github.com/4ad/go@v0.0.0-20161219182952-69a12818b605/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn     net.Conn
    28  	isClient bool
    29  
    30  	// constant after handshake; protected by handshakeMutex
    31  	handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    32  	// handshakeCond, if not nil, indicates that a goroutine is committed
    33  	// to running the handshake for this Conn. Other goroutines that need
    34  	// to wait for the handshake can wait on this, under handshakeMutex.
    35  	handshakeCond *sync.Cond
    36  	handshakeErr  error   // error resulting from handshake
    37  	vers          uint16  // TLS version
    38  	haveVers      bool    // version has been negotiated
    39  	config        *Config // configuration passed to constructor
    40  	// handshakeComplete is true if the connection is currently transfering
    41  	// application data (i.e. is not currently processing a handshake).
    42  	handshakeComplete bool
    43  	// handshakes counts the number of handshakes performed on the
    44  	// connection so far. If renegotiation is disabled then this is either
    45  	// zero or one.
    46  	handshakes       int
    47  	didResume        bool // whether this connection was a session resumption
    48  	cipherSuite      uint16
    49  	ocspResponse     []byte   // stapled OCSP response
    50  	scts             [][]byte // signed certificate timestamps from server
    51  	peerCertificates []*x509.Certificate
    52  	// verifiedChains contains the certificate chains that we built, as
    53  	// opposed to the ones presented by the server.
    54  	verifiedChains [][]*x509.Certificate
    55  	// serverName contains the server name indicated by the client, if any.
    56  	serverName string
    57  	// secureRenegotiation is true if the server echoed the secure
    58  	// renegotiation extension. (This is meaningless as a server because
    59  	// renegotiation is not supported in that case.)
    60  	secureRenegotiation bool
    61  
    62  	// clientFinishedIsFirst is true if the client sent the first Finished
    63  	// message during the most recent handshake. This is recorded because
    64  	// the first transmitted Finished message is the tls-unique
    65  	// channel-binding value.
    66  	clientFinishedIsFirst bool
    67  	// clientFinished and serverFinished contain the Finished message sent
    68  	// by the client or server in the most recent handshake. This is
    69  	// retained to support the renegotiation extension and tls-unique
    70  	// channel-binding.
    71  	clientFinished [12]byte
    72  	serverFinished [12]byte
    73  
    74  	clientProtocol         string
    75  	clientProtocolFallback bool
    76  
    77  	// input/output
    78  	in, out   halfConn     // in.Mutex < out.Mutex
    79  	rawInput  *block       // raw input, right off the wire
    80  	input     *block       // application data waiting to be read
    81  	hand      bytes.Buffer // handshake data waiting to be read
    82  	buffering bool         // whether records are buffered in sendBuf
    83  	sendBuf   []byte       // a buffer of records waiting to be sent
    84  
    85  	// bytesSent counts the bytes of application data sent.
    86  	// packetsSent counts packets.
    87  	bytesSent   int64
    88  	packetsSent int64
    89  
    90  	// activeCall is an atomic int32; the low bit is whether Close has
    91  	// been called. the rest of the bits are the number of goroutines
    92  	// in Conn.Write.
    93  	activeCall int32
    94  
    95  	tmp [16]byte
    96  }
    97  
    98  // Access to net.Conn methods.
    99  // Cannot just embed net.Conn because that would
   100  // export the struct field too.
   101  
   102  // LocalAddr returns the local network address.
   103  func (c *Conn) LocalAddr() net.Addr {
   104  	return c.conn.LocalAddr()
   105  }
   106  
   107  // RemoteAddr returns the remote network address.
   108  func (c *Conn) RemoteAddr() net.Addr {
   109  	return c.conn.RemoteAddr()
   110  }
   111  
   112  // SetDeadline sets the read and write deadlines associated with the connection.
   113  // A zero value for t means Read and Write will not time out.
   114  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   115  func (c *Conn) SetDeadline(t time.Time) error {
   116  	return c.conn.SetDeadline(t)
   117  }
   118  
   119  // SetReadDeadline sets the read deadline on the underlying connection.
   120  // A zero value for t means Read will not time out.
   121  func (c *Conn) SetReadDeadline(t time.Time) error {
   122  	return c.conn.SetReadDeadline(t)
   123  }
   124  
   125  // SetWriteDeadline sets the write deadline on the underlying connection.
   126  // A zero value for t means Write will not time out.
   127  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   128  func (c *Conn) SetWriteDeadline(t time.Time) error {
   129  	return c.conn.SetWriteDeadline(t)
   130  }
   131  
   132  // A halfConn represents one direction of the record layer
   133  // connection, either sending or receiving.
   134  type halfConn struct {
   135  	sync.Mutex
   136  
   137  	err            error       // first permanent error
   138  	version        uint16      // protocol version
   139  	cipher         interface{} // cipher algorithm
   140  	mac            macFunction
   141  	seq            [8]byte  // 64-bit sequence number
   142  	bfree          *block   // list of free blocks
   143  	additionalData [13]byte // to avoid allocs; interface method args escape
   144  
   145  	nextCipher interface{} // next encryption state
   146  	nextMac    macFunction // next MAC algorithm
   147  
   148  	// used to save allocating a new buffer for each MAC.
   149  	inDigestBuf, outDigestBuf []byte
   150  }
   151  
   152  func (hc *halfConn) setErrorLocked(err error) error {
   153  	hc.err = err
   154  	return err
   155  }
   156  
   157  // prepareCipherSpec sets the encryption and MAC states
   158  // that a subsequent changeCipherSpec will use.
   159  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   160  	hc.version = version
   161  	hc.nextCipher = cipher
   162  	hc.nextMac = mac
   163  }
   164  
   165  // changeCipherSpec changes the encryption and MAC states
   166  // to the ones previously passed to prepareCipherSpec.
   167  func (hc *halfConn) changeCipherSpec() error {
   168  	if hc.nextCipher == nil {
   169  		return alertInternalError
   170  	}
   171  	hc.cipher = hc.nextCipher
   172  	hc.mac = hc.nextMac
   173  	hc.nextCipher = nil
   174  	hc.nextMac = nil
   175  	for i := range hc.seq {
   176  		hc.seq[i] = 0
   177  	}
   178  	return nil
   179  }
   180  
   181  // incSeq increments the sequence number.
   182  func (hc *halfConn) incSeq() {
   183  	for i := 7; i >= 0; i-- {
   184  		hc.seq[i]++
   185  		if hc.seq[i] != 0 {
   186  			return
   187  		}
   188  	}
   189  
   190  	// Not allowed to let sequence number wrap.
   191  	// Instead, must renegotiate before it does.
   192  	// Not likely enough to bother.
   193  	panic("TLS: sequence number wraparound")
   194  }
   195  
   196  // removePadding returns an unpadded slice, in constant time, which is a prefix
   197  // of the input. It also returns a byte which is equal to 255 if the padding
   198  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   199  func removePadding(payload []byte) ([]byte, byte) {
   200  	if len(payload) < 1 {
   201  		return payload, 0
   202  	}
   203  
   204  	paddingLen := payload[len(payload)-1]
   205  	t := uint(len(payload)-1) - uint(paddingLen)
   206  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   207  	good := byte(int32(^t) >> 31)
   208  
   209  	toCheck := 255 // the maximum possible padding length
   210  	// The length of the padded data is public, so we can use an if here
   211  	if toCheck+1 > len(payload) {
   212  		toCheck = len(payload) - 1
   213  	}
   214  
   215  	for i := 0; i < toCheck; i++ {
   216  		t := uint(paddingLen) - uint(i)
   217  		// if i <= paddingLen then the MSB of t is zero
   218  		mask := byte(int32(^t) >> 31)
   219  		b := payload[len(payload)-1-i]
   220  		good &^= mask&paddingLen ^ mask&b
   221  	}
   222  
   223  	// We AND together the bits of good and replicate the result across
   224  	// all the bits.
   225  	good &= good << 4
   226  	good &= good << 2
   227  	good &= good << 1
   228  	good = uint8(int8(good) >> 7)
   229  
   230  	toRemove := good&paddingLen + 1
   231  	return payload[:len(payload)-int(toRemove)], good
   232  }
   233  
   234  // removePaddingSSL30 is a replacement for removePadding in the case that the
   235  // protocol version is SSLv3. In this version, the contents of the padding
   236  // are random and cannot be checked.
   237  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   238  	if len(payload) < 1 {
   239  		return payload, 0
   240  	}
   241  
   242  	paddingLen := int(payload[len(payload)-1]) + 1
   243  	if paddingLen > len(payload) {
   244  		return payload, 0
   245  	}
   246  
   247  	return payload[:len(payload)-paddingLen], 255
   248  }
   249  
   250  func roundUp(a, b int) int {
   251  	return a + (b-a%b)%b
   252  }
   253  
   254  // cbcMode is an interface for block ciphers using cipher block chaining.
   255  type cbcMode interface {
   256  	cipher.BlockMode
   257  	SetIV([]byte)
   258  }
   259  
   260  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   261  // success boolean, the number of bytes to skip from the start of the record in
   262  // order to get the application payload, and an optional alert value.
   263  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   264  	// pull out payload
   265  	payload := b.data[recordHeaderLen:]
   266  
   267  	macSize := 0
   268  	if hc.mac != nil {
   269  		macSize = hc.mac.Size()
   270  	}
   271  
   272  	paddingGood := byte(255)
   273  	explicitIVLen := 0
   274  
   275  	// decrypt
   276  	if hc.cipher != nil {
   277  		switch c := hc.cipher.(type) {
   278  		case cipher.Stream:
   279  			c.XORKeyStream(payload, payload)
   280  		case cipher.AEAD:
   281  			explicitIVLen = 8
   282  			if len(payload) < explicitIVLen {
   283  				return false, 0, alertBadRecordMAC
   284  			}
   285  			nonce := payload[:8]
   286  			payload = payload[8:]
   287  
   288  			copy(hc.additionalData[:], hc.seq[:])
   289  			copy(hc.additionalData[8:], b.data[:3])
   290  			n := len(payload) - c.Overhead()
   291  			hc.additionalData[11] = byte(n >> 8)
   292  			hc.additionalData[12] = byte(n)
   293  			var err error
   294  			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   295  			if err != nil {
   296  				return false, 0, alertBadRecordMAC
   297  			}
   298  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   299  		case cbcMode:
   300  			blockSize := c.BlockSize()
   301  			if hc.version >= VersionTLS11 {
   302  				explicitIVLen = blockSize
   303  			}
   304  
   305  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   306  				return false, 0, alertBadRecordMAC
   307  			}
   308  
   309  			if explicitIVLen > 0 {
   310  				c.SetIV(payload[:explicitIVLen])
   311  				payload = payload[explicitIVLen:]
   312  			}
   313  			c.CryptBlocks(payload, payload)
   314  			if hc.version == VersionSSL30 {
   315  				payload, paddingGood = removePaddingSSL30(payload)
   316  			} else {
   317  				payload, paddingGood = removePadding(payload)
   318  			}
   319  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   320  
   321  			// note that we still have a timing side-channel in the
   322  			// MAC check, below. An attacker can align the record
   323  			// so that a correct padding will cause one less hash
   324  			// block to be calculated. Then they can iteratively
   325  			// decrypt a record by breaking each byte. See
   326  			// "Password Interception in a SSL/TLS Channel", Brice
   327  			// Canvel et al.
   328  			//
   329  			// However, our behavior matches OpenSSL, so we leak
   330  			// only as much as they do.
   331  		default:
   332  			panic("unknown cipher type")
   333  		}
   334  	}
   335  
   336  	// check, strip mac
   337  	if hc.mac != nil {
   338  		if len(payload) < macSize {
   339  			return false, 0, alertBadRecordMAC
   340  		}
   341  
   342  		// strip mac off payload, b.data
   343  		n := len(payload) - macSize
   344  		b.data[3] = byte(n >> 8)
   345  		b.data[4] = byte(n)
   346  		b.resize(recordHeaderLen + explicitIVLen + n)
   347  		remoteMAC := payload[n:]
   348  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   349  
   350  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   351  			return false, 0, alertBadRecordMAC
   352  		}
   353  		hc.inDigestBuf = localMAC
   354  	}
   355  	hc.incSeq()
   356  
   357  	return true, recordHeaderLen + explicitIVLen, 0
   358  }
   359  
   360  // padToBlockSize calculates the needed padding block, if any, for a payload.
   361  // On exit, prefix aliases payload and extends to the end of the last full
   362  // block of payload. finalBlock is a fresh slice which contains the contents of
   363  // any suffix of payload as well as the needed padding to make finalBlock a
   364  // full block.
   365  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   366  	overrun := len(payload) % blockSize
   367  	paddingLen := blockSize - overrun
   368  	prefix = payload[:len(payload)-overrun]
   369  	finalBlock = make([]byte, blockSize)
   370  	copy(finalBlock, payload[len(payload)-overrun:])
   371  	for i := overrun; i < blockSize; i++ {
   372  		finalBlock[i] = byte(paddingLen - 1)
   373  	}
   374  	return
   375  }
   376  
   377  // encrypt encrypts and macs the data in b.
   378  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   379  	// mac
   380  	if hc.mac != nil {
   381  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   382  
   383  		n := len(b.data)
   384  		b.resize(n + len(mac))
   385  		copy(b.data[n:], mac)
   386  		hc.outDigestBuf = mac
   387  	}
   388  
   389  	payload := b.data[recordHeaderLen:]
   390  
   391  	// encrypt
   392  	if hc.cipher != nil {
   393  		switch c := hc.cipher.(type) {
   394  		case cipher.Stream:
   395  			c.XORKeyStream(payload, payload)
   396  		case cipher.AEAD:
   397  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   398  			b.resize(len(b.data) + c.Overhead())
   399  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   400  			payload := b.data[recordHeaderLen+explicitIVLen:]
   401  			payload = payload[:payloadLen]
   402  
   403  			copy(hc.additionalData[:], hc.seq[:])
   404  			copy(hc.additionalData[8:], b.data[:3])
   405  			hc.additionalData[11] = byte(payloadLen >> 8)
   406  			hc.additionalData[12] = byte(payloadLen)
   407  
   408  			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
   409  		case cbcMode:
   410  			blockSize := c.BlockSize()
   411  			if explicitIVLen > 0 {
   412  				c.SetIV(payload[:explicitIVLen])
   413  				payload = payload[explicitIVLen:]
   414  			}
   415  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   416  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   417  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   418  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   419  		default:
   420  			panic("unknown cipher type")
   421  		}
   422  	}
   423  
   424  	// update length to include MAC and any block padding needed.
   425  	n := len(b.data) - recordHeaderLen
   426  	b.data[3] = byte(n >> 8)
   427  	b.data[4] = byte(n)
   428  	hc.incSeq()
   429  
   430  	return true, 0
   431  }
   432  
   433  // A block is a simple data buffer.
   434  type block struct {
   435  	data []byte
   436  	off  int // index for Read
   437  	link *block
   438  }
   439  
   440  // resize resizes block to be n bytes, growing if necessary.
   441  func (b *block) resize(n int) {
   442  	if n > cap(b.data) {
   443  		b.reserve(n)
   444  	}
   445  	b.data = b.data[0:n]
   446  }
   447  
   448  // reserve makes sure that block contains a capacity of at least n bytes.
   449  func (b *block) reserve(n int) {
   450  	if cap(b.data) >= n {
   451  		return
   452  	}
   453  	m := cap(b.data)
   454  	if m == 0 {
   455  		m = 1024
   456  	}
   457  	for m < n {
   458  		m *= 2
   459  	}
   460  	data := make([]byte, len(b.data), m)
   461  	copy(data, b.data)
   462  	b.data = data
   463  }
   464  
   465  // readFromUntil reads from r into b until b contains at least n bytes
   466  // or else returns an error.
   467  func (b *block) readFromUntil(r io.Reader, n int) error {
   468  	// quick case
   469  	if len(b.data) >= n {
   470  		return nil
   471  	}
   472  
   473  	// read until have enough.
   474  	b.reserve(n)
   475  	for {
   476  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   477  		b.data = b.data[0 : len(b.data)+m]
   478  		if len(b.data) >= n {
   479  			// TODO(bradfitz,agl): slightly suspicious
   480  			// that we're throwing away r.Read's err here.
   481  			break
   482  		}
   483  		if err != nil {
   484  			return err
   485  		}
   486  	}
   487  	return nil
   488  }
   489  
   490  func (b *block) Read(p []byte) (n int, err error) {
   491  	n = copy(p, b.data[b.off:])
   492  	b.off += n
   493  	return
   494  }
   495  
   496  // newBlock allocates a new block, from hc's free list if possible.
   497  func (hc *halfConn) newBlock() *block {
   498  	b := hc.bfree
   499  	if b == nil {
   500  		return new(block)
   501  	}
   502  	hc.bfree = b.link
   503  	b.link = nil
   504  	b.resize(0)
   505  	return b
   506  }
   507  
   508  // freeBlock returns a block to hc's free list.
   509  // The protocol is such that each side only has a block or two on
   510  // its free list at a time, so there's no need to worry about
   511  // trimming the list, etc.
   512  func (hc *halfConn) freeBlock(b *block) {
   513  	b.link = hc.bfree
   514  	hc.bfree = b
   515  }
   516  
   517  // splitBlock splits a block after the first n bytes,
   518  // returning a block with those n bytes and a
   519  // block with the remainder.  the latter may be nil.
   520  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   521  	if len(b.data) <= n {
   522  		return b, nil
   523  	}
   524  	bb := hc.newBlock()
   525  	bb.resize(len(b.data) - n)
   526  	copy(bb.data, b.data[n:])
   527  	b.data = b.data[0:n]
   528  	return b, bb
   529  }
   530  
   531  // RecordHeaderError results when a TLS record header is invalid.
   532  type RecordHeaderError struct {
   533  	// Msg contains a human readable string that describes the error.
   534  	Msg string
   535  	// RecordHeader contains the five bytes of TLS record header that
   536  	// triggered the error.
   537  	RecordHeader [5]byte
   538  }
   539  
   540  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   541  
   542  func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
   543  	err.Msg = msg
   544  	copy(err.RecordHeader[:], c.rawInput.data)
   545  	return err
   546  }
   547  
   548  // readRecord reads the next TLS record from the connection
   549  // and updates the record layer state.
   550  // c.in.Mutex <= L; c.input == nil.
   551  func (c *Conn) readRecord(want recordType) error {
   552  	// Caller must be in sync with connection:
   553  	// handshake data if handshake not yet completed,
   554  	// else application data.
   555  	switch want {
   556  	default:
   557  		c.sendAlert(alertInternalError)
   558  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   559  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   560  		if c.handshakeComplete {
   561  			c.sendAlert(alertInternalError)
   562  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
   563  		}
   564  	case recordTypeApplicationData:
   565  		if !c.handshakeComplete {
   566  			c.sendAlert(alertInternalError)
   567  			return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
   568  		}
   569  	}
   570  
   571  Again:
   572  	if c.rawInput == nil {
   573  		c.rawInput = c.in.newBlock()
   574  	}
   575  	b := c.rawInput
   576  
   577  	// Read header, payload.
   578  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   579  		// RFC suggests that EOF without an alertCloseNotify is
   580  		// an error, but popular web sites seem to do this,
   581  		// so we can't make it an error.
   582  		// if err == io.EOF {
   583  		// 	err = io.ErrUnexpectedEOF
   584  		// }
   585  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   586  			c.in.setErrorLocked(err)
   587  		}
   588  		return err
   589  	}
   590  	typ := recordType(b.data[0])
   591  
   592  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   593  	// start with a uint16 length where the MSB is set and the first record
   594  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   595  	// an SSLv2 client.
   596  	if want == recordTypeHandshake && typ == 0x80 {
   597  		c.sendAlert(alertProtocolVersion)
   598  		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
   599  	}
   600  
   601  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   602  	n := int(b.data[3])<<8 | int(b.data[4])
   603  	if c.haveVers && vers != c.vers {
   604  		c.sendAlert(alertProtocolVersion)
   605  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   606  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   607  	}
   608  	if n > maxCiphertext {
   609  		c.sendAlert(alertRecordOverflow)
   610  		msg := fmt.Sprintf("oversized record received with length %d", n)
   611  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   612  	}
   613  	if !c.haveVers {
   614  		// First message, be extra suspicious: this might not be a TLS
   615  		// client. Bail out before reading a full 'body', if possible.
   616  		// The current max version is 3.3 so if the version is >= 16.0,
   617  		// it's probably not real.
   618  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   619  			c.sendAlert(alertUnexpectedMessage)
   620  			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
   621  		}
   622  	}
   623  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   624  		if err == io.EOF {
   625  			err = io.ErrUnexpectedEOF
   626  		}
   627  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   628  			c.in.setErrorLocked(err)
   629  		}
   630  		return err
   631  	}
   632  
   633  	// Process message.
   634  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   635  	ok, off, err := c.in.decrypt(b)
   636  	if !ok {
   637  		c.in.setErrorLocked(c.sendAlert(err))
   638  	}
   639  	b.off = off
   640  	data := b.data[b.off:]
   641  	if len(data) > maxPlaintext {
   642  		err := c.sendAlert(alertRecordOverflow)
   643  		c.in.freeBlock(b)
   644  		return c.in.setErrorLocked(err)
   645  	}
   646  
   647  	switch typ {
   648  	default:
   649  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   650  
   651  	case recordTypeAlert:
   652  		if len(data) != 2 {
   653  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   654  			break
   655  		}
   656  		if alert(data[1]) == alertCloseNotify {
   657  			c.in.setErrorLocked(io.EOF)
   658  			break
   659  		}
   660  		switch data[0] {
   661  		case alertLevelWarning:
   662  			// drop on the floor
   663  			c.in.freeBlock(b)
   664  			goto Again
   665  		case alertLevelError:
   666  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   667  		default:
   668  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   669  		}
   670  
   671  	case recordTypeChangeCipherSpec:
   672  		if typ != want || len(data) != 1 || data[0] != 1 {
   673  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   674  			break
   675  		}
   676  		err := c.in.changeCipherSpec()
   677  		if err != nil {
   678  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   679  		}
   680  
   681  	case recordTypeApplicationData:
   682  		if typ != want {
   683  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   684  			break
   685  		}
   686  		c.input = b
   687  		b = nil
   688  
   689  	case recordTypeHandshake:
   690  		// TODO(rsc): Should at least pick off connection close.
   691  		if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
   692  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   693  		}
   694  		c.hand.Write(data)
   695  	}
   696  
   697  	if b != nil {
   698  		c.in.freeBlock(b)
   699  	}
   700  	return c.in.err
   701  }
   702  
   703  // sendAlert sends a TLS alert message.
   704  // c.out.Mutex <= L.
   705  func (c *Conn) sendAlertLocked(err alert) error {
   706  	switch err {
   707  	case alertNoRenegotiation, alertCloseNotify:
   708  		c.tmp[0] = alertLevelWarning
   709  	default:
   710  		c.tmp[0] = alertLevelError
   711  	}
   712  	c.tmp[1] = byte(err)
   713  
   714  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   715  	if err == alertCloseNotify {
   716  		// closeNotify is a special case in that it isn't an error.
   717  		return writeErr
   718  	}
   719  
   720  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   721  }
   722  
   723  // sendAlert sends a TLS alert message.
   724  // L < c.out.Mutex.
   725  func (c *Conn) sendAlert(err alert) error {
   726  	c.out.Lock()
   727  	defer c.out.Unlock()
   728  	return c.sendAlertLocked(err)
   729  }
   730  
   731  const (
   732  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   733  	// size (MSS). A constant is used, rather than querying the kernel for
   734  	// the actual MSS, to avoid complexity. The value here is the IPv6
   735  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   736  	// bytes) and a TCP header with timestamps (32 bytes).
   737  	tcpMSSEstimate = 1208
   738  
   739  	// recordSizeBoostThreshold is the number of bytes of application data
   740  	// sent after which the TLS record size will be increased to the
   741  	// maximum.
   742  	recordSizeBoostThreshold = 128 * 1024
   743  )
   744  
   745  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   746  // next application data record. There is the following trade-off:
   747  //
   748  //   - For latency-sensitive applications, such as web browsing, each TLS
   749  //     record should fit in one TCP segment.
   750  //   - For throughput-sensitive applications, such as large file transfers,
   751  //     larger TLS records better amortize framing and encryption overheads.
   752  //
   753  // A simple heuristic that works well in practice is to use small records for
   754  // the first 1MB of data, then use larger records for subsequent data, and
   755  // reset back to smaller records after the connection becomes idle. See "High
   756  // Performance Web Networking", Chapter 4, or:
   757  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   758  //
   759  // In the interests of simplicity and determinism, this code does not attempt
   760  // to reset the record size once the connection is idle, however.
   761  //
   762  // c.out.Mutex <= L.
   763  func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
   764  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   765  		return maxPlaintext
   766  	}
   767  
   768  	if c.bytesSent >= recordSizeBoostThreshold {
   769  		return maxPlaintext
   770  	}
   771  
   772  	// Subtract TLS overheads to get the maximum payload size.
   773  	macSize := 0
   774  	if c.out.mac != nil {
   775  		macSize = c.out.mac.Size()
   776  	}
   777  
   778  	payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
   779  	if c.out.cipher != nil {
   780  		switch ciph := c.out.cipher.(type) {
   781  		case cipher.Stream:
   782  			payloadBytes -= macSize
   783  		case cipher.AEAD:
   784  			payloadBytes -= ciph.Overhead()
   785  		case cbcMode:
   786  			blockSize := ciph.BlockSize()
   787  			// The payload must fit in a multiple of blockSize, with
   788  			// room for at least one padding byte.
   789  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   790  			// The MAC is appended before padding so affects the
   791  			// payload size directly.
   792  			payloadBytes -= macSize
   793  		default:
   794  			panic("unknown cipher type")
   795  		}
   796  	}
   797  
   798  	// Allow packet growth in arithmetic progression up to max.
   799  	pkt := c.packetsSent
   800  	c.packetsSent++
   801  	if pkt > 1000 {
   802  		return maxPlaintext // avoid overflow in multiply below
   803  	}
   804  
   805  	n := payloadBytes * int(pkt+1)
   806  	if n > maxPlaintext {
   807  		n = maxPlaintext
   808  	}
   809  	return n
   810  }
   811  
   812  // c.out.Mutex <= L.
   813  func (c *Conn) write(data []byte) (int, error) {
   814  	if c.buffering {
   815  		c.sendBuf = append(c.sendBuf, data...)
   816  		return len(data), nil
   817  	}
   818  
   819  	n, err := c.conn.Write(data)
   820  	c.bytesSent += int64(n)
   821  	return n, err
   822  }
   823  
   824  func (c *Conn) flush() (int, error) {
   825  	if len(c.sendBuf) == 0 {
   826  		return 0, nil
   827  	}
   828  
   829  	n, err := c.conn.Write(c.sendBuf)
   830  	c.bytesSent += int64(n)
   831  	c.sendBuf = nil
   832  	c.buffering = false
   833  	return n, err
   834  }
   835  
   836  // writeRecordLocked writes a TLS record with the given type and payload to the
   837  // connection and updates the record layer state.
   838  // c.out.Mutex <= L.
   839  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   840  	b := c.out.newBlock()
   841  	defer c.out.freeBlock(b)
   842  
   843  	var n int
   844  	for len(data) > 0 {
   845  		explicitIVLen := 0
   846  		explicitIVIsSeq := false
   847  
   848  		var cbc cbcMode
   849  		if c.out.version >= VersionTLS11 {
   850  			var ok bool
   851  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   852  				explicitIVLen = cbc.BlockSize()
   853  			}
   854  		}
   855  		if explicitIVLen == 0 {
   856  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   857  				explicitIVLen = 8
   858  				// The AES-GCM construction in TLS has an
   859  				// explicit nonce so that the nonce can be
   860  				// random. However, the nonce is only 8 bytes
   861  				// which is too small for a secure, random
   862  				// nonce. Therefore we use the sequence number
   863  				// as the nonce.
   864  				explicitIVIsSeq = true
   865  			}
   866  		}
   867  		m := len(data)
   868  		if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
   869  			m = maxPayload
   870  		}
   871  		b.resize(recordHeaderLen + explicitIVLen + m)
   872  		b.data[0] = byte(typ)
   873  		vers := c.vers
   874  		if vers == 0 {
   875  			// Some TLS servers fail if the record version is
   876  			// greater than TLS 1.0 for the initial ClientHello.
   877  			vers = VersionTLS10
   878  		}
   879  		b.data[1] = byte(vers >> 8)
   880  		b.data[2] = byte(vers)
   881  		b.data[3] = byte(m >> 8)
   882  		b.data[4] = byte(m)
   883  		if explicitIVLen > 0 {
   884  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   885  			if explicitIVIsSeq {
   886  				copy(explicitIV, c.out.seq[:])
   887  			} else {
   888  				if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
   889  					return n, err
   890  				}
   891  			}
   892  		}
   893  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   894  		c.out.encrypt(b, explicitIVLen)
   895  		if _, err := c.write(b.data); err != nil {
   896  			return n, err
   897  		}
   898  		n += m
   899  		data = data[m:]
   900  	}
   901  
   902  	if typ == recordTypeChangeCipherSpec {
   903  		if err := c.out.changeCipherSpec(); err != nil {
   904  			return n, c.sendAlertLocked(err.(alert))
   905  		}
   906  	}
   907  
   908  	return n, nil
   909  }
   910  
   911  // writeRecord writes a TLS record with the given type and payload to the
   912  // connection and updates the record layer state.
   913  // L < c.out.Mutex.
   914  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   915  	c.out.Lock()
   916  	defer c.out.Unlock()
   917  
   918  	return c.writeRecordLocked(typ, data)
   919  }
   920  
   921  // readHandshake reads the next handshake message from
   922  // the record layer.
   923  // c.in.Mutex < L; c.out.Mutex < L.
   924  func (c *Conn) readHandshake() (interface{}, error) {
   925  	for c.hand.Len() < 4 {
   926  		if err := c.in.err; err != nil {
   927  			return nil, err
   928  		}
   929  		if err := c.readRecord(recordTypeHandshake); err != nil {
   930  			return nil, err
   931  		}
   932  	}
   933  
   934  	data := c.hand.Bytes()
   935  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   936  	if n > maxHandshake {
   937  		c.sendAlertLocked(alertInternalError)
   938  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   939  	}
   940  	for c.hand.Len() < 4+n {
   941  		if err := c.in.err; err != nil {
   942  			return nil, err
   943  		}
   944  		if err := c.readRecord(recordTypeHandshake); err != nil {
   945  			return nil, err
   946  		}
   947  	}
   948  	data = c.hand.Next(4 + n)
   949  	var m handshakeMessage
   950  	switch data[0] {
   951  	case typeHelloRequest:
   952  		m = new(helloRequestMsg)
   953  	case typeClientHello:
   954  		m = new(clientHelloMsg)
   955  	case typeServerHello:
   956  		m = new(serverHelloMsg)
   957  	case typeNewSessionTicket:
   958  		m = new(newSessionTicketMsg)
   959  	case typeCertificate:
   960  		m = new(certificateMsg)
   961  	case typeCertificateRequest:
   962  		m = &certificateRequestMsg{
   963  			hasSignatureAndHash: c.vers >= VersionTLS12,
   964  		}
   965  	case typeCertificateStatus:
   966  		m = new(certificateStatusMsg)
   967  	case typeServerKeyExchange:
   968  		m = new(serverKeyExchangeMsg)
   969  	case typeServerHelloDone:
   970  		m = new(serverHelloDoneMsg)
   971  	case typeClientKeyExchange:
   972  		m = new(clientKeyExchangeMsg)
   973  	case typeCertificateVerify:
   974  		m = &certificateVerifyMsg{
   975  			hasSignatureAndHash: c.vers >= VersionTLS12,
   976  		}
   977  	case typeNextProtocol:
   978  		m = new(nextProtoMsg)
   979  	case typeFinished:
   980  		m = new(finishedMsg)
   981  	default:
   982  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   983  	}
   984  
   985  	// The handshake message unmarshallers
   986  	// expect to be able to keep references to data,
   987  	// so pass in a fresh copy that won't be overwritten.
   988  	data = append([]byte(nil), data...)
   989  
   990  	if !m.unmarshal(data) {
   991  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   992  	}
   993  	return m, nil
   994  }
   995  
   996  var errClosed = errors.New("tls: use of closed connection")
   997  
   998  // Write writes data to the connection.
   999  func (c *Conn) Write(b []byte) (int, error) {
  1000  	// interlock with Close below
  1001  	for {
  1002  		x := atomic.LoadInt32(&c.activeCall)
  1003  		if x&1 != 0 {
  1004  			return 0, errClosed
  1005  		}
  1006  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1007  			defer atomic.AddInt32(&c.activeCall, -2)
  1008  			break
  1009  		}
  1010  	}
  1011  
  1012  	if err := c.Handshake(); err != nil {
  1013  		return 0, err
  1014  	}
  1015  
  1016  	c.out.Lock()
  1017  	defer c.out.Unlock()
  1018  
  1019  	if err := c.out.err; err != nil {
  1020  		return 0, err
  1021  	}
  1022  
  1023  	if !c.handshakeComplete {
  1024  		return 0, alertInternalError
  1025  	}
  1026  
  1027  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1028  	// attack when using block mode ciphers due to predictable IVs.
  1029  	// This can be prevented by splitting each Application Data
  1030  	// record into two records, effectively randomizing the IV.
  1031  	//
  1032  	// http://www.openssl.org/~bodo/tls-cbc.txt
  1033  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1034  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1035  
  1036  	var m int
  1037  	if len(b) > 1 && c.vers <= VersionTLS10 {
  1038  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1039  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1040  			if err != nil {
  1041  				return n, c.out.setErrorLocked(err)
  1042  			}
  1043  			m, b = 1, b[1:]
  1044  		}
  1045  	}
  1046  
  1047  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1048  	return n + m, c.out.setErrorLocked(err)
  1049  }
  1050  
  1051  // handleRenegotiation processes a HelloRequest handshake message.
  1052  // c.in.Mutex <= L
  1053  func (c *Conn) handleRenegotiation() error {
  1054  	msg, err := c.readHandshake()
  1055  	if err != nil {
  1056  		return err
  1057  	}
  1058  
  1059  	_, ok := msg.(*helloRequestMsg)
  1060  	if !ok {
  1061  		c.sendAlert(alertUnexpectedMessage)
  1062  		return alertUnexpectedMessage
  1063  	}
  1064  
  1065  	if !c.isClient {
  1066  		return c.sendAlert(alertNoRenegotiation)
  1067  	}
  1068  
  1069  	switch c.config.Renegotiation {
  1070  	case RenegotiateNever:
  1071  		return c.sendAlert(alertNoRenegotiation)
  1072  	case RenegotiateOnceAsClient:
  1073  		if c.handshakes > 1 {
  1074  			return c.sendAlert(alertNoRenegotiation)
  1075  		}
  1076  	case RenegotiateFreelyAsClient:
  1077  		// Ok.
  1078  	default:
  1079  		c.sendAlert(alertInternalError)
  1080  		return errors.New("tls: unknown Renegotiation value")
  1081  	}
  1082  
  1083  	c.handshakeMutex.Lock()
  1084  	defer c.handshakeMutex.Unlock()
  1085  
  1086  	c.handshakeComplete = false
  1087  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1088  		c.handshakes++
  1089  	}
  1090  	return c.handshakeErr
  1091  }
  1092  
  1093  // Read can be made to time out and return a net.Error with Timeout() == true
  1094  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1095  func (c *Conn) Read(b []byte) (n int, err error) {
  1096  	if err = c.Handshake(); err != nil {
  1097  		return
  1098  	}
  1099  	if len(b) == 0 {
  1100  		// Put this after Handshake, in case people were calling
  1101  		// Read(nil) for the side effect of the Handshake.
  1102  		return
  1103  	}
  1104  
  1105  	c.in.Lock()
  1106  	defer c.in.Unlock()
  1107  
  1108  	// Some OpenSSL servers send empty records in order to randomize the
  1109  	// CBC IV. So this loop ignores a limited number of empty records.
  1110  	const maxConsecutiveEmptyRecords = 100
  1111  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1112  		for c.input == nil && c.in.err == nil {
  1113  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1114  				// Soft error, like EAGAIN
  1115  				return 0, err
  1116  			}
  1117  			if c.hand.Len() > 0 {
  1118  				// We received handshake bytes, indicating the
  1119  				// start of a renegotiation.
  1120  				if err := c.handleRenegotiation(); err != nil {
  1121  					return 0, err
  1122  				}
  1123  			}
  1124  		}
  1125  		if err := c.in.err; err != nil {
  1126  			return 0, err
  1127  		}
  1128  
  1129  		n, err = c.input.Read(b)
  1130  		if c.input.off >= len(c.input.data) {
  1131  			c.in.freeBlock(c.input)
  1132  			c.input = nil
  1133  		}
  1134  
  1135  		// If a close-notify alert is waiting, read it so that
  1136  		// we can return (n, EOF) instead of (n, nil), to signal
  1137  		// to the HTTP response reading goroutine that the
  1138  		// connection is now closed. This eliminates a race
  1139  		// where the HTTP response reading goroutine would
  1140  		// otherwise not observe the EOF until its next read,
  1141  		// by which time a client goroutine might have already
  1142  		// tried to reuse the HTTP connection for a new
  1143  		// request.
  1144  		// See https://codereview.appspot.com/76400046
  1145  		// and https://golang.org/issue/3514
  1146  		if ri := c.rawInput; ri != nil &&
  1147  			n != 0 && err == nil &&
  1148  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1149  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1150  				err = recErr // will be io.EOF on closeNotify
  1151  			}
  1152  		}
  1153  
  1154  		if n != 0 || err != nil {
  1155  			return n, err
  1156  		}
  1157  	}
  1158  
  1159  	return 0, io.ErrNoProgress
  1160  }
  1161  
  1162  // Close closes the connection.
  1163  func (c *Conn) Close() error {
  1164  	// Interlock with Conn.Write above.
  1165  	var x int32
  1166  	for {
  1167  		x = atomic.LoadInt32(&c.activeCall)
  1168  		if x&1 != 0 {
  1169  			return errClosed
  1170  		}
  1171  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1172  			break
  1173  		}
  1174  	}
  1175  	if x != 0 {
  1176  		// io.Writer and io.Closer should not be used concurrently.
  1177  		// If Close is called while a Write is currently in-flight,
  1178  		// interpret that as a sign that this Close is really just
  1179  		// being used to break the Write and/or clean up resources and
  1180  		// avoid sending the alertCloseNotify, which may block
  1181  		// waiting on handshakeMutex or the c.out mutex.
  1182  		return c.conn.Close()
  1183  	}
  1184  
  1185  	var alertErr error
  1186  
  1187  	c.handshakeMutex.Lock()
  1188  	defer c.handshakeMutex.Unlock()
  1189  	if c.handshakeComplete {
  1190  		alertErr = c.sendAlert(alertCloseNotify)
  1191  	}
  1192  
  1193  	if err := c.conn.Close(); err != nil {
  1194  		return err
  1195  	}
  1196  	return alertErr
  1197  }
  1198  
  1199  // Handshake runs the client or server handshake
  1200  // protocol if it has not yet been run.
  1201  // Most uses of this package need not call Handshake
  1202  // explicitly: the first Read or Write will call it automatically.
  1203  func (c *Conn) Handshake() error {
  1204  	// c.handshakeErr and c.handshakeComplete are protected by
  1205  	// c.handshakeMutex. In order to perform a handshake, we need to lock
  1206  	// c.in also and c.handshakeMutex must be locked after c.in.
  1207  	//
  1208  	// However, if a Read() operation is hanging then it'll be holding the
  1209  	// lock on c.in and so taking it here would cause all operations that
  1210  	// need to check whether a handshake is pending (such as Write) to
  1211  	// block.
  1212  	//
  1213  	// Thus we first take c.handshakeMutex to check whether a handshake is
  1214  	// needed.
  1215  	//
  1216  	// If so then, previously, this code would unlock handshakeMutex and
  1217  	// then lock c.in and handshakeMutex in the correct order to run the
  1218  	// handshake. The problem was that it was possible for a Read to
  1219  	// complete the handshake once handshakeMutex was unlocked and then
  1220  	// keep c.in while waiting for network data. Thus a concurrent
  1221  	// operation could be blocked on c.in.
  1222  	//
  1223  	// Thus handshakeCond is used to signal that a goroutine is committed
  1224  	// to running the handshake and other goroutines can wait on it if they
  1225  	// need. handshakeCond is protected by handshakeMutex.
  1226  	c.handshakeMutex.Lock()
  1227  	defer c.handshakeMutex.Unlock()
  1228  
  1229  	for {
  1230  		if err := c.handshakeErr; err != nil {
  1231  			return err
  1232  		}
  1233  		if c.handshakeComplete {
  1234  			return nil
  1235  		}
  1236  		if c.handshakeCond == nil {
  1237  			break
  1238  		}
  1239  
  1240  		c.handshakeCond.Wait()
  1241  	}
  1242  
  1243  	// Set handshakeCond to indicate that this goroutine is committing to
  1244  	// running the handshake.
  1245  	c.handshakeCond = sync.NewCond(&c.handshakeMutex)
  1246  	c.handshakeMutex.Unlock()
  1247  
  1248  	c.in.Lock()
  1249  	defer c.in.Unlock()
  1250  
  1251  	c.handshakeMutex.Lock()
  1252  
  1253  	// The handshake cannot have completed when handshakeMutex was unlocked
  1254  	// because this goroutine set handshakeCond.
  1255  	if c.handshakeErr != nil || c.handshakeComplete {
  1256  		panic("handshake should not have been able to complete after handshakeCond was set")
  1257  	}
  1258  
  1259  	if c.isClient {
  1260  		c.handshakeErr = c.clientHandshake()
  1261  	} else {
  1262  		c.handshakeErr = c.serverHandshake()
  1263  	}
  1264  	if c.handshakeErr == nil {
  1265  		c.handshakes++
  1266  	}
  1267  
  1268  	if c.handshakeErr == nil && !c.handshakeComplete {
  1269  		panic("handshake should have had a result.")
  1270  	}
  1271  
  1272  	// Wake any other goroutines that are waiting for this handshake to
  1273  	// complete.
  1274  	c.handshakeCond.Broadcast()
  1275  	c.handshakeCond = nil
  1276  
  1277  	return c.handshakeErr
  1278  }
  1279  
  1280  // ConnectionState returns basic TLS details about the connection.
  1281  func (c *Conn) ConnectionState() ConnectionState {
  1282  	c.handshakeMutex.Lock()
  1283  	defer c.handshakeMutex.Unlock()
  1284  
  1285  	var state ConnectionState
  1286  	state.HandshakeComplete = c.handshakeComplete
  1287  	if c.handshakeComplete {
  1288  		state.Version = c.vers
  1289  		state.NegotiatedProtocol = c.clientProtocol
  1290  		state.DidResume = c.didResume
  1291  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1292  		state.CipherSuite = c.cipherSuite
  1293  		state.PeerCertificates = c.peerCertificates
  1294  		state.VerifiedChains = c.verifiedChains
  1295  		state.ServerName = c.serverName
  1296  		state.SignedCertificateTimestamps = c.scts
  1297  		state.OCSPResponse = c.ocspResponse
  1298  		if !c.didResume {
  1299  			if c.clientFinishedIsFirst {
  1300  				state.TLSUnique = c.clientFinished[:]
  1301  			} else {
  1302  				state.TLSUnique = c.serverFinished[:]
  1303  			}
  1304  		}
  1305  	}
  1306  
  1307  	return state
  1308  }
  1309  
  1310  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1311  // any. (Only valid for client connections.)
  1312  func (c *Conn) OCSPResponse() []byte {
  1313  	c.handshakeMutex.Lock()
  1314  	defer c.handshakeMutex.Unlock()
  1315  
  1316  	return c.ocspResponse
  1317  }
  1318  
  1319  // VerifyHostname checks that the peer certificate chain is valid for
  1320  // connecting to host. If so, it returns nil; if not, it returns an error
  1321  // describing the problem.
  1322  func (c *Conn) VerifyHostname(host string) error {
  1323  	c.handshakeMutex.Lock()
  1324  	defer c.handshakeMutex.Unlock()
  1325  	if !c.isClient {
  1326  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1327  	}
  1328  	if !c.handshakeComplete {
  1329  		return errors.New("tls: handshake has not yet been performed")
  1330  	}
  1331  	if len(c.verifiedChains) == 0 {
  1332  		return errors.New("tls: handshake did not verify certificate chain")
  1333  	}
  1334  	return c.peerCertificates[0].VerifyHostname(host)
  1335  }