reg), 0xffffffff, asm) // p.To.Reg <- -1
  3176  			zRRE(op_SLBGR, uint32(p.To.Reg), uint32(r), asm)
  3177  
  3178  		case ASUBZE:
  3179  			r := int(p.From.Reg)
  3180  			if p.To.Reg == p.From.Reg {
  3181  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3182  				r = REGTMP
  3183  			}
  3184  			zRRE(op_LGR, uint32(p.To.Reg), REGZERO, asm) // p.To.Reg <- 0
  3185  			zRRE(op_SLBGR, uint32(p.To.Reg), uint32(r), asm)
  3186  
  3187  		case ANEG:
  3188  			r := int(p.From.Reg)
  3189  			if r == 0 {
  3190  				r = int(p.To.Reg)
  3191  			}
  3192  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3193  		}
  3194  
  3195  	case 67: // fmov $0 freg
  3196  		var opcode uint32
  3197  		switch p.As {
  3198  		case AFMOVS:
  3199  			opcode = op_LZER
  3200  		case AFMOVD:
  3201  			opcode = op_LZDR
  3202  		}
  3203  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3204  
  3205  	case 68: // movw areg reg
  3206  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3207  
  3208  	case 69: // movw reg areg
  3209  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3210  
  3211  	case 70: // cmp reg reg
  3212  		if p.As == ACMPW || p.As == ACMPWU {
  3213  			zRR(zoprr(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3214  		} else {
  3215  			zRRE(zoprre(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3216  		}
  3217  
  3218  	case 71: // cmp reg $constant
  3219  		v := vregoff(ctxt, &p.To)
  3220  		switch p.As {
  3221  		case ACMP, ACMPW:
  3222  			if int64(int32(v)) != v {
  3223  				ctxt.Diag("%v overflows an int32", v)
  3224  			}
  3225  		case ACMPU, ACMPWU:
  3226  			if int64(uint32(v)) != v {
  3227  				ctxt.Diag("%v overflows a uint32", v)
  3228  			}
  3229  		}
  3230  		zRIL(_a, zopril(ctxt, p.As), uint32(p.From.Reg), uint32(regoff(ctxt, &p.To)), asm)
  3231  
  3232  	case 72: // mov $constant/$addr mem
  3233  		v := regoff(ctxt, &p.From)
  3234  		d := regoff(ctxt, &p.To)
  3235  		r := p.To.Reg
  3236  		x := p.To.Index
  3237  		if r == 0 {
  3238  			r = o.param
  3239  		}
  3240  		if p.From.Sym != nil {
  3241  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3242  			if v&0x1 != 0 {
  3243  				v -= 1
  3244  				zRX(op_LA, REGTMP, REGTMP, 0, 1, asm)
  3245  			}
  3246  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3247  			if d < -DISP20/2 || d >= DISP20/2 {
  3248  				zRIL(_a, op_LGFI, REGTMP2, uint32(d), asm)
  3249  				if x != 0 {
  3250  					zRRE(op_AGR, REGTMP2, uint32(x), asm)
  3251  				}
  3252  				d = 0
  3253  				x = REGTMP2
  3254  			}
  3255  			zRXY(zopstore(ctxt, p.As), REGTMP, uint32(x), uint32(r), uint32(d), asm)
  3256  		} else if int32(int16(v)) == v && x == 0 {
  3257  			if d < 0 || d >= DISP12 {
  3258  				if r == REGTMP || r == REGTMP2 {
  3259  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3260  				} else {
  3261  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3262  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3263  					r = REGTMP
  3264  				}
  3265  				d = 0
  3266  			}
  3267  			var opcode uint32
  3268  			switch p.As {
  3269  			case AMOVD:
  3270  				opcode = op_MVGHI
  3271  			case AMOVW, AMOVWZ:
  3272  				opcode = op_MVHI
  3273  			case AMOVH, AMOVHZ:
  3274  				opcode = op_MVHHI
  3275  			case AMOVB, AMOVBZ:
  3276  				opcode = op_MVI
  3277  			}
  3278  			if opcode == op_MVI {
  3279  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3280  			} else {
  3281  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3282  			}
  3283  		} else {
  3284  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3285  			if d < -DISP20/2 || d >= DISP20/2 {
  3286  				if r == REGTMP {
  3287  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3288  				} else {
  3289  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3290  					if x != 0 {
  3291  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3292  					}
  3293  					x = REGTMP
  3294  				}
  3295  				d = 0
  3296  			}
  3297  			zRXY(zopstore(ctxt, p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3298  		}
  3299  
  3300  	case 73: // mov $constant addr (including relocation)
  3301  		v := regoff(ctxt, &p.From)
  3302  		d := regoff(ctxt, &p.To)
  3303  		a := uint32(0)
  3304  		if d&1 != 0 {
  3305  			d -= 1
  3306  			a = 1
  3307  		}
  3308  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3309  		addrilreloc(ctxt, p.To.Sym, int64(d))
  3310  		if p.From.Sym != nil {
  3311  			zRIL(_b, op_LARL, REGTMP2, 0, asm)
  3312  			a := uint32(0)
  3313  			if v&0x1 != 0 {
  3314  				v -= 1
  3315  				zRX(op_LA, REGTMP2, REGTMP2, 0, 1, asm)
  3316  			}
  3317  			addrilrelocoffset(ctxt, p.From.Sym, int64(v), sizeRIL)
  3318  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3319  		} else if int32(int16(v)) == v {
  3320  			var opcode uint32
  3321  			switch p.As {
  3322  			case AMOVD:
  3323  				opcode = op_MVGHI
  3324  			case AMOVW, AMOVWZ:
  3325  				opcode = op_MVHI
  3326  			case AMOVH, AMOVHZ:
  3327  				opcode = op_MVHHI
  3328  			case AMOVB, AMOVBZ:
  3329  				opcode = op_MVI
  3330  			}
  3331  			if opcode == op_MVI {
  3332  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3333  			} else {
  3334  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3335  			}
  3336  		} else {
  3337  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3338  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3339  		}
  3340  
  3341  	case 74: // mov reg addr (including relocation)
  3342  		i2 := regoff(ctxt, &p.To)
  3343  		switch p.As {
  3344  		case AMOVD:
  3345  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3346  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3347  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3348  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3349  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3350  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3351  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3352  			adj := uint32(0) // adjustment needed for odd addresses
  3353  			if i2&1 != 0 {
  3354  				i2 -= 1
  3355  				adj = 1
  3356  			}
  3357  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3358  		case AFMOVD:
  3359  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3360  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3361  		case AFMOVS:
  3362  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3363  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3364  		}
  3365  		addrilreloc(ctxt, p.To.Sym, int64(i2))
  3366  
  3367  	case 75: // mov addr reg (including relocation)
  3368  		i2 := regoff(ctxt, &p.From)
  3369  		switch p.As {
  3370  		case AMOVD:
  3371  			if i2&1 != 0 {
  3372  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3373  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3374  				i2 -= 1
  3375  			} else {
  3376  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3377  			}
  3378  		case AMOVW:
  3379  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3380  		case AMOVWZ:
  3381  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3382  		case AMOVH:
  3383  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3384  		case AMOVHZ:
  3385  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3386  		case AMOVB, AMOVBZ:
  3387  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3388  			adj := uint32(0) // adjustment needed for odd addresses
  3389  			if i2&1 != 0 {
  3390  				i2 -= 1
  3391  				adj = 1
  3392  			}
  3393  			switch p.As {
  3394  			case AMOVB:
  3395  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3396  			case AMOVBZ:
  3397  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3398  			}
  3399  		case AFMOVD:
  3400  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3401  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3402  		case AFMOVS:
  3403  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3404  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3405  		}
  3406  		addrilreloc(ctxt, p.From.Sym, int64(i2))
  3407  
  3408  	case 77: // syscall $constant
  3409  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3410  			ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3411  			zE(op_TRAP2, asm) // trap always
  3412  		} else {
  3413  			zI(op_SVC, uint32(p.From.Offset), asm)
  3414  		}
  3415  
  3416  	case 78: // undef
  3417  		// "An instruction consisting entirely of binary 0s is guaranteed
  3418  		// always to be an illegal instruction."
  3419  		*asm = append(*asm, 0, 0, 0, 0)
  3420  
  3421  	case 79: // compare and swap reg reg reg
  3422  		v := regoff(ctxt, &p.To)
  3423  		if v < 0 {
  3424  			v = 0
  3425  		}
  3426  		if p.As == ACS {
  3427  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3428  		} else if p.As == ACSG {
  3429  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3430  		}
  3431  
  3432  	case 81: // sync
  3433  		zRR(op_BCR, 0xE, 0, asm)
  3434  
  3435  	case 82: // fixed to float conversion
  3436  		var opcode uint32
  3437  		switch p.As {
  3438  		default:
  3439  			log.Fatalf("unexpected opcode %v", p.As)
  3440  		case ACEFBRA:
  3441  			opcode = op_CEFBRA
  3442  		case ACDFBRA:
  3443  			opcode = op_CDFBRA
  3444  		case ACEGBRA:
  3445  			opcode = op_CEGBRA
  3446  		case ACDGBRA:
  3447  			opcode = op_CDGBRA
  3448  		case ACELFBR:
  3449  			opcode = op_CELFBR
  3450  		case ACDLFBR:
  3451  			opcode = op_CDLFBR
  3452  		case ACELGBR:
  3453  			opcode = op_CELGBR
  3454  		case ACDLGBR:
  3455  			opcode = op_CDLGBR
  3456  		}
  3457  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3458  		// (usually round to nearest, ties to even)
  3459  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3460  		// M4 is reserved and must be 0
  3461  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3462  
  3463  	case 83: // float to fixed conversion
  3464  		var opcode uint32
  3465  		switch p.As {
  3466  		default:
  3467  			log.Fatalf("unexpected opcode %v", p.As)
  3468  		case ACFEBRA:
  3469  			opcode = op_CFEBRA
  3470  		case ACFDBRA:
  3471  			opcode = op_CFDBRA
  3472  		case ACGEBRA:
  3473  			opcode = op_CGEBRA
  3474  		case ACGDBRA:
  3475  			opcode = op_CGDBRA
  3476  		case ACLFEBR:
  3477  			opcode = op_CLFEBR
  3478  		case ACLFDBR:
  3479  			opcode = op_CLFDBR
  3480  		case ACLGEBR:
  3481  			opcode = op_CLGEBR
  3482  		case ACLGDBR:
  3483  			opcode = op_CLGDBR
  3484  		}
  3485  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3486  		// M4 is reserved and must be 0
  3487  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3488  
  3489  	case 84: // storage-and-storage operations $length mem mem (length in From3)
  3490  		l := regoff(ctxt, p.From3)
  3491  		if l < 1 || l > 256 {
  3492  			ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3493  		}
  3494  		if p.From.Index != 0 || p.To.Index != 0 {
  3495  			ctxt.Diag("cannot use index reg")
  3496  		}
  3497  		b1 := p.To.Reg
  3498  		b2 := p.From.Reg
  3499  		if b1 == 0 {
  3500  			b1 = o.param
  3501  		}
  3502  		if b2 == 0 {
  3503  			b2 = o.param
  3504  		}
  3505  		d1 := regoff(ctxt, &p.To)
  3506  		d2 := regoff(ctxt, &p.From)
  3507  		if d1 < 0 || d1 >= DISP12 {
  3508  			if b2 == REGTMP {
  3509  				ctxt.Diag("REGTMP conflict")
  3510  			}
  3511  			if b1 != REGTMP {
  3512  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3513  			}
  3514  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3515  			if d1 == d2 && b1 == b2 {
  3516  				d2 = 0
  3517  				b2 = REGTMP
  3518  			}
  3519  			d1 = 0
  3520  			b1 = REGTMP
  3521  		}
  3522  		if d2 < 0 || d2 >= DISP12 {
  3523  			if b1 == REGTMP2 {
  3524  				ctxt.Diag("REGTMP2 conflict")
  3525  			}
  3526  			if b2 != REGTMP2 {
  3527  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3528  			}
  3529  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3530  			d2 = 0
  3531  			b2 = REGTMP2
  3532  		}
  3533  		var opcode uint32
  3534  		switch p.As {
  3535  		default:
  3536  			ctxt.Diag("unexpected opcode %v", p.As)
  3537  		case AMVC:
  3538  			opcode = op_MVC
  3539  		case ACLC:
  3540  			opcode = op_CLC
  3541  			// swap operand order for CLC so that it matches CMP
  3542  			b1, b2 = b2, b1
  3543  			d1, d2 = d2, d1
  3544  		case AXC:
  3545  			opcode = op_XC
  3546  		case AOC:
  3547  			opcode = op_OC
  3548  		case ANC:
  3549  			opcode = op_NC
  3550  		}
  3551  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3552  
  3553  	case 85: // load address relative long
  3554  		v := regoff(ctxt, &p.From)
  3555  		if p.From.Sym == nil {
  3556  			if (v & 1) != 0 {
  3557  				ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3558  			}
  3559  		} else {
  3560  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3561  			v = 0
  3562  		}
  3563  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3564  
  3565  	case 86: // load address
  3566  		d := vregoff(ctxt, &p.From)
  3567  		x := p.From.Index
  3568  		b := p.From.Reg
  3569  		if b == 0 {
  3570  			b = o.param
  3571  		}
  3572  		switch p.As {
  3573  		case ALA:
  3574  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3575  		case ALAY:
  3576  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3577  		}
  3578  
  3579  	case 87: // execute relative long
  3580  		v := vregoff(ctxt, &p.From)
  3581  		if p.From.Sym == nil {
  3582  			if v&1 != 0 {
  3583  				ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3584  			}
  3585  		} else {
  3586  			addrilreloc(ctxt, p.From.Sym, v)
  3587  			v = 0
  3588  		}
  3589  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3590  
  3591  	case 88: // store clock
  3592  		var opcode uint32
  3593  		switch p.As {
  3594  		case ASTCK:
  3595  			opcode = op_STCK
  3596  		case ASTCKC:
  3597  			opcode = op_STCKC
  3598  		case ASTCKE:
  3599  			opcode = op_STCKE
  3600  		case ASTCKF:
  3601  			opcode = op_STCKF
  3602  		}
  3603  		v := vregoff(ctxt, &p.To)
  3604  		r := int(p.To.Reg)
  3605  		if r == 0 {
  3606  			r = int(o.param)
  3607  		}
  3608  		zS(opcode, uint32(r), uint32(v), asm)
  3609  
  3610  	case 89: // compare and branch reg reg
  3611  		var v int32
  3612  		if p.Pcond != nil {
  3613  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3614  		}
  3615  		var opcode, opcode2 uint32
  3616  		switch p.As {
  3617  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3618  			opcode = op_CGRJ
  3619  			opcode2 = op_CGR
  3620  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3621  			opcode = op_CLGRJ
  3622  			opcode2 = op_CLGR
  3623  		}
  3624  		mask := branchMask(ctxt, p)
  3625  		if int32(int16(v)) != v {
  3626  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3627  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3628  		} else {
  3629  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3630  		}
  3631  
  3632  	case 90: // compare and branch reg $constant
  3633  		var v int32
  3634  		if p.Pcond != nil {
  3635  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3636  		}
  3637  		var opcode, opcode2 uint32
  3638  		switch p.As {
  3639  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3640  			opcode = op_CGIJ
  3641  			opcode2 = op_CGFI
  3642  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3643  			opcode = op_CLGIJ
  3644  			opcode2 = op_CLGFI
  3645  		}
  3646  		mask := branchMask(ctxt, p)
  3647  		if int32(int16(v)) != v {
  3648  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(regoff(ctxt, p.From3)), asm)
  3649  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3650  		} else {
  3651  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(regoff(ctxt, p.From3)), asm)
  3652  		}
  3653  
  3654  	case 93: // GOT lookup
  3655  		v := vregoff(ctxt, &p.To)
  3656  		if v != 0 {
  3657  			ctxt.Diag("invalid offset against GOT slot %v", p)
  3658  		}
  3659  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3660  		rel := obj.Addrel(ctxt.Cursym)
  3661  		rel.Off = int32(ctxt.Pc + 2)
  3662  		rel.Siz = 4
  3663  		rel.Sym = p.From.Sym
  3664  		rel.Type = obj.R_GOTPCREL
  3665  		rel.Add = 2 + int64(rel.Siz)
  3666  
  3667  	case 94: // TLS local exec model
  3668  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3669  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3670  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3671  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3672  		rel := obj.Addrel(ctxt.Cursym)
  3673  		rel.Off = int32(ctxt.Pc + sizeRIL + sizeRXY + sizeRI)
  3674  		rel.Siz = 8
  3675  		rel.Sym = p.From.Sym
  3676  		rel.Type = obj.R_TLS_LE
  3677  		rel.Add = 0
  3678  
  3679  	case 95: // TLS initial exec model
  3680  		// Assembly                   | Relocation symbol    | Done Here?
  3681  		// --------------------------------------------------------------
  3682  		// ear  %r11, %a0             |                      |
  3683  		// sllg %r11, %r11, 32        |                      |
  3684  		// ear  %r11, %a1             |                      |
  3685  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3686  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3687  		// la   %r10, 0(%r10, %r11)   |                      |
  3688  		// --------------------------------------------------------------
  3689  
  3690  		// R_390_TLS_IEENT
  3691  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3692  		ieent := obj.Addrel(ctxt.Cursym)
  3693  		ieent.Off = int32(ctxt.Pc + 2)
  3694  		ieent.Siz = 4
  3695  		ieent.Sym = p.From.Sym
  3696  		ieent.Type = obj.R_TLS_IE
  3697  		ieent.Add = 2 + int64(ieent.Siz)
  3698  
  3699  		// R_390_TLS_LOAD
  3700  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3701  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3702  		// not strictly required but might allow the linker to optimize
  3703  
  3704  	case 96: // clear macro
  3705  		length := vregoff(ctxt, &p.From)
  3706  		offset := vregoff(ctxt, &p.To)
  3707  		reg := p.To.Reg
  3708  		if reg == 0 {
  3709  			reg = o.param
  3710  		}
  3711  		if length <= 0 {
  3712  			ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3713  		}
  3714  		for length > 0 {
  3715  			if offset < 0 || offset >= DISP12 {
  3716  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3717  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3718  				} else {
  3719  					if reg != REGTMP {
  3720  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3721  					}
  3722  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3723  				}
  3724  				reg = REGTMP
  3725  				offset = 0
  3726  			}
  3727  			size := length
  3728  			if size > 256 {
  3729  				size = 256
  3730  			}
  3731  
  3732  			switch size {
  3733  			case 1:
  3734  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3735  			case 2:
  3736  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3737  			case 4:
  3738  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3739  			case 8:
  3740  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3741  			default:
  3742  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3743  			}
  3744  
  3745  			length -= size
  3746  			offset += size
  3747  		}
  3748  
  3749  	case 97: // store multiple
  3750  		rstart := p.From.Reg
  3751  		rend := p.Reg
  3752  		offset := regoff(ctxt, &p.To)
  3753  		reg := p.To.Reg
  3754  		if reg == 0 {
  3755  			reg = o.param
  3756  		}
  3757  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3758  			if reg != REGTMP {
  3759  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3760  			}
  3761  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3762  			reg = REGTMP
  3763  			offset = 0
  3764  		}
  3765  		switch p.As {
  3766  		case ASTMY:
  3767  			if offset >= 0 && offset < DISP12 {
  3768  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3769  			} else {
  3770  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3771  			}
  3772  		case ASTMG:
  3773  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3774  		}
  3775  
  3776  	case 98: // load multiple
  3777  		rstart := p.Reg
  3778  		rend := p.To.Reg
  3779  		offset := regoff(ctxt, &p.From)
  3780  		reg := p.From.Reg
  3781  		if reg == 0 {
  3782  			reg = o.param
  3783  		}
  3784  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3785  			if reg != REGTMP {
  3786  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3787  			}
  3788  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3789  			reg = REGTMP
  3790  			offset = 0
  3791  		}
  3792  		switch p.As {
  3793  		case ALMY:
  3794  			if offset >= 0 && offset < DISP12 {
  3795  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3796  			} else {
  3797  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3798  			}
  3799  		case ALMG:
  3800  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3801  		}
  3802  
  3803  	case 100: // VRX STORE
  3804  		op, m3, _ := vop(p.As)
  3805  		if p.From3 != nil {
  3806  			m3 = uint32(vregoff(ctxt, p.From3))
  3807  		}
  3808  		b2 := p.To.Reg
  3809  		if b2 == 0 {
  3810  			b2 = o.param
  3811  		}
  3812  		d2 := uint32(vregoff(ctxt, &p.To))
  3813  		zVRX(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3814  
  3815  	case 101: // VRX LOAD
  3816  		op, m3, _ := vop(p.As)
  3817  		if p.From3 != nil {
  3818  			m3 = uint32(vregoff(ctxt, p.From3))
  3819  		}
  3820  		b2 := p.From.Reg
  3821  		if b2 == 0 {
  3822  			b2 = o.param
  3823  		}
  3824  		d2 := uint32(vregoff(ctxt, &p.From))
  3825  		zVRX(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3826  
  3827  	case 102: // VRV SCATTER
  3828  		op, m3, _ := vop(p.As)
  3829  		if p.From3 != nil {
  3830  			m3 = uint32(vregoff(ctxt, p.From3))
  3831  		}
  3832  		b2 := p.To.Reg
  3833  		if b2 == 0 {
  3834  			b2 = o.param
  3835  		}
  3836  		d2 := uint32(vregoff(ctxt, &p.To))
  3837  		zVRV(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3838  
  3839  	case 103: // VRV GATHER
  3840  		op, m3, _ := vop(p.As)
  3841  		if p.From3 != nil {
  3842  			m3 = uint32(vregoff(ctxt, p.From3))
  3843  		}
  3844  		b2 := p.From.Reg
  3845  		if b2 == 0 {
  3846  			b2 = o.param
  3847  		}
  3848  		d2 := uint32(vregoff(ctxt, &p.From))
  3849  		zVRV(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3850  
  3851  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3852  		op, m4, _ := vop(p.As)
  3853  		fr := p.Reg
  3854  		if fr == 0 {
  3855  			fr = p.To.Reg
  3856  		}
  3857  		bits := uint32(vregoff(ctxt, &p.From))
  3858  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3859  
  3860  	case 105: // VRS STORE MULTIPLE
  3861  		op, _, _ := vop(p.As)
  3862  		offset := uint32(vregoff(ctxt, &p.To))
  3863  		reg := p.To.Reg
  3864  		if reg == 0 {
  3865  			reg = o.param
  3866  		}
  3867  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3868  
  3869  	case 106: // VRS LOAD MULTIPLE
  3870  		op, _, _ := vop(p.As)
  3871  		offset := uint32(vregoff(ctxt, &p.From))
  3872  		reg := p.From.Reg
  3873  		if reg == 0 {
  3874  			reg = o.param
  3875  		}
  3876  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3877  
  3878  	case 107: // VRS STORE WITH LENGTH
  3879  		op, _, _ := vop(p.As)
  3880  		offset := uint32(vregoff(ctxt, &p.To))
  3881  		reg := p.To.Reg
  3882  		if reg == 0 {
  3883  			reg = o.param
  3884  		}
  3885  		zVRS(op, uint32(p.From.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3886  
  3887  	case 108: // VRS LOAD WITH LENGTH
  3888  		op, _, _ := vop(p.As)
  3889  		offset := uint32(vregoff(ctxt, &p.From))
  3890  		reg := p.From.Reg
  3891  		if reg == 0 {
  3892  			reg = o.param
  3893  		}
  3894  		zVRS(op, uint32(p.To.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3895  
  3896  	case 109: // VRI-a
  3897  		op, _, _ := vop(p.As)
  3898  		i2 := uint32(vregoff(ctxt, &p.From))
  3899  		switch p.As {
  3900  		case AVZERO:
  3901  			i2 = 0
  3902  		case AVONE:
  3903  			i2 = 0xffff
  3904  		}
  3905  		m3 := uint32(0)
  3906  		if p.From3 != nil {
  3907  			m3 = uint32(vregoff(ctxt, p.From3))
  3908  		}
  3909  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3910  
  3911  	case 110:
  3912  		op, m4, _ := vop(p.As)
  3913  		i2 := uint32(vregoff(ctxt, p.From3))
  3914  		i3 := uint32(vregoff(ctxt, &p.From))
  3915  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3916  
  3917  	case 111:
  3918  		op, m4, _ := vop(p.As)
  3919  		i2 := uint32(vregoff(ctxt, &p.From))
  3920  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3921  
  3922  	case 112:
  3923  		op, m5, _ := vop(p.As)
  3924  		i4 := uint32(vregoff(ctxt, p.From3))
  3925  		zVRId(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), i4, m5, asm)
  3926  
  3927  	case 113:
  3928  		op, m4, _ := vop(p.As)
  3929  		m5 := singleElementMask(p.As)
  3930  		i3 := uint32(vregoff(ctxt, &p.From))
  3931  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  3932  
  3933  	case 114: // VRR-a
  3934  		op, m3, m5 := vop(p.As)
  3935  		m4 := singleElementMask(p.As)
  3936  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  3937  
  3938  	case 115: // VRR-a COMPARE
  3939  		op, m3, m5 := vop(p.As)
  3940  		m4 := singleElementMask(p.As)
  3941  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  3942  
  3943  	case 116: // VRR-a
  3944  
  3945  	case 117: // VRR-b
  3946  		op, m4, m5 := vop(p.As)
  3947  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  3948  
  3949  	case 118: // VRR-c
  3950  		op, m4, m6 := vop(p.As)
  3951  		m5 := singleElementMask(p.As)
  3952  		v3 := p.Reg
  3953  		if v3 == 0 {
  3954  			v3 = p.To.Reg
  3955  		}
  3956  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  3957  
  3958  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  3959  		op, m4, m6 := vop(p.As)
  3960  		m5 := singleElementMask(p.As)
  3961  		v2 := p.Reg
  3962  		if v2 == 0 {
  3963  			v2 = p.To.Reg
  3964  		}
  3965  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  3966  
  3967  	case 120: // VRR-d
  3968  		op, m6, _ := vop(p.As)
  3969  		m5 := singleElementMask(p.As)
  3970  		v1 := uint32(p.To.Reg)
  3971  		v2 := uint32(p.From3.Reg)
  3972  		v3 := uint32(p.From.Reg)
  3973  		v4 := uint32(p.Reg)
  3974  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  3975  
  3976  	case 121: // VRR-e
  3977  		op, m6, _ := vop(p.As)
  3978  		m5 := singleElementMask(p.As)
  3979  		v1 := uint32(p.To.Reg)
  3980  		v2 := uint32(p.From3.Reg)
  3981  		v3 := uint32(p.From.Reg)
  3982  		v4 := uint32(p.Reg)
  3983  		zVRRe(op, v1, v2, v3, m5, m6, v4, asm)
  3984  
  3985  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  3986  		op, _, _ := vop(p.As)
  3987  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3988  
  3989  	case 123: // VPDI $m4, V2, V3, V1
  3990  		op, _, _ := vop(p.As)
  3991  		m4 := regoff(ctxt, p.From3)
  3992  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), 0, 0, uint32(m4), asm)
  3993  	}
  3994  }
  3995  
  3996  func vregoff(ctxt *obj.Link, a *obj.Addr) int64 {
  3997  	ctxt.Instoffset = 0
  3998  	if a != nil {
  3999  		aclass(ctxt, a)
  4000  	}
  4001  	return ctxt.Instoffset
  4002  }
  4003  
  4004  func regoff(ctxt *obj.Link, a *obj.Addr) int32 {
  4005  	return int32(vregoff(ctxt, a))
  4006  }
  4007  
  4008  // zopload returns the RXY op for the given load
  4009  func zopload(ctxt *obj.Link, a obj.As) uint32 {
  4010  	switch a {
  4011  	// fixed point load
  4012  	case AMOVD:
  4013  		return op_LG
  4014  	case AMOVW:
  4015  		return op_LGF
  4016  	case AMOVWZ:
  4017  		return op_LLGF
  4018  	case AMOVH:
  4019  		return op_LGH
  4020  	case AMOVHZ:
  4021  		return op_LLGH
  4022  	case AMOVB:
  4023  		return op_LGB
  4024  	case AMOVBZ:
  4025  		return op_LLGC
  4026  
  4027  	// floating point load
  4028  	case AFMOVD:
  4029  		return op_LDY
  4030  	case AFMOVS:
  4031  		return op_LEY
  4032  
  4033  	// byte reversed load
  4034  	case AMOVDBR:
  4035  		return op_LRVG
  4036  	case AMOVWBR:
  4037  		return op_LRV
  4038  	case AMOVHBR:
  4039  		return op_LRVH
  4040  	}
  4041  
  4042  	ctxt.Diag("unknown store opcode %v", obj.Aconv(a))
  4043  	return 0
  4044  }
  4045  
  4046  // zopstore returns the RXY op for the given store
  4047  func zopstore(ctxt *obj.Link, a obj.As) uint32 {
  4048  	switch a {
  4049  	// fixed point store
  4050  	case AMOVD:
  4051  		return op_STG
  4052  	case AMOVW, AMOVWZ:
  4053  		return op_STY
  4054  	case AMOVH, AMOVHZ:
  4055  		return op_STHY
  4056  	case AMOVB, AMOVBZ:
  4057  		return op_STCY
  4058  
  4059  	// floating point store
  4060  	case AFMOVD:
  4061  		return op_STDY
  4062  	case AFMOVS:
  4063  		return op_STEY
  4064  
  4065  	// byte reversed store
  4066  	case AMOVDBR:
  4067  		return op_STRVG
  4068  	case AMOVWBR:
  4069  		return op_STRV
  4070  	case AMOVHBR:
  4071  		return op_STRVH
  4072  	}
  4073  
  4074  	ctxt.Diag("unknown store opcode %v", obj.Aconv(a))
  4075  	return 0
  4076  }
  4077  
  4078  // zoprre returns the RRE op for the given a
  4079  func zoprre(ctxt *obj.Link, a obj.As) uint32 {
  4080  	switch a {
  4081  	case ACMP:
  4082  		return op_CGR
  4083  	case ACMPU:
  4084  		return op_CLGR
  4085  	case AFCMPO: //ordered
  4086  		return op_KDBR
  4087  	case AFCMPU: //unordered
  4088  		return op_CDBR
  4089  	case ACEBR:
  4090  		return op_CEBR
  4091  	}
  4092  	ctxt.Diag("unknown rre opcode %v", obj.Aconv(a))
  4093  	return 0
  4094  }
  4095  
  4096  // zoprr returns the RR op for the given a
  4097  func zoprr(ctxt *obj.Link, a obj.As) uint32 {
  4098  	switch a {
  4099  	case ACMPW:
  4100  		return op_CR
  4101  	case ACMPWU:
  4102  		return op_CLR
  4103  	}
  4104  	ctxt.Diag("unknown rr opcode %v", obj.Aconv(a))
  4105  	return 0
  4106  }
  4107  
  4108  // zopril returns the RIL op for the given a
  4109  func zopril(ctxt *obj.Link, a obj.As) uint32 {
  4110  	switch a {
  4111  	case ACMP:
  4112  		return op_CGFI
  4113  	case ACMPU:
  4114  		return op_CLGFI
  4115  	case ACMPW:
  4116  		return op_CFI
  4117  	case ACMPWU:
  4118  		return op_CLFI
  4119  	}
  4120  	ctxt.Diag("unknown ril opcode %v", obj.Aconv(a))
  4121  	return 0
  4122  }
  4123  
  4124  // z instructions sizes
  4125  const (
  4126  	sizeE    = 2
  4127  	sizeI    = 2
  4128  	sizeIE   = 4
  4129  	sizeMII  = 6
  4130  	sizeRI   = 4
  4131  	sizeRI1  = 4
  4132  	sizeRI2  = 4
  4133  	sizeRI3  = 4
  4134  	sizeRIE  = 6
  4135  	sizeRIE1 = 6
  4136  	sizeRIE2 = 6
  4137  	sizeRIE3 = 6
  4138  	sizeRIE4 = 6
  4139  	sizeRIE5 = 6
  4140  	sizeRIE6 = 6
  4141  	sizeRIL  = 6
  4142  	sizeRIL1 = 6
  4143  	sizeRIL2 = 6
  4144  	sizeRIL3 = 6
  4145  	sizeRIS  = 6
  4146  	sizeRR   = 2
  4147  	sizeRRD  = 4
  4148  	sizeRRE  = 4
  4149  	sizeRRF  = 4
  4150  	sizeRRF1 = 4
  4151  	sizeRRF2 = 4
  4152  	sizeRRF3 = 4
  4153  	sizeRRF4 = 4
  4154  	sizeRRF5 = 4
  4155  	sizeRRR  = 2
  4156  	sizeRRS  = 6
  4157  	sizeRS   = 4
  4158  	sizeRS1  = 4
  4159  	sizeRS2  = 4
  4160  	sizeRSI  = 4
  4161  	sizeRSL  = 6
  4162  	sizeRSY  = 6
  4163  	sizeRSY1 = 6
  4164  	sizeRSY2 = 6
  4165  	sizeRX   = 4
  4166  	sizeRX1  = 4
  4167  	sizeRX2  = 4
  4168  	sizeRXE  = 6
  4169  	sizeRXF  = 6
  4170  	sizeRXY  = 6
  4171  	sizeRXY1 = 6
  4172  	sizeRXY2 = 6
  4173  	sizeS    = 4
  4174  	sizeSI   = 4
  4175  	sizeSIL  = 6
  4176  	sizeSIY  = 6
  4177  	sizeSMI  = 6
  4178  	sizeSS   = 6
  4179  	sizeSS1  = 6
  4180  	sizeSS2  = 6
  4181  	sizeSS3  = 6
  4182  	sizeSS4  = 6
  4183  	sizeSS5  = 6
  4184  	sizeSS6  = 6
  4185  	sizeSSE  = 6
  4186  	sizeSSF  = 6
  4187  )
  4188  
  4189  // instruction format variations
  4190  type form int
  4191  
  4192  const (
  4193  	_a form = iota
  4194  	_b
  4195  	_c
  4196  	_d
  4197  	_e
  4198  	_f
  4199  )
  4200  
  4201  func zE(op uint32, asm *[]byte) {
  4202  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4203  }
  4204  
  4205  func zI(op, i1 uint32, asm *[]byte) {
  4206  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4207  }
  4208  
  4209  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4210  	*asm = append(*asm,
  4211  		uint8(op>>8),
  4212  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4213  		uint8(ri2),
  4214  		uint8(ri3>>16),
  4215  		uint8(ri3>>8),
  4216  		uint8(ri3))
  4217  }
  4218  
  4219  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4220  	*asm = append(*asm,
  4221  		uint8(op>>8),
  4222  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4223  		uint8(i2_ri2>>8),
  4224  		uint8(i2_ri2))
  4225  }
  4226  
  4227  // Expected argument values for the instruction formats.
  4228  //
  4229  // Format    a1  a2   a3  a4  a5  a6  a7
  4230  // ------------------------------------
  4231  // a         r1,  0,  i2,  0,  0, m3,  0
  4232  // b         r1, r2, ri4,  0,  0, m3,  0
  4233  // c         r1, m3, ri4,  0,  0,  0, i2
  4234  // d         r1, r3,  i2,  0,  0,  0,  0
  4235  // e         r1, r3, ri2,  0,  0,  0,  0
  4236  // f         r1, r2,   0, i3, i4,  0, i5
  4237  // g         r1, m3,  i2,  0,  0,  0,  0
  4238  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4239  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4240  
  4241  	switch f {
  4242  	default:
  4243  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4244  	case _f:
  4245  		*asm = append(*asm, uint8(i3), uint8(i4))
  4246  	}
  4247  
  4248  	switch f {
  4249  	case _a, _b:
  4250  		*asm = append(*asm, uint8(m3)<<4)
  4251  	default:
  4252  		*asm = append(*asm, uint8(i2_i5))
  4253  	}
  4254  
  4255  	*asm = append(*asm, uint8(op))
  4256  }
  4257  
  4258  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4259  	if f == _a || f == _b {
  4260  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4261  	}
  4262  	*asm = append(*asm,
  4263  		uint8(op>>8),
  4264  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4265  		uint8(i2_ri2>>24),
  4266  		uint8(i2_ri2>>16),
  4267  		uint8(i2_ri2>>8),
  4268  		uint8(i2_ri2))
  4269  }
  4270  
  4271  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4272  	*asm = append(*asm,
  4273  		uint8(op>>8),
  4274  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4275  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4276  		uint8(d4),
  4277  		uint8(i2),
  4278  		uint8(op))
  4279  }
  4280  
  4281  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4282  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4283  }
  4284  
  4285  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4286  	*asm = append(*asm,
  4287  		uint8(op>>8),
  4288  		uint8(op),
  4289  		uint8(r1)<<4,
  4290  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4291  }
  4292  
  4293  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4294  	*asm = append(*asm,
  4295  		uint8(op>>8),
  4296  		uint8(op),
  4297  		0,
  4298  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4299  }
  4300  
  4301  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4302  	*asm = append(*asm,
  4303  		uint8(op>>8),
  4304  		uint8(op),
  4305  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4306  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4307  }
  4308  
  4309  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4310  	*asm = append(*asm,
  4311  		uint8(op>>8),
  4312  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4313  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4314  		uint8(d4),
  4315  		uint8(m3)<<4,
  4316  		uint8(op))
  4317  }
  4318  
  4319  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4320  	*asm = append(*asm,
  4321  		uint8(op>>8),
  4322  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4323  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4324  		uint8(d2))
  4325  }
  4326  
  4327  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4328  	*asm = append(*asm,
  4329  		uint8(op>>8),
  4330  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4331  		uint8(ri2>>8),
  4332  		uint8(ri2))
  4333  }
  4334  
  4335  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4336  	*asm = append(*asm,
  4337  		uint8(op>>8),
  4338  		uint8(l1),
  4339  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4340  		uint8(d2),
  4341  		uint8(op))
  4342  }
  4343  
  4344  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4345  	dl2 := uint16(d2) & 0x0FFF
  4346  	*asm = append(*asm,
  4347  		uint8(op>>8),
  4348  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4349  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4350  		uint8(dl2),
  4351  		uint8(d2>>12),
  4352  		uint8(op))
  4353  }
  4354  
  4355  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4356  	*asm = append(*asm,
  4357  		uint8(op>>8),
  4358  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4359  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4360  		uint8(d2))
  4361  }
  4362  
  4363  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4364  	*asm = append(*asm,
  4365  		uint8(op>>8),
  4366  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4367  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4368  		uint8(d2),
  4369  		uint8(m3)<<4,
  4370  		uint8(op))
  4371  }
  4372  
  4373  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4374  	*asm = append(*asm,
  4375  		uint8(op>>8),
  4376  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4377  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4378  		uint8(d2),
  4379  		uint8(m1)<<4,
  4380  		uint8(op))
  4381  }
  4382  
  4383  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4384  	dl2 := uint16(d2) & 0x0FFF
  4385  	*asm = append(*asm,
  4386  		uint8(op>>8),
  4387  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4388  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4389  		uint8(dl2),
  4390  		uint8(d2>>12),
  4391  		uint8(op))
  4392  }
  4393  
  4394  func zS(op, b2, d2 uint32, asm *[]byte) {
  4395  	*asm = append(*asm,
  4396  		uint8(op>>8),
  4397  		uint8(op),
  4398  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4399  		uint8(d2))
  4400  }
  4401  
  4402  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4403  	*asm = append(*asm,
  4404  		uint8(op>>8),
  4405  		uint8(i2),
  4406  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4407  		uint8(d1))
  4408  }
  4409  
  4410  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4411  	*asm = append(*asm,
  4412  		uint8(op>>8),
  4413  		uint8(op),
  4414  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4415  		uint8(d1),
  4416  		uint8(i2>>8),
  4417  		uint8(i2))
  4418  }
  4419  
  4420  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4421  	dl1 := uint16(d1) & 0x0FFF
  4422  	*asm = append(*asm,
  4423  		uint8(op>>8),
  4424  		uint8(i2),
  4425  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4426  		uint8(dl1),
  4427  		uint8(d1>>12),
  4428  		uint8(op))
  4429  }
  4430  
  4431  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4432  	*asm = append(*asm,
  4433  		uint8(op>>8),
  4434  		uint8(m1)<<4,
  4435  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4436  		uint8(d3),
  4437  		uint8(ri2>>8),
  4438  		uint8(ri2))
  4439  }
  4440  
  4441  // Expected argument values for the instruction formats.
  4442  //
  4443  // Format    a1  a2  a3  a4  a5  a6
  4444  // -------------------------------
  4445  // a         l1,  0, b1, d1, b2, d2
  4446  // b         l1, l2, b1, d1, b2, d2
  4447  // c         l1, i3, b1, d1, b2, d2
  4448  // d         r1, r3, b1, d1, b2, d2
  4449  // e         r1, r3, b2, d2, b4, d4
  4450  // f          0, l2, b1, d1, b2, d2
  4451  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4452  	*asm = append(*asm, uint8(op>>8))
  4453  
  4454  	switch f {
  4455  	case _a:
  4456  		*asm = append(*asm, uint8(l1_r1))
  4457  	case _b, _c, _d, _e:
  4458  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4459  	case _f:
  4460  		*asm = append(*asm, uint8(l2_i3_r3))
  4461  	}
  4462  
  4463  	*asm = append(*asm,
  4464  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4465  		uint8(d1_d2),
  4466  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4467  		uint8(d2_d4))
  4468  }
  4469  
  4470  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4471  	*asm = append(*asm,
  4472  		uint8(op>>8),
  4473  		uint8(op),
  4474  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4475  		uint8(d1),
  4476  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4477  		uint8(d2))
  4478  }
  4479  
  4480  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4481  	*asm = append(*asm,
  4482  		uint8(op>>8),
  4483  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4484  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4485  		uint8(d1),
  4486  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4487  		uint8(d2))
  4488  }
  4489  
  4490  func rxb(va, vb, vc, vd uint32) uint8 {
  4491  	mask := uint8(0)
  4492  	if va >= REG_V16 && va <= REG_V31 {
  4493  		mask |= 0x8
  4494  	}
  4495  	if vb >= REG_V16 && vb <= REG_V31 {
  4496  		mask |= 0x4
  4497  	}
  4498  	if vc >= REG_V16 && vc <= REG_V31 {
  4499  		mask |= 0x2
  4500  	}
  4501  	if vd >= REG_V16 && vd <= REG_V31 {
  4502  		mask |= 0x1
  4503  	}
  4504  	return mask
  4505  }
  4506  
  4507  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4508  	*asm = append(*asm,
  4509  		uint8(op>>8),
  4510  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4511  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4512  		uint8(d2),
  4513  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4514  		uint8(op))
  4515  }
  4516  
  4517  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4518  	*asm = append(*asm,
  4519  		uint8(op>>8),
  4520  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4521  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4522  		uint8(d2),
  4523  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4524  		uint8(op))
  4525  }
  4526  
  4527  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4528  	*asm = append(*asm,
  4529  		uint8(op>>8),
  4530  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4531  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4532  		uint8(d2),
  4533  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4534  		uint8(op))
  4535  }
  4536  
  4537  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4538  	*asm = append(*asm,
  4539  		uint8(op>>8),
  4540  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4541  		0,
  4542  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4543  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4544  		uint8(op))
  4545  }
  4546  
  4547  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4548  	*asm = append(*asm,
  4549  		uint8(op>>8),
  4550  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4551  		uint8(v3)<<4,
  4552  		uint8(m5)<<4,
  4553  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4554  		uint8(op))
  4555  }
  4556  
  4557  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4558  	*asm = append(*asm,
  4559  		uint8(op>>8),
  4560  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4561  		uint8(v3)<<4,
  4562  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4563  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4564  		uint8(op))
  4565  }
  4566  
  4567  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4568  	*asm = append(*asm,
  4569  		uint8(op>>8),
  4570  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4571  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4572  		uint8(m6)<<4,
  4573  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4574  		uint8(op))
  4575  }
  4576  
  4577  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4578  	*asm = append(*asm,
  4579  		uint8(op>>8),
  4580  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4581  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4582  		uint8(m5),
  4583  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4584  		uint8(op))
  4585  }
  4586  
  4587  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4588  	*asm = append(*asm,
  4589  		uint8(op>>8),
  4590  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4591  		uint8(r3)<<4,
  4592  		0,
  4593  		rxb(v1, 0, 0, 0),
  4594  		uint8(op))
  4595  }
  4596  
  4597  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4598  	*asm = append(*asm,
  4599  		uint8(op>>8),
  4600  		uint8(v1)<<4,
  4601  		uint8(i2>>8),
  4602  		uint8(i2),
  4603  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4604  		uint8(op))
  4605  }
  4606  
  4607  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4608  	*asm = append(*asm,
  4609  		uint8(op>>8),
  4610  		uint8(v1)<<4,
  4611  		uint8(i2),
  4612  		uint8(i3),
  4613  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4614  		uint8(op))
  4615  }
  4616  
  4617  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4618  	*asm = append(*asm,
  4619  		uint8(op>>8),
  4620  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4621  		uint8(i2>>8),
  4622  		uint8(i2),
  4623  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4624  		uint8(op))
  4625  }
  4626  
  4627  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4628  	*asm = append(*asm,
  4629  		uint8(op>>8),
  4630  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4631  		uint8(v3)<<4,
  4632  		uint8(i4),
  4633  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4634  		uint8(op))
  4635  }
  4636  
  4637  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4638  	*asm = append(*asm,
  4639  		uint8(op>>8),
  4640  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4641  		uint8(i3>>4),
  4642  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4643  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4644  		uint8(op))
  4645  }