github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/crypto/elliptic/p224.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 import ( 8 "crypto/elliptic/internal/nistec" 9 "crypto/rand" 10 "math/big" 11 ) 12 13 // p224Curve is a Curve implementation based on nistec.P224Point. 14 // 15 // It's a wrapper that exposes the big.Int-based Curve interface and encodes the 16 // legacy idiosyncrasies it requires, such as invalid and infinity point 17 // handling. 18 // 19 // To interact with the nistec package, points are encoded into and decoded from 20 // properly formatted byte slices. All big.Int use is limited to this package. 21 // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, 22 // so the overhead is acceptable. 23 type p224Curve struct { 24 params *CurveParams 25 } 26 27 var p224 p224Curve 28 var _ Curve = p224 29 30 func initP224() { 31 p224.params = &CurveParams{ 32 Name: "P-224", 33 BitSize: 224, 34 // FIPS 186-4, section D.1.2.2 35 P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"), 36 N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"), 37 B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"), 38 Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"), 39 Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), 40 } 41 } 42 43 func (curve p224Curve) Params() *CurveParams { 44 return curve.params 45 } 46 47 func (curve p224Curve) IsOnCurve(x, y *big.Int) bool { 48 // IsOnCurve is documented to reject (0, 0), the conventional point at 49 // infinity, which however is accepted by p224PointFromAffine. 50 if x.Sign() == 0 && y.Sign() == 0 { 51 return false 52 } 53 _, ok := p224PointFromAffine(x, y) 54 return ok 55 } 56 57 func p224PointFromAffine(x, y *big.Int) (p *nistec.P224Point, ok bool) { 58 // (0, 0) is by convention the point at infinity, which can't be represented 59 // in affine coordinates. Marshal incorrectly encodes it as an uncompressed 60 // point, which SetBytes would correctly reject. See Issue 37294. 61 if x.Sign() == 0 && y.Sign() == 0 { 62 return nistec.NewP224Point(), true 63 } 64 if x.BitLen() > 224 || y.BitLen() > 224 { 65 return nil, false 66 } 67 p, err := nistec.NewP224Point().SetBytes(Marshal(P224(), x, y)) 68 if err != nil { 69 return nil, false 70 } 71 return p, true 72 } 73 74 func p224PointToAffine(p *nistec.P224Point) (x, y *big.Int) { 75 out := p.Bytes() 76 if len(out) == 1 && out[0] == 0 { 77 // This is the correct encoding of the point at infinity, which 78 // Unmarshal does not support. See Issue 37294. 79 return new(big.Int), new(big.Int) 80 } 81 x, y = Unmarshal(P224(), out) 82 if x == nil { 83 panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") 84 } 85 return x, y 86 } 87 88 // p224RandomPoint returns a random point on the curve. It's used when Add, 89 // Double, or ScalarMult are fed a point not on the curve, which is undefined 90 // behavior. Originally, we used to do the math on it anyway (which allows 91 // invalid curve attacks) and relied on the caller and Unmarshal to avoid this 92 // happening in the first place. Now, we just can't construct a nistec.P224Point 93 // for an invalid pair of coordinates, because that API is safer. If we panic, 94 // we risk introducing a DoS. If we return nil, we risk a panic. If we return 95 // the input, ecdsa.Verify might fail open. The safest course seems to be to 96 // return a valid, random point, which hopefully won't help the attacker. 97 func p224RandomPoint() (x, y *big.Int) { 98 _, x, y, err := GenerateKey(P224(), rand.Reader) 99 if err != nil { 100 panic("crypto/elliptic: failed to generate random point") 101 } 102 return x, y 103 } 104 105 func (p224Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 106 p1, ok := p224PointFromAffine(x1, y1) 107 if !ok { 108 return p224RandomPoint() 109 } 110 p2, ok := p224PointFromAffine(x2, y2) 111 if !ok { 112 return p224RandomPoint() 113 } 114 return p224PointToAffine(p1.Add(p1, p2)) 115 } 116 117 func (p224Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 118 p, ok := p224PointFromAffine(x1, y1) 119 if !ok { 120 return p224RandomPoint() 121 } 122 return p224PointToAffine(p.Double(p)) 123 } 124 125 func (p224Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 126 p, ok := p224PointFromAffine(Bx, By) 127 if !ok { 128 return p224RandomPoint() 129 } 130 return p224PointToAffine(p.ScalarMult(p, scalar)) 131 } 132 133 func (p224Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { 134 p := nistec.NewP224Generator() 135 return p224PointToAffine(p.ScalarMult(p, scalar)) 136 }