github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/runtime/mpagealloc.go (about)

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Page allocator.
     6  //
     7  // The page allocator manages mapped pages (defined by pageSize, NOT
     8  // physPageSize) for allocation and re-use. It is embedded into mheap.
     9  //
    10  // Pages are managed using a bitmap that is sharded into chunks.
    11  // In the bitmap, 1 means in-use, and 0 means free. The bitmap spans the
    12  // process's address space. Chunks are managed in a sparse-array-style structure
    13  // similar to mheap.arenas, since the bitmap may be large on some systems.
    14  //
    15  // The bitmap is efficiently searched by using a radix tree in combination
    16  // with fast bit-wise intrinsics. Allocation is performed using an address-ordered
    17  // first-fit approach.
    18  //
    19  // Each entry in the radix tree is a summary that describes three properties of
    20  // a particular region of the address space: the number of contiguous free pages
    21  // at the start and end of the region it represents, and the maximum number of
    22  // contiguous free pages found anywhere in that region.
    23  //
    24  // Each level of the radix tree is stored as one contiguous array, which represents
    25  // a different granularity of subdivision of the processes' address space. Thus, this
    26  // radix tree is actually implicit in these large arrays, as opposed to having explicit
    27  // dynamically-allocated pointer-based node structures. Naturally, these arrays may be
    28  // quite large for system with large address spaces, so in these cases they are mapped
    29  // into memory as needed. The leaf summaries of the tree correspond to a bitmap chunk.
    30  //
    31  // The root level (referred to as L0 and index 0 in pageAlloc.summary) has each
    32  // summary represent the largest section of address space (16 GiB on 64-bit systems),
    33  // with each subsequent level representing successively smaller subsections until we
    34  // reach the finest granularity at the leaves, a chunk.
    35  //
    36  // More specifically, each summary in each level (except for leaf summaries)
    37  // represents some number of entries in the following level. For example, each
    38  // summary in the root level may represent a 16 GiB region of address space,
    39  // and in the next level there could be 8 corresponding entries which represent 2
    40  // GiB subsections of that 16 GiB region, each of which could correspond to 8
    41  // entries in the next level which each represent 256 MiB regions, and so on.
    42  //
    43  // Thus, this design only scales to heaps so large, but can always be extended to
    44  // larger heaps by simply adding levels to the radix tree, which mostly costs
    45  // additional virtual address space. The choice of managing large arrays also means
    46  // that a large amount of virtual address space may be reserved by the runtime.
    47  
    48  package runtime
    49  
    50  import (
    51  	"runtime/internal/atomic"
    52  	"unsafe"
    53  )
    54  
    55  const (
    56  	// The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider
    57  	// in the bitmap at once.
    58  	pallocChunkPages    = 1 << logPallocChunkPages
    59  	pallocChunkBytes    = pallocChunkPages * pageSize
    60  	logPallocChunkPages = 9
    61  	logPallocChunkBytes = logPallocChunkPages + pageShift
    62  
    63  	// The number of radix bits for each level.
    64  	//
    65  	// The value of 3 is chosen such that the block of summaries we need to scan at
    66  	// each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is
    67  	// close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree
    68  	// levels perfectly into the 21-bit pallocBits summary field at the root level.
    69  	//
    70  	// The following equation explains how each of the constants relate:
    71  	// summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits
    72  	//
    73  	// summaryLevels is an architecture-dependent value defined in mpagealloc_*.go.
    74  	summaryLevelBits = 3
    75  	summaryL0Bits    = heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits
    76  
    77  	// pallocChunksL2Bits is the number of bits of the chunk index number
    78  	// covered by the second level of the chunks map.
    79  	//
    80  	// See (*pageAlloc).chunks for more details. Update the documentation
    81  	// there should this change.
    82  	pallocChunksL2Bits  = heapAddrBits - logPallocChunkBytes - pallocChunksL1Bits
    83  	pallocChunksL1Shift = pallocChunksL2Bits
    84  )
    85  
    86  // Maximum searchAddr value, which indicates that the heap has no free space.
    87  //
    88  // We alias maxOffAddr just to make it clear that this is the maximum address
    89  // for the page allocator's search space. See maxOffAddr for details.
    90  var maxSearchAddr = maxOffAddr
    91  
    92  // Global chunk index.
    93  //
    94  // Represents an index into the leaf level of the radix tree.
    95  // Similar to arenaIndex, except instead of arenas, it divides the address
    96  // space into chunks.
    97  type chunkIdx uint
    98  
    99  // chunkIndex returns the global index of the palloc chunk containing the
   100  // pointer p.
   101  func chunkIndex(p uintptr) chunkIdx {
   102  	return chunkIdx((p - arenaBaseOffset) / pallocChunkBytes)
   103  }
   104  
   105  // chunkIndex returns the base address of the palloc chunk at index ci.
   106  func chunkBase(ci chunkIdx) uintptr {
   107  	return uintptr(ci)*pallocChunkBytes + arenaBaseOffset
   108  }
   109  
   110  // chunkPageIndex computes the index of the page that contains p,
   111  // relative to the chunk which contains p.
   112  func chunkPageIndex(p uintptr) uint {
   113  	return uint(p % pallocChunkBytes / pageSize)
   114  }
   115  
   116  // l1 returns the index into the first level of (*pageAlloc).chunks.
   117  func (i chunkIdx) l1() uint {
   118  	if pallocChunksL1Bits == 0 {
   119  		// Let the compiler optimize this away if there's no
   120  		// L1 map.
   121  		return 0
   122  	} else {
   123  		return uint(i) >> pallocChunksL1Shift
   124  	}
   125  }
   126  
   127  // l2 returns the index into the second level of (*pageAlloc).chunks.
   128  func (i chunkIdx) l2() uint {
   129  	if pallocChunksL1Bits == 0 {
   130  		return uint(i)
   131  	} else {
   132  		return uint(i) & (1<<pallocChunksL2Bits - 1)
   133  	}
   134  }
   135  
   136  // offAddrToLevelIndex converts an address in the offset address space
   137  // to the index into summary[level] containing addr.
   138  func offAddrToLevelIndex(level int, addr offAddr) int {
   139  	return int((addr.a - arenaBaseOffset) >> levelShift[level])
   140  }
   141  
   142  // levelIndexToOffAddr converts an index into summary[level] into
   143  // the corresponding address in the offset address space.
   144  func levelIndexToOffAddr(level, idx int) offAddr {
   145  	return offAddr{(uintptr(idx) << levelShift[level]) + arenaBaseOffset}
   146  }
   147  
   148  // addrsToSummaryRange converts base and limit pointers into a range
   149  // of entries for the given summary level.
   150  //
   151  // The returned range is inclusive on the lower bound and exclusive on
   152  // the upper bound.
   153  func addrsToSummaryRange(level int, base, limit uintptr) (lo int, hi int) {
   154  	// This is slightly more nuanced than just a shift for the exclusive
   155  	// upper-bound. Note that the exclusive upper bound may be within a
   156  	// summary at this level, meaning if we just do the obvious computation
   157  	// hi will end up being an inclusive upper bound. Unfortunately, just
   158  	// adding 1 to that is too broad since we might be on the very edge
   159  	// of a summary's max page count boundary for this level
   160  	// (1 << levelLogPages[level]). So, make limit an inclusive upper bound
   161  	// then shift, then add 1, so we get an exclusive upper bound at the end.
   162  	lo = int((base - arenaBaseOffset) >> levelShift[level])
   163  	hi = int(((limit-1)-arenaBaseOffset)>>levelShift[level]) + 1
   164  	return
   165  }
   166  
   167  // blockAlignSummaryRange aligns indices into the given level to that
   168  // level's block width (1 << levelBits[level]). It assumes lo is inclusive
   169  // and hi is exclusive, and so aligns them down and up respectively.
   170  func blockAlignSummaryRange(level int, lo, hi int) (int, int) {
   171  	e := uintptr(1) << levelBits[level]
   172  	return int(alignDown(uintptr(lo), e)), int(alignUp(uintptr(hi), e))
   173  }
   174  
   175  type pageAlloc struct {
   176  	// Radix tree of summaries.
   177  	//
   178  	// Each slice's cap represents the whole memory reservation.
   179  	// Each slice's len reflects the allocator's maximum known
   180  	// mapped heap address for that level.
   181  	//
   182  	// The backing store of each summary level is reserved in init
   183  	// and may or may not be committed in grow (small address spaces
   184  	// may commit all the memory in init).
   185  	//
   186  	// The purpose of keeping len <= cap is to enforce bounds checks
   187  	// on the top end of the slice so that instead of an unknown
   188  	// runtime segmentation fault, we get a much friendlier out-of-bounds
   189  	// error.
   190  	//
   191  	// To iterate over a summary level, use inUse to determine which ranges
   192  	// are currently available. Otherwise one might try to access
   193  	// memory which is only Reserved which may result in a hard fault.
   194  	//
   195  	// We may still get segmentation faults < len since some of that
   196  	// memory may not be committed yet.
   197  	summary [summaryLevels][]pallocSum
   198  
   199  	// chunks is a slice of bitmap chunks.
   200  	//
   201  	// The total size of chunks is quite large on most 64-bit platforms
   202  	// (O(GiB) or more) if flattened, so rather than making one large mapping
   203  	// (which has problems on some platforms, even when PROT_NONE) we use a
   204  	// two-level sparse array approach similar to the arena index in mheap.
   205  	//
   206  	// To find the chunk containing a memory address `a`, do:
   207  	//   chunkOf(chunkIndex(a))
   208  	//
   209  	// Below is a table describing the configuration for chunks for various
   210  	// heapAddrBits supported by the runtime.
   211  	//
   212  	// heapAddrBits | L1 Bits | L2 Bits | L2 Entry Size
   213  	// ------------------------------------------------
   214  	// 32           | 0       | 10      | 128 KiB
   215  	// 33 (iOS)     | 0       | 11      | 256 KiB
   216  	// 48           | 13      | 13      | 1 MiB
   217  	//
   218  	// There's no reason to use the L1 part of chunks on 32-bit, the
   219  	// address space is small so the L2 is small. For platforms with a
   220  	// 48-bit address space, we pick the L1 such that the L2 is 1 MiB
   221  	// in size, which is a good balance between low granularity without
   222  	// making the impact on BSS too high (note the L1 is stored directly
   223  	// in pageAlloc).
   224  	//
   225  	// To iterate over the bitmap, use inUse to determine which ranges
   226  	// are currently available. Otherwise one might iterate over unused
   227  	// ranges.
   228  	//
   229  	// Protected by mheapLock.
   230  	//
   231  	// TODO(mknyszek): Consider changing the definition of the bitmap
   232  	// such that 1 means free and 0 means in-use so that summaries and
   233  	// the bitmaps align better on zero-values.
   234  	chunks [1 << pallocChunksL1Bits]*[1 << pallocChunksL2Bits]pallocData
   235  
   236  	// The address to start an allocation search with. It must never
   237  	// point to any memory that is not contained in inUse, i.e.
   238  	// inUse.contains(searchAddr.addr()) must always be true. The one
   239  	// exception to this rule is that it may take on the value of
   240  	// maxOffAddr to indicate that the heap is exhausted.
   241  	//
   242  	// We guarantee that all valid heap addresses below this value
   243  	// are allocated and not worth searching.
   244  	searchAddr offAddr
   245  
   246  	// start and end represent the chunk indices
   247  	// which pageAlloc knows about. It assumes
   248  	// chunks in the range [start, end) are
   249  	// currently ready to use.
   250  	start, end chunkIdx
   251  
   252  	// inUse is a slice of ranges of address space which are
   253  	// known by the page allocator to be currently in-use (passed
   254  	// to grow).
   255  	//
   256  	// This field is currently unused on 32-bit architectures but
   257  	// is harmless to track. We care much more about having a
   258  	// contiguous heap in these cases and take additional measures
   259  	// to ensure that, so in nearly all cases this should have just
   260  	// 1 element.
   261  	//
   262  	// All access is protected by the mheapLock.
   263  	inUse addrRanges
   264  
   265  	// scav stores the scavenger state.
   266  	scav struct {
   267  		lock mutex
   268  
   269  		// inUse is a slice of ranges of address space which have not
   270  		// yet been looked at by the scavenger.
   271  		//
   272  		// Protected by lock.
   273  		inUse addrRanges
   274  
   275  		// gen is the scavenge generation number.
   276  		//
   277  		// Protected by lock.
   278  		gen uint32
   279  
   280  		// reservationBytes is how large of a reservation should be made
   281  		// in bytes of address space for each scavenge iteration.
   282  		//
   283  		// Protected by lock.
   284  		reservationBytes uintptr
   285  
   286  		// released is the amount of memory released this generation.
   287  		//
   288  		// Updated atomically.
   289  		released uintptr
   290  
   291  		// scavLWM is the lowest (offset) address that the scavenger reached this
   292  		// scavenge generation.
   293  		//
   294  		// Protected by lock.
   295  		scavLWM offAddr
   296  
   297  		// freeHWM is the highest (offset) address of a page that was freed to
   298  		// the page allocator this scavenge generation.
   299  		//
   300  		// Protected by mheapLock.
   301  		freeHWM offAddr
   302  	}
   303  
   304  	// mheap_.lock. This level of indirection makes it possible
   305  	// to test pageAlloc indepedently of the runtime allocator.
   306  	mheapLock *mutex
   307  
   308  	// sysStat is the runtime memstat to update when new system
   309  	// memory is committed by the pageAlloc for allocation metadata.
   310  	sysStat *sysMemStat
   311  
   312  	// Whether or not this struct is being used in tests.
   313  	test bool
   314  }
   315  
   316  func (p *pageAlloc) init(mheapLock *mutex, sysStat *sysMemStat) {
   317  	if levelLogPages[0] > logMaxPackedValue {
   318  		// We can't represent 1<<levelLogPages[0] pages, the maximum number
   319  		// of pages we need to represent at the root level, in a summary, which
   320  		// is a big problem. Throw.
   321  		print("runtime: root level max pages = ", 1<<levelLogPages[0], "\n")
   322  		print("runtime: summary max pages = ", maxPackedValue, "\n")
   323  		throw("root level max pages doesn't fit in summary")
   324  	}
   325  	p.sysStat = sysStat
   326  
   327  	// Initialize p.inUse.
   328  	p.inUse.init(sysStat)
   329  
   330  	// System-dependent initialization.
   331  	p.sysInit()
   332  
   333  	// Start with the searchAddr in a state indicating there's no free memory.
   334  	p.searchAddr = maxSearchAddr
   335  
   336  	// Set the mheapLock.
   337  	p.mheapLock = mheapLock
   338  
   339  	// Initialize scavenge tracking state.
   340  	p.scav.scavLWM = maxSearchAddr
   341  }
   342  
   343  // tryChunkOf returns the bitmap data for the given chunk.
   344  //
   345  // Returns nil if the chunk data has not been mapped.
   346  func (p *pageAlloc) tryChunkOf(ci chunkIdx) *pallocData {
   347  	l2 := p.chunks[ci.l1()]
   348  	if l2 == nil {
   349  		return nil
   350  	}
   351  	return &l2[ci.l2()]
   352  }
   353  
   354  // chunkOf returns the chunk at the given chunk index.
   355  //
   356  // The chunk index must be valid or this method may throw.
   357  func (p *pageAlloc) chunkOf(ci chunkIdx) *pallocData {
   358  	return &p.chunks[ci.l1()][ci.l2()]
   359  }
   360  
   361  // grow sets up the metadata for the address range [base, base+size).
   362  // It may allocate metadata, in which case *p.sysStat will be updated.
   363  //
   364  // p.mheapLock must be held.
   365  func (p *pageAlloc) grow(base, size uintptr) {
   366  	assertLockHeld(p.mheapLock)
   367  
   368  	// Round up to chunks, since we can't deal with increments smaller
   369  	// than chunks. Also, sysGrow expects aligned values.
   370  	limit := alignUp(base+size, pallocChunkBytes)
   371  	base = alignDown(base, pallocChunkBytes)
   372  
   373  	// Grow the summary levels in a system-dependent manner.
   374  	// We just update a bunch of additional metadata here.
   375  	p.sysGrow(base, limit)
   376  
   377  	// Update p.start and p.end.
   378  	// If no growth happened yet, start == 0. This is generally
   379  	// safe since the zero page is unmapped.
   380  	firstGrowth := p.start == 0
   381  	start, end := chunkIndex(base), chunkIndex(limit)
   382  	if firstGrowth || start < p.start {
   383  		p.start = start
   384  	}
   385  	if end > p.end {
   386  		p.end = end
   387  	}
   388  	// Note that [base, limit) will never overlap with any existing
   389  	// range inUse because grow only ever adds never-used memory
   390  	// regions to the page allocator.
   391  	p.inUse.add(makeAddrRange(base, limit))
   392  
   393  	// A grow operation is a lot like a free operation, so if our
   394  	// chunk ends up below p.searchAddr, update p.searchAddr to the
   395  	// new address, just like in free.
   396  	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
   397  		p.searchAddr = b
   398  	}
   399  
   400  	// Add entries into chunks, which is sparse, if needed. Then,
   401  	// initialize the bitmap.
   402  	//
   403  	// Newly-grown memory is always considered scavenged.
   404  	// Set all the bits in the scavenged bitmaps high.
   405  	for c := chunkIndex(base); c < chunkIndex(limit); c++ {
   406  		if p.chunks[c.l1()] == nil {
   407  			// Create the necessary l2 entry.
   408  			//
   409  			// Store it atomically to avoid races with readers which
   410  			// don't acquire the heap lock.
   411  			r := sysAlloc(unsafe.Sizeof(*p.chunks[0]), p.sysStat)
   412  			if r == nil {
   413  				throw("pageAlloc: out of memory")
   414  			}
   415  			atomic.StorepNoWB(unsafe.Pointer(&p.chunks[c.l1()]), r)
   416  		}
   417  		p.chunkOf(c).scavenged.setRange(0, pallocChunkPages)
   418  	}
   419  
   420  	// Update summaries accordingly. The grow acts like a free, so
   421  	// we need to ensure this newly-free memory is visible in the
   422  	// summaries.
   423  	p.update(base, size/pageSize, true, false)
   424  }
   425  
   426  // update updates heap metadata. It must be called each time the bitmap
   427  // is updated.
   428  //
   429  // If contig is true, update does some optimizations assuming that there was
   430  // a contiguous allocation or free between addr and addr+npages. alloc indicates
   431  // whether the operation performed was an allocation or a free.
   432  //
   433  // p.mheapLock must be held.
   434  func (p *pageAlloc) update(base, npages uintptr, contig, alloc bool) {
   435  	assertLockHeld(p.mheapLock)
   436  
   437  	// base, limit, start, and end are inclusive.
   438  	limit := base + npages*pageSize - 1
   439  	sc, ec := chunkIndex(base), chunkIndex(limit)
   440  
   441  	// Handle updating the lowest level first.
   442  	if sc == ec {
   443  		// Fast path: the allocation doesn't span more than one chunk,
   444  		// so update this one and if the summary didn't change, return.
   445  		x := p.summary[len(p.summary)-1][sc]
   446  		y := p.chunkOf(sc).summarize()
   447  		if x == y {
   448  			return
   449  		}
   450  		p.summary[len(p.summary)-1][sc] = y
   451  	} else if contig {
   452  		// Slow contiguous path: the allocation spans more than one chunk
   453  		// and at least one summary is guaranteed to change.
   454  		summary := p.summary[len(p.summary)-1]
   455  
   456  		// Update the summary for chunk sc.
   457  		summary[sc] = p.chunkOf(sc).summarize()
   458  
   459  		// Update the summaries for chunks in between, which are
   460  		// either totally allocated or freed.
   461  		whole := p.summary[len(p.summary)-1][sc+1 : ec]
   462  		if alloc {
   463  			// Should optimize into a memclr.
   464  			for i := range whole {
   465  				whole[i] = 0
   466  			}
   467  		} else {
   468  			for i := range whole {
   469  				whole[i] = freeChunkSum
   470  			}
   471  		}
   472  
   473  		// Update the summary for chunk ec.
   474  		summary[ec] = p.chunkOf(ec).summarize()
   475  	} else {
   476  		// Slow general path: the allocation spans more than one chunk
   477  		// and at least one summary is guaranteed to change.
   478  		//
   479  		// We can't assume a contiguous allocation happened, so walk over
   480  		// every chunk in the range and manually recompute the summary.
   481  		summary := p.summary[len(p.summary)-1]
   482  		for c := sc; c <= ec; c++ {
   483  			summary[c] = p.chunkOf(c).summarize()
   484  		}
   485  	}
   486  
   487  	// Walk up the radix tree and update the summaries appropriately.
   488  	changed := true
   489  	for l := len(p.summary) - 2; l >= 0 && changed; l-- {
   490  		// Update summaries at level l from summaries at level l+1.
   491  		changed = false
   492  
   493  		// "Constants" for the previous level which we
   494  		// need to compute the summary from that level.
   495  		logEntriesPerBlock := levelBits[l+1]
   496  		logMaxPages := levelLogPages[l+1]
   497  
   498  		// lo and hi describe all the parts of the level we need to look at.
   499  		lo, hi := addrsToSummaryRange(l, base, limit+1)
   500  
   501  		// Iterate over each block, updating the corresponding summary in the less-granular level.
   502  		for i := lo; i < hi; i++ {
   503  			children := p.summary[l+1][i<<logEntriesPerBlock : (i+1)<<logEntriesPerBlock]
   504  			sum := mergeSummaries(children, logMaxPages)
   505  			old := p.summary[l][i]
   506  			if old != sum {
   507  				changed = true
   508  				p.summary[l][i] = sum
   509  			}
   510  		}
   511  	}
   512  }
   513  
   514  // allocRange marks the range of memory [base, base+npages*pageSize) as
   515  // allocated. It also updates the summaries to reflect the newly-updated
   516  // bitmap.
   517  //
   518  // Returns the amount of scavenged memory in bytes present in the
   519  // allocated range.
   520  //
   521  // p.mheapLock must be held.
   522  func (p *pageAlloc) allocRange(base, npages uintptr) uintptr {
   523  	assertLockHeld(p.mheapLock)
   524  
   525  	limit := base + npages*pageSize - 1
   526  	sc, ec := chunkIndex(base), chunkIndex(limit)
   527  	si, ei := chunkPageIndex(base), chunkPageIndex(limit)
   528  
   529  	scav := uint(0)
   530  	if sc == ec {
   531  		// The range doesn't cross any chunk boundaries.
   532  		chunk := p.chunkOf(sc)
   533  		scav += chunk.scavenged.popcntRange(si, ei+1-si)
   534  		chunk.allocRange(si, ei+1-si)
   535  	} else {
   536  		// The range crosses at least one chunk boundary.
   537  		chunk := p.chunkOf(sc)
   538  		scav += chunk.scavenged.popcntRange(si, pallocChunkPages-si)
   539  		chunk.allocRange(si, pallocChunkPages-si)
   540  		for c := sc + 1; c < ec; c++ {
   541  			chunk := p.chunkOf(c)
   542  			scav += chunk.scavenged.popcntRange(0, pallocChunkPages)
   543  			chunk.allocAll()
   544  		}
   545  		chunk = p.chunkOf(ec)
   546  		scav += chunk.scavenged.popcntRange(0, ei+1)
   547  		chunk.allocRange(0, ei+1)
   548  	}
   549  	p.update(base, npages, true, true)
   550  	return uintptr(scav) * pageSize
   551  }
   552  
   553  // findMappedAddr returns the smallest mapped offAddr that is
   554  // >= addr. That is, if addr refers to mapped memory, then it is
   555  // returned. If addr is higher than any mapped region, then
   556  // it returns maxOffAddr.
   557  //
   558  // p.mheapLock must be held.
   559  func (p *pageAlloc) findMappedAddr(addr offAddr) offAddr {
   560  	assertLockHeld(p.mheapLock)
   561  
   562  	// If we're not in a test, validate first by checking mheap_.arenas.
   563  	// This is a fast path which is only safe to use outside of testing.
   564  	ai := arenaIndex(addr.addr())
   565  	if p.test || mheap_.arenas[ai.l1()] == nil || mheap_.arenas[ai.l1()][ai.l2()] == nil {
   566  		vAddr, ok := p.inUse.findAddrGreaterEqual(addr.addr())
   567  		if ok {
   568  			return offAddr{vAddr}
   569  		} else {
   570  			// The candidate search address is greater than any
   571  			// known address, which means we definitely have no
   572  			// free memory left.
   573  			return maxOffAddr
   574  		}
   575  	}
   576  	return addr
   577  }
   578  
   579  // find searches for the first (address-ordered) contiguous free region of
   580  // npages in size and returns a base address for that region.
   581  //
   582  // It uses p.searchAddr to prune its search and assumes that no palloc chunks
   583  // below chunkIndex(p.searchAddr) contain any free memory at all.
   584  //
   585  // find also computes and returns a candidate p.searchAddr, which may or
   586  // may not prune more of the address space than p.searchAddr already does.
   587  // This candidate is always a valid p.searchAddr.
   588  //
   589  // find represents the slow path and the full radix tree search.
   590  //
   591  // Returns a base address of 0 on failure, in which case the candidate
   592  // searchAddr returned is invalid and must be ignored.
   593  //
   594  // p.mheapLock must be held.
   595  func (p *pageAlloc) find(npages uintptr) (uintptr, offAddr) {
   596  	assertLockHeld(p.mheapLock)
   597  
   598  	// Search algorithm.
   599  	//
   600  	// This algorithm walks each level l of the radix tree from the root level
   601  	// to the leaf level. It iterates over at most 1 << levelBits[l] of entries
   602  	// in a given level in the radix tree, and uses the summary information to
   603  	// find either:
   604  	//  1) That a given subtree contains a large enough contiguous region, at
   605  	//     which point it continues iterating on the next level, or
   606  	//  2) That there are enough contiguous boundary-crossing bits to satisfy
   607  	//     the allocation, at which point it knows exactly where to start
   608  	//     allocating from.
   609  	//
   610  	// i tracks the index into the current level l's structure for the
   611  	// contiguous 1 << levelBits[l] entries we're actually interested in.
   612  	//
   613  	// NOTE: Technically this search could allocate a region which crosses
   614  	// the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is
   615  	// a discontinuity. However, the only way this could happen is if the
   616  	// page at the zero address is mapped, and this is impossible on
   617  	// every system we support where arenaBaseOffset != 0. So, the
   618  	// discontinuity is already encoded in the fact that the OS will never
   619  	// map the zero page for us, and this function doesn't try to handle
   620  	// this case in any way.
   621  
   622  	// i is the beginning of the block of entries we're searching at the
   623  	// current level.
   624  	i := 0
   625  
   626  	// firstFree is the region of address space that we are certain to
   627  	// find the first free page in the heap. base and bound are the inclusive
   628  	// bounds of this window, and both are addresses in the linearized, contiguous
   629  	// view of the address space (with arenaBaseOffset pre-added). At each level,
   630  	// this window is narrowed as we find the memory region containing the
   631  	// first free page of memory. To begin with, the range reflects the
   632  	// full process address space.
   633  	//
   634  	// firstFree is updated by calling foundFree each time free space in the
   635  	// heap is discovered.
   636  	//
   637  	// At the end of the search, base.addr() is the best new
   638  	// searchAddr we could deduce in this search.
   639  	firstFree := struct {
   640  		base, bound offAddr
   641  	}{
   642  		base:  minOffAddr,
   643  		bound: maxOffAddr,
   644  	}
   645  	// foundFree takes the given address range [addr, addr+size) and
   646  	// updates firstFree if it is a narrower range. The input range must
   647  	// either be fully contained within firstFree or not overlap with it
   648  	// at all.
   649  	//
   650  	// This way, we'll record the first summary we find with any free
   651  	// pages on the root level and narrow that down if we descend into
   652  	// that summary. But as soon as we need to iterate beyond that summary
   653  	// in a level to find a large enough range, we'll stop narrowing.
   654  	foundFree := func(addr offAddr, size uintptr) {
   655  		if firstFree.base.lessEqual(addr) && addr.add(size-1).lessEqual(firstFree.bound) {
   656  			// This range fits within the current firstFree window, so narrow
   657  			// down the firstFree window to the base and bound of this range.
   658  			firstFree.base = addr
   659  			firstFree.bound = addr.add(size - 1)
   660  		} else if !(addr.add(size-1).lessThan(firstFree.base) || firstFree.bound.lessThan(addr)) {
   661  			// This range only partially overlaps with the firstFree range,
   662  			// so throw.
   663  			print("runtime: addr = ", hex(addr.addr()), ", size = ", size, "\n")
   664  			print("runtime: base = ", hex(firstFree.base.addr()), ", bound = ", hex(firstFree.bound.addr()), "\n")
   665  			throw("range partially overlaps")
   666  		}
   667  	}
   668  
   669  	// lastSum is the summary which we saw on the previous level that made us
   670  	// move on to the next level. Used to print additional information in the
   671  	// case of a catastrophic failure.
   672  	// lastSumIdx is that summary's index in the previous level.
   673  	lastSum := packPallocSum(0, 0, 0)
   674  	lastSumIdx := -1
   675  
   676  nextLevel:
   677  	for l := 0; l < len(p.summary); l++ {
   678  		// For the root level, entriesPerBlock is the whole level.
   679  		entriesPerBlock := 1 << levelBits[l]
   680  		logMaxPages := levelLogPages[l]
   681  
   682  		// We've moved into a new level, so let's update i to our new
   683  		// starting index. This is a no-op for level 0.
   684  		i <<= levelBits[l]
   685  
   686  		// Slice out the block of entries we care about.
   687  		entries := p.summary[l][i : i+entriesPerBlock]
   688  
   689  		// Determine j0, the first index we should start iterating from.
   690  		// The searchAddr may help us eliminate iterations if we followed the
   691  		// searchAddr on the previous level or we're on the root leve, in which
   692  		// case the searchAddr should be the same as i after levelShift.
   693  		j0 := 0
   694  		if searchIdx := offAddrToLevelIndex(l, p.searchAddr); searchIdx&^(entriesPerBlock-1) == i {
   695  			j0 = searchIdx & (entriesPerBlock - 1)
   696  		}
   697  
   698  		// Run over the level entries looking for
   699  		// a contiguous run of at least npages either
   700  		// within an entry or across entries.
   701  		//
   702  		// base contains the page index (relative to
   703  		// the first entry's first page) of the currently
   704  		// considered run of consecutive pages.
   705  		//
   706  		// size contains the size of the currently considered
   707  		// run of consecutive pages.
   708  		var base, size uint
   709  		for j := j0; j < len(entries); j++ {
   710  			sum := entries[j]
   711  			if sum == 0 {
   712  				// A full entry means we broke any streak and
   713  				// that we should skip it altogether.
   714  				size = 0
   715  				continue
   716  			}
   717  
   718  			// We've encountered a non-zero summary which means
   719  			// free memory, so update firstFree.
   720  			foundFree(levelIndexToOffAddr(l, i+j), (uintptr(1)<<logMaxPages)*pageSize)
   721  
   722  			s := sum.start()
   723  			if size+s >= uint(npages) {
   724  				// If size == 0 we don't have a run yet,
   725  				// which means base isn't valid. So, set
   726  				// base to the first page in this block.
   727  				if size == 0 {
   728  					base = uint(j) << logMaxPages
   729  				}
   730  				// We hit npages; we're done!
   731  				size += s
   732  				break
   733  			}
   734  			if sum.max() >= uint(npages) {
   735  				// The entry itself contains npages contiguous
   736  				// free pages, so continue on the next level
   737  				// to find that run.
   738  				i += j
   739  				lastSumIdx = i
   740  				lastSum = sum
   741  				continue nextLevel
   742  			}
   743  			if size == 0 || s < 1<<logMaxPages {
   744  				// We either don't have a current run started, or this entry
   745  				// isn't totally free (meaning we can't continue the current
   746  				// one), so try to begin a new run by setting size and base
   747  				// based on sum.end.
   748  				size = sum.end()
   749  				base = uint(j+1)<<logMaxPages - size
   750  				continue
   751  			}
   752  			// The entry is completely free, so continue the run.
   753  			size += 1 << logMaxPages
   754  		}
   755  		if size >= uint(npages) {
   756  			// We found a sufficiently large run of free pages straddling
   757  			// some boundary, so compute the address and return it.
   758  			addr := levelIndexToOffAddr(l, i).add(uintptr(base) * pageSize).addr()
   759  			return addr, p.findMappedAddr(firstFree.base)
   760  		}
   761  		if l == 0 {
   762  			// We're at level zero, so that means we've exhausted our search.
   763  			return 0, maxSearchAddr
   764  		}
   765  
   766  		// We're not at level zero, and we exhausted the level we were looking in.
   767  		// This means that either our calculations were wrong or the level above
   768  		// lied to us. In either case, dump some useful state and throw.
   769  		print("runtime: summary[", l-1, "][", lastSumIdx, "] = ", lastSum.start(), ", ", lastSum.max(), ", ", lastSum.end(), "\n")
   770  		print("runtime: level = ", l, ", npages = ", npages, ", j0 = ", j0, "\n")
   771  		print("runtime: p.searchAddr = ", hex(p.searchAddr.addr()), ", i = ", i, "\n")
   772  		print("runtime: levelShift[level] = ", levelShift[l], ", levelBits[level] = ", levelBits[l], "\n")
   773  		for j := 0; j < len(entries); j++ {
   774  			sum := entries[j]
   775  			print("runtime: summary[", l, "][", i+j, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
   776  		}
   777  		throw("bad summary data")
   778  	}
   779  
   780  	// Since we've gotten to this point, that means we haven't found a
   781  	// sufficiently-sized free region straddling some boundary (chunk or larger).
   782  	// This means the last summary we inspected must have had a large enough "max"
   783  	// value, so look inside the chunk to find a suitable run.
   784  	//
   785  	// After iterating over all levels, i must contain a chunk index which
   786  	// is what the final level represents.
   787  	ci := chunkIdx(i)
   788  	j, searchIdx := p.chunkOf(ci).find(npages, 0)
   789  	if j == ^uint(0) {
   790  		// We couldn't find any space in this chunk despite the summaries telling
   791  		// us it should be there. There's likely a bug, so dump some state and throw.
   792  		sum := p.summary[len(p.summary)-1][i]
   793  		print("runtime: summary[", len(p.summary)-1, "][", i, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
   794  		print("runtime: npages = ", npages, "\n")
   795  		throw("bad summary data")
   796  	}
   797  
   798  	// Compute the address at which the free space starts.
   799  	addr := chunkBase(ci) + uintptr(j)*pageSize
   800  
   801  	// Since we actually searched the chunk, we may have
   802  	// found an even narrower free window.
   803  	searchAddr := chunkBase(ci) + uintptr(searchIdx)*pageSize
   804  	foundFree(offAddr{searchAddr}, chunkBase(ci+1)-searchAddr)
   805  	return addr, p.findMappedAddr(firstFree.base)
   806  }
   807  
   808  // alloc allocates npages worth of memory from the page heap, returning the base
   809  // address for the allocation and the amount of scavenged memory in bytes
   810  // contained in the region [base address, base address + npages*pageSize).
   811  //
   812  // Returns a 0 base address on failure, in which case other returned values
   813  // should be ignored.
   814  //
   815  // p.mheapLock must be held.
   816  //
   817  // Must run on the system stack because p.mheapLock must be held.
   818  //
   819  //go:systemstack
   820  func (p *pageAlloc) alloc(npages uintptr) (addr uintptr, scav uintptr) {
   821  	assertLockHeld(p.mheapLock)
   822  
   823  	// If the searchAddr refers to a region which has a higher address than
   824  	// any known chunk, then we know we're out of memory.
   825  	if chunkIndex(p.searchAddr.addr()) >= p.end {
   826  		return 0, 0
   827  	}
   828  
   829  	// If npages has a chance of fitting in the chunk where the searchAddr is,
   830  	// search it directly.
   831  	searchAddr := minOffAddr
   832  	if pallocChunkPages-chunkPageIndex(p.searchAddr.addr()) >= uint(npages) {
   833  		// npages is guaranteed to be no greater than pallocChunkPages here.
   834  		i := chunkIndex(p.searchAddr.addr())
   835  		if max := p.summary[len(p.summary)-1][i].max(); max >= uint(npages) {
   836  			j, searchIdx := p.chunkOf(i).find(npages, chunkPageIndex(p.searchAddr.addr()))
   837  			if j == ^uint(0) {
   838  				print("runtime: max = ", max, ", npages = ", npages, "\n")
   839  				print("runtime: searchIdx = ", chunkPageIndex(p.searchAddr.addr()), ", p.searchAddr = ", hex(p.searchAddr.addr()), "\n")
   840  				throw("bad summary data")
   841  			}
   842  			addr = chunkBase(i) + uintptr(j)*pageSize
   843  			searchAddr = offAddr{chunkBase(i) + uintptr(searchIdx)*pageSize}
   844  			goto Found
   845  		}
   846  	}
   847  	// We failed to use a searchAddr for one reason or another, so try
   848  	// the slow path.
   849  	addr, searchAddr = p.find(npages)
   850  	if addr == 0 {
   851  		if npages == 1 {
   852  			// We failed to find a single free page, the smallest unit
   853  			// of allocation. This means we know the heap is completely
   854  			// exhausted. Otherwise, the heap still might have free
   855  			// space in it, just not enough contiguous space to
   856  			// accommodate npages.
   857  			p.searchAddr = maxSearchAddr
   858  		}
   859  		return 0, 0
   860  	}
   861  Found:
   862  	// Go ahead and actually mark the bits now that we have an address.
   863  	scav = p.allocRange(addr, npages)
   864  
   865  	// If we found a higher searchAddr, we know that all the
   866  	// heap memory before that searchAddr in an offset address space is
   867  	// allocated, so bump p.searchAddr up to the new one.
   868  	if p.searchAddr.lessThan(searchAddr) {
   869  		p.searchAddr = searchAddr
   870  	}
   871  	return addr, scav
   872  }
   873  
   874  // free returns npages worth of memory starting at base back to the page heap.
   875  //
   876  // p.mheapLock must be held.
   877  //
   878  // Must run on the system stack because p.mheapLock must be held.
   879  //
   880  //go:systemstack
   881  func (p *pageAlloc) free(base, npages uintptr, scavenged bool) {
   882  	assertLockHeld(p.mheapLock)
   883  
   884  	// If we're freeing pages below the p.searchAddr, update searchAddr.
   885  	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
   886  		p.searchAddr = b
   887  	}
   888  	limit := base + npages*pageSize - 1
   889  	if !scavenged {
   890  		// Update the free high watermark for the scavenger.
   891  		if offLimit := (offAddr{limit}); p.scav.freeHWM.lessThan(offLimit) {
   892  			p.scav.freeHWM = offLimit
   893  		}
   894  	}
   895  	if npages == 1 {
   896  		// Fast path: we're clearing a single bit, and we know exactly
   897  		// where it is, so mark it directly.
   898  		i := chunkIndex(base)
   899  		p.chunkOf(i).free1(chunkPageIndex(base))
   900  	} else {
   901  		// Slow path: we're clearing more bits so we may need to iterate.
   902  		sc, ec := chunkIndex(base), chunkIndex(limit)
   903  		si, ei := chunkPageIndex(base), chunkPageIndex(limit)
   904  
   905  		if sc == ec {
   906  			// The range doesn't cross any chunk boundaries.
   907  			p.chunkOf(sc).free(si, ei+1-si)
   908  		} else {
   909  			// The range crosses at least one chunk boundary.
   910  			p.chunkOf(sc).free(si, pallocChunkPages-si)
   911  			for c := sc + 1; c < ec; c++ {
   912  				p.chunkOf(c).freeAll()
   913  			}
   914  			p.chunkOf(ec).free(0, ei+1)
   915  		}
   916  	}
   917  	p.update(base, npages, true, false)
   918  }
   919  
   920  const (
   921  	pallocSumBytes = unsafe.Sizeof(pallocSum(0))
   922  
   923  	// maxPackedValue is the maximum value that any of the three fields in
   924  	// the pallocSum may take on.
   925  	maxPackedValue    = 1 << logMaxPackedValue
   926  	logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits
   927  
   928  	freeChunkSum = pallocSum(uint64(pallocChunkPages) |
   929  		uint64(pallocChunkPages<<logMaxPackedValue) |
   930  		uint64(pallocChunkPages<<(2*logMaxPackedValue)))
   931  )
   932  
   933  // pallocSum is a packed summary type which packs three numbers: start, max,
   934  // and end into a single 8-byte value. Each of these values are a summary of
   935  // a bitmap and are thus counts, each of which may have a maximum value of
   936  // 2^21 - 1, or all three may be equal to 2^21. The latter case is represented
   937  // by just setting the 64th bit.
   938  type pallocSum uint64
   939  
   940  // packPallocSum takes a start, max, and end value and produces a pallocSum.
   941  func packPallocSum(start, max, end uint) pallocSum {
   942  	if max == maxPackedValue {
   943  		return pallocSum(uint64(1 << 63))
   944  	}
   945  	return pallocSum((uint64(start) & (maxPackedValue - 1)) |
   946  		((uint64(max) & (maxPackedValue - 1)) << logMaxPackedValue) |
   947  		((uint64(end) & (maxPackedValue - 1)) << (2 * logMaxPackedValue)))
   948  }
   949  
   950  // start extracts the start value from a packed sum.
   951  func (p pallocSum) start() uint {
   952  	if uint64(p)&uint64(1<<63) != 0 {
   953  		return maxPackedValue
   954  	}
   955  	return uint(uint64(p) & (maxPackedValue - 1))
   956  }
   957  
   958  // max extracts the max value from a packed sum.
   959  func (p pallocSum) max() uint {
   960  	if uint64(p)&uint64(1<<63) != 0 {
   961  		return maxPackedValue
   962  	}
   963  	return uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1))
   964  }
   965  
   966  // end extracts the end value from a packed sum.
   967  func (p pallocSum) end() uint {
   968  	if uint64(p)&uint64(1<<63) != 0 {
   969  		return maxPackedValue
   970  	}
   971  	return uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
   972  }
   973  
   974  // unpack unpacks all three values from the summary.
   975  func (p pallocSum) unpack() (uint, uint, uint) {
   976  	if uint64(p)&uint64(1<<63) != 0 {
   977  		return maxPackedValue, maxPackedValue, maxPackedValue
   978  	}
   979  	return uint(uint64(p) & (maxPackedValue - 1)),
   980  		uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)),
   981  		uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
   982  }
   983  
   984  // mergeSummaries merges consecutive summaries which may each represent at
   985  // most 1 << logMaxPagesPerSum pages each together into one.
   986  func mergeSummaries(sums []pallocSum, logMaxPagesPerSum uint) pallocSum {
   987  	// Merge the summaries in sums into one.
   988  	//
   989  	// We do this by keeping a running summary representing the merged
   990  	// summaries of sums[:i] in start, max, and end.
   991  	start, max, end := sums[0].unpack()
   992  	for i := 1; i < len(sums); i++ {
   993  		// Merge in sums[i].
   994  		si, mi, ei := sums[i].unpack()
   995  
   996  		// Merge in sums[i].start only if the running summary is
   997  		// completely free, otherwise this summary's start
   998  		// plays no role in the combined sum.
   999  		if start == uint(i)<<logMaxPagesPerSum {
  1000  			start += si
  1001  		}
  1002  
  1003  		// Recompute the max value of the running sum by looking
  1004  		// across the boundary between the running sum and sums[i]
  1005  		// and at the max sums[i], taking the greatest of those two
  1006  		// and the max of the running sum.
  1007  		if end+si > max {
  1008  			max = end + si
  1009  		}
  1010  		if mi > max {
  1011  			max = mi
  1012  		}
  1013  
  1014  		// Merge in end by checking if this new summary is totally
  1015  		// free. If it is, then we want to extend the running sum's
  1016  		// end by the new summary. If not, then we have some alloc'd
  1017  		// pages in there and we just want to take the end value in
  1018  		// sums[i].
  1019  		if ei == 1<<logMaxPagesPerSum {
  1020  			end += 1 << logMaxPagesPerSum
  1021  		} else {
  1022  			end = ei
  1023  		}
  1024  	}
  1025  	return packPallocSum(start, max, end)
  1026  }