github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/runtime/signal_unix.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"runtime/internal/atomic"
    12  	"runtime/internal/sys"
    13  	"unsafe"
    14  )
    15  
    16  // sigTabT is the type of an entry in the global sigtable array.
    17  // sigtable is inherently system dependent, and appears in OS-specific files,
    18  // but sigTabT is the same for all Unixy systems.
    19  // The sigtable array is indexed by a system signal number to get the flags
    20  // and printable name of each signal.
    21  type sigTabT struct {
    22  	flags int32
    23  	name  string
    24  }
    25  
    26  //go:linkname os_sigpipe os.sigpipe
    27  func os_sigpipe() {
    28  	systemstack(sigpipe)
    29  }
    30  
    31  func signame(sig uint32) string {
    32  	if sig >= uint32(len(sigtable)) {
    33  		return ""
    34  	}
    35  	return sigtable[sig].name
    36  }
    37  
    38  const (
    39  	_SIG_DFL uintptr = 0
    40  	_SIG_IGN uintptr = 1
    41  )
    42  
    43  // sigPreempt is the signal used for non-cooperative preemption.
    44  //
    45  // There's no good way to choose this signal, but there are some
    46  // heuristics:
    47  //
    48  // 1. It should be a signal that's passed-through by debuggers by
    49  // default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
    50  // SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
    51  //
    52  // 2. It shouldn't be used internally by libc in mixed Go/C binaries
    53  // because libc may assume it's the only thing that can handle these
    54  // signals. For example SIGCANCEL or SIGSETXID.
    55  //
    56  // 3. It should be a signal that can happen spuriously without
    57  // consequences. For example, SIGALRM is a bad choice because the
    58  // signal handler can't tell if it was caused by the real process
    59  // alarm or not (arguably this means the signal is broken, but I
    60  // digress). SIGUSR1 and SIGUSR2 are also bad because those are often
    61  // used in meaningful ways by applications.
    62  //
    63  // 4. We need to deal with platforms without real-time signals (like
    64  // macOS), so those are out.
    65  //
    66  // We use SIGURG because it meets all of these criteria, is extremely
    67  // unlikely to be used by an application for its "real" meaning (both
    68  // because out-of-band data is basically unused and because SIGURG
    69  // doesn't report which socket has the condition, making it pretty
    70  // useless), and even if it is, the application has to be ready for
    71  // spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
    72  // likely to be used for real.
    73  const sigPreempt = _SIGURG
    74  
    75  // Stores the signal handlers registered before Go installed its own.
    76  // These signal handlers will be invoked in cases where Go doesn't want to
    77  // handle a particular signal (e.g., signal occurred on a non-Go thread).
    78  // See sigfwdgo for more information on when the signals are forwarded.
    79  //
    80  // This is read by the signal handler; accesses should use
    81  // atomic.Loaduintptr and atomic.Storeuintptr.
    82  var fwdSig [_NSIG]uintptr
    83  
    84  // handlingSig is indexed by signal number and is non-zero if we are
    85  // currently handling the signal. Or, to put it another way, whether
    86  // the signal handler is currently set to the Go signal handler or not.
    87  // This is uint32 rather than bool so that we can use atomic instructions.
    88  var handlingSig [_NSIG]uint32
    89  
    90  // channels for synchronizing signal mask updates with the signal mask
    91  // thread
    92  var (
    93  	disableSigChan  chan uint32
    94  	enableSigChan   chan uint32
    95  	maskUpdatedChan chan struct{}
    96  )
    97  
    98  func init() {
    99  	// _NSIG is the number of signals on this operating system.
   100  	// sigtable should describe what to do for all the possible signals.
   101  	if len(sigtable) != _NSIG {
   102  		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
   103  		throw("bad sigtable len")
   104  	}
   105  }
   106  
   107  var signalsOK bool
   108  
   109  // Initialize signals.
   110  // Called by libpreinit so runtime may not be initialized.
   111  //go:nosplit
   112  //go:nowritebarrierrec
   113  func initsig(preinit bool) {
   114  	if !preinit {
   115  		// It's now OK for signal handlers to run.
   116  		signalsOK = true
   117  	}
   118  
   119  	// For c-archive/c-shared this is called by libpreinit with
   120  	// preinit == true.
   121  	if (isarchive || islibrary) && !preinit {
   122  		return
   123  	}
   124  
   125  	for i := uint32(0); i < _NSIG; i++ {
   126  		t := &sigtable[i]
   127  		if t.flags == 0 || t.flags&_SigDefault != 0 {
   128  			continue
   129  		}
   130  
   131  		// We don't need to use atomic operations here because
   132  		// there shouldn't be any other goroutines running yet.
   133  		fwdSig[i] = getsig(i)
   134  
   135  		if !sigInstallGoHandler(i) {
   136  			// Even if we are not installing a signal handler,
   137  			// set SA_ONSTACK if necessary.
   138  			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
   139  				setsigstack(i)
   140  			} else if fwdSig[i] == _SIG_IGN {
   141  				sigInitIgnored(i)
   142  			}
   143  			continue
   144  		}
   145  
   146  		handlingSig[i] = 1
   147  		setsig(i, abi.FuncPCABIInternal(sighandler))
   148  	}
   149  }
   150  
   151  //go:nosplit
   152  //go:nowritebarrierrec
   153  func sigInstallGoHandler(sig uint32) bool {
   154  	// For some signals, we respect an inherited SIG_IGN handler
   155  	// rather than insist on installing our own default handler.
   156  	// Even these signals can be fetched using the os/signal package.
   157  	switch sig {
   158  	case _SIGHUP, _SIGINT:
   159  		if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
   160  			return false
   161  		}
   162  	}
   163  
   164  	t := &sigtable[sig]
   165  	if t.flags&_SigSetStack != 0 {
   166  		return false
   167  	}
   168  
   169  	// When built using c-archive or c-shared, only install signal
   170  	// handlers for synchronous signals and SIGPIPE and sigPreempt.
   171  	if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE && sig != sigPreempt {
   172  		return false
   173  	}
   174  
   175  	return true
   176  }
   177  
   178  // sigenable enables the Go signal handler to catch the signal sig.
   179  // It is only called while holding the os/signal.handlers lock,
   180  // via os/signal.enableSignal and signal_enable.
   181  func sigenable(sig uint32) {
   182  	if sig >= uint32(len(sigtable)) {
   183  		return
   184  	}
   185  
   186  	// SIGPROF is handled specially for profiling.
   187  	if sig == _SIGPROF {
   188  		return
   189  	}
   190  
   191  	t := &sigtable[sig]
   192  	if t.flags&_SigNotify != 0 {
   193  		ensureSigM()
   194  		enableSigChan <- sig
   195  		<-maskUpdatedChan
   196  		if atomic.Cas(&handlingSig[sig], 0, 1) {
   197  			atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
   198  			setsig(sig, abi.FuncPCABIInternal(sighandler))
   199  		}
   200  	}
   201  }
   202  
   203  // sigdisable disables the Go signal handler for the signal sig.
   204  // It is only called while holding the os/signal.handlers lock,
   205  // via os/signal.disableSignal and signal_disable.
   206  func sigdisable(sig uint32) {
   207  	if sig >= uint32(len(sigtable)) {
   208  		return
   209  	}
   210  
   211  	// SIGPROF is handled specially for profiling.
   212  	if sig == _SIGPROF {
   213  		return
   214  	}
   215  
   216  	t := &sigtable[sig]
   217  	if t.flags&_SigNotify != 0 {
   218  		ensureSigM()
   219  		disableSigChan <- sig
   220  		<-maskUpdatedChan
   221  
   222  		// If initsig does not install a signal handler for a
   223  		// signal, then to go back to the state before Notify
   224  		// we should remove the one we installed.
   225  		if !sigInstallGoHandler(sig) {
   226  			atomic.Store(&handlingSig[sig], 0)
   227  			setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
   228  		}
   229  	}
   230  }
   231  
   232  // sigignore ignores the signal sig.
   233  // It is only called while holding the os/signal.handlers lock,
   234  // via os/signal.ignoreSignal and signal_ignore.
   235  func sigignore(sig uint32) {
   236  	if sig >= uint32(len(sigtable)) {
   237  		return
   238  	}
   239  
   240  	// SIGPROF is handled specially for profiling.
   241  	if sig == _SIGPROF {
   242  		return
   243  	}
   244  
   245  	t := &sigtable[sig]
   246  	if t.flags&_SigNotify != 0 {
   247  		atomic.Store(&handlingSig[sig], 0)
   248  		setsig(sig, _SIG_IGN)
   249  	}
   250  }
   251  
   252  // clearSignalHandlers clears all signal handlers that are not ignored
   253  // back to the default. This is called by the child after a fork, so that
   254  // we can enable the signal mask for the exec without worrying about
   255  // running a signal handler in the child.
   256  //go:nosplit
   257  //go:nowritebarrierrec
   258  func clearSignalHandlers() {
   259  	for i := uint32(0); i < _NSIG; i++ {
   260  		if atomic.Load(&handlingSig[i]) != 0 {
   261  			setsig(i, _SIG_DFL)
   262  		}
   263  	}
   264  }
   265  
   266  // setProcessCPUProfilerTimer is called when the profiling timer changes.
   267  // It is called with prof.signalLock held. hz is the new timer, and is 0 if
   268  // profiling is being disabled. Enable or disable the signal as
   269  // required for -buildmode=c-archive.
   270  func setProcessCPUProfilerTimer(hz int32) {
   271  	if hz != 0 {
   272  		// Enable the Go signal handler if not enabled.
   273  		if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
   274  			atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF))
   275  			setsig(_SIGPROF, abi.FuncPCABIInternal(sighandler))
   276  		}
   277  
   278  		var it itimerval
   279  		it.it_interval.tv_sec = 0
   280  		it.it_interval.set_usec(1000000 / hz)
   281  		it.it_value = it.it_interval
   282  		setitimer(_ITIMER_PROF, &it, nil)
   283  	} else {
   284  		setitimer(_ITIMER_PROF, &itimerval{}, nil)
   285  
   286  		// If the Go signal handler should be disabled by default,
   287  		// switch back to the signal handler that was installed
   288  		// when we enabled profiling. We don't try to handle the case
   289  		// of a program that changes the SIGPROF handler while Go
   290  		// profiling is enabled.
   291  		//
   292  		// If no signal handler was installed before, then start
   293  		// ignoring SIGPROF signals. We do this, rather than change
   294  		// to SIG_DFL, because there may be a pending SIGPROF
   295  		// signal that has not yet been delivered to some other thread.
   296  		// If we change to SIG_DFL here, the program will crash
   297  		// when that SIGPROF is delivered. We assume that programs
   298  		// that use profiling don't want to crash on a stray SIGPROF.
   299  		// See issue 19320.
   300  		if !sigInstallGoHandler(_SIGPROF) {
   301  			if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
   302  				h := atomic.Loaduintptr(&fwdSig[_SIGPROF])
   303  				if h == _SIG_DFL {
   304  					h = _SIG_IGN
   305  				}
   306  				setsig(_SIGPROF, h)
   307  			}
   308  		}
   309  	}
   310  }
   311  
   312  // setThreadCPUProfilerHz makes any thread-specific changes required to
   313  // implement profiling at a rate of hz.
   314  // No changes required on Unix systems when using setitimer.
   315  func setThreadCPUProfilerHz(hz int32) {
   316  	getg().m.profilehz = hz
   317  }
   318  
   319  func sigpipe() {
   320  	if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) {
   321  		return
   322  	}
   323  	dieFromSignal(_SIGPIPE)
   324  }
   325  
   326  // doSigPreempt handles a preemption signal on gp.
   327  func doSigPreempt(gp *g, ctxt *sigctxt) {
   328  	// Check if this G wants to be preempted and is safe to
   329  	// preempt.
   330  	if wantAsyncPreempt(gp) {
   331  		if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok {
   332  			// Adjust the PC and inject a call to asyncPreempt.
   333  			ctxt.pushCall(abi.FuncPCABI0(asyncPreempt), newpc)
   334  		}
   335  	}
   336  
   337  	// Acknowledge the preemption.
   338  	atomic.Xadd(&gp.m.preemptGen, 1)
   339  	atomic.Store(&gp.m.signalPending, 0)
   340  
   341  	if GOOS == "darwin" || GOOS == "ios" {
   342  		atomic.Xadd(&pendingPreemptSignals, -1)
   343  	}
   344  }
   345  
   346  const preemptMSupported = true
   347  
   348  // preemptM sends a preemption request to mp. This request may be
   349  // handled asynchronously and may be coalesced with other requests to
   350  // the M. When the request is received, if the running G or P are
   351  // marked for preemption and the goroutine is at an asynchronous
   352  // safe-point, it will preempt the goroutine. It always atomically
   353  // increments mp.preemptGen after handling a preemption request.
   354  func preemptM(mp *m) {
   355  	// On Darwin, don't try to preempt threads during exec.
   356  	// Issue #41702.
   357  	if GOOS == "darwin" || GOOS == "ios" {
   358  		execLock.rlock()
   359  	}
   360  
   361  	if atomic.Cas(&mp.signalPending, 0, 1) {
   362  		if GOOS == "darwin" || GOOS == "ios" {
   363  			atomic.Xadd(&pendingPreemptSignals, 1)
   364  		}
   365  
   366  		// If multiple threads are preempting the same M, it may send many
   367  		// signals to the same M such that it hardly make progress, causing
   368  		// live-lock problem. Apparently this could happen on darwin. See
   369  		// issue #37741.
   370  		// Only send a signal if there isn't already one pending.
   371  		signalM(mp, sigPreempt)
   372  	}
   373  
   374  	if GOOS == "darwin" || GOOS == "ios" {
   375  		execLock.runlock()
   376  	}
   377  }
   378  
   379  // sigFetchG fetches the value of G safely when running in a signal handler.
   380  // On some architectures, the g value may be clobbered when running in a VDSO.
   381  // See issue #32912.
   382  //
   383  //go:nosplit
   384  func sigFetchG(c *sigctxt) *g {
   385  	switch GOARCH {
   386  	case "arm", "arm64", "ppc64", "ppc64le", "riscv64":
   387  		if !iscgo && inVDSOPage(c.sigpc()) {
   388  			// When using cgo, we save the g on TLS and load it from there
   389  			// in sigtramp. Just use that.
   390  			// Otherwise, before making a VDSO call we save the g to the
   391  			// bottom of the signal stack. Fetch from there.
   392  			// TODO: in efence mode, stack is sysAlloc'd, so this wouldn't
   393  			// work.
   394  			sp := getcallersp()
   395  			s := spanOf(sp)
   396  			if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit {
   397  				gp := *(**g)(unsafe.Pointer(s.base()))
   398  				return gp
   399  			}
   400  			return nil
   401  		}
   402  	}
   403  	return getg()
   404  }
   405  
   406  // sigtrampgo is called from the signal handler function, sigtramp,
   407  // written in assembly code.
   408  // This is called by the signal handler, and the world may be stopped.
   409  //
   410  // It must be nosplit because getg() is still the G that was running
   411  // (if any) when the signal was delivered, but it's (usually) called
   412  // on the gsignal stack. Until this switches the G to gsignal, the
   413  // stack bounds check won't work.
   414  //
   415  //go:nosplit
   416  //go:nowritebarrierrec
   417  func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
   418  	if sigfwdgo(sig, info, ctx) {
   419  		return
   420  	}
   421  	c := &sigctxt{info, ctx}
   422  	g := sigFetchG(c)
   423  	setg(g)
   424  	if g == nil {
   425  		if sig == _SIGPROF {
   426  			// Some platforms (Linux) have per-thread timers, which we use in
   427  			// combination with the process-wide timer. Avoid double-counting.
   428  			if validSIGPROF(nil, c) {
   429  				sigprofNonGoPC(c.sigpc())
   430  			}
   431  			return
   432  		}
   433  		if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
   434  			// This is probably a signal from preemptM sent
   435  			// while executing Go code but received while
   436  			// executing non-Go code.
   437  			// We got past sigfwdgo, so we know that there is
   438  			// no non-Go signal handler for sigPreempt.
   439  			// The default behavior for sigPreempt is to ignore
   440  			// the signal, so badsignal will be a no-op anyway.
   441  			if GOOS == "darwin" || GOOS == "ios" {
   442  				atomic.Xadd(&pendingPreemptSignals, -1)
   443  			}
   444  			return
   445  		}
   446  		c.fixsigcode(sig)
   447  		badsignal(uintptr(sig), c)
   448  		return
   449  	}
   450  
   451  	setg(g.m.gsignal)
   452  
   453  	// If some non-Go code called sigaltstack, adjust.
   454  	var gsignalStack gsignalStack
   455  	setStack := adjustSignalStack(sig, g.m, &gsignalStack)
   456  	if setStack {
   457  		g.m.gsignal.stktopsp = getcallersp()
   458  	}
   459  
   460  	if g.stackguard0 == stackFork {
   461  		signalDuringFork(sig)
   462  	}
   463  
   464  	c.fixsigcode(sig)
   465  	sighandler(sig, info, ctx, g)
   466  	setg(g)
   467  	if setStack {
   468  		restoreGsignalStack(&gsignalStack)
   469  	}
   470  }
   471  
   472  // If the signal handler receives a SIGPROF signal on a non-Go thread,
   473  // it tries to collect a traceback into sigprofCallers.
   474  // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
   475  var sigprofCallers cgoCallers
   476  var sigprofCallersUse uint32
   477  
   478  // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
   479  // and the signal handler collected a stack trace in sigprofCallers.
   480  // When this is called, sigprofCallersUse will be non-zero.
   481  // g is nil, and what we can do is very limited.
   482  //
   483  // It is called from the signal handling functions written in assembly code that
   484  // are active for cgo programs, cgoSigtramp and sigprofNonGoWrapper, which have
   485  // not verified that the SIGPROF delivery corresponds to the best available
   486  // profiling source for this thread.
   487  //
   488  //go:nosplit
   489  //go:nowritebarrierrec
   490  func sigprofNonGo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
   491  	if prof.hz != 0 {
   492  		c := &sigctxt{info, ctx}
   493  		// Some platforms (Linux) have per-thread timers, which we use in
   494  		// combination with the process-wide timer. Avoid double-counting.
   495  		if validSIGPROF(nil, c) {
   496  			n := 0
   497  			for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
   498  				n++
   499  			}
   500  			cpuprof.addNonGo(sigprofCallers[:n])
   501  		}
   502  	}
   503  
   504  	atomic.Store(&sigprofCallersUse, 0)
   505  }
   506  
   507  // sigprofNonGoPC is called when a profiling signal arrived on a
   508  // non-Go thread and we have a single PC value, not a stack trace.
   509  // g is nil, and what we can do is very limited.
   510  //go:nosplit
   511  //go:nowritebarrierrec
   512  func sigprofNonGoPC(pc uintptr) {
   513  	if prof.hz != 0 {
   514  		stk := []uintptr{
   515  			pc,
   516  			abi.FuncPCABIInternal(_ExternalCode) + sys.PCQuantum,
   517  		}
   518  		cpuprof.addNonGo(stk)
   519  	}
   520  }
   521  
   522  // adjustSignalStack adjusts the current stack guard based on the
   523  // stack pointer that is actually in use while handling a signal.
   524  // We do this in case some non-Go code called sigaltstack.
   525  // This reports whether the stack was adjusted, and if so stores the old
   526  // signal stack in *gsigstack.
   527  //go:nosplit
   528  func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool {
   529  	sp := uintptr(unsafe.Pointer(&sig))
   530  	if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi {
   531  		return false
   532  	}
   533  
   534  	var st stackt
   535  	sigaltstack(nil, &st)
   536  	stsp := uintptr(unsafe.Pointer(st.ss_sp))
   537  	if st.ss_flags&_SS_DISABLE == 0 && sp >= stsp && sp < stsp+st.ss_size {
   538  		setGsignalStack(&st, gsigStack)
   539  		return true
   540  	}
   541  
   542  	if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi {
   543  		// The signal was delivered on the g0 stack.
   544  		// This can happen when linked with C code
   545  		// using the thread sanitizer, which collects
   546  		// signals then delivers them itself by calling
   547  		// the signal handler directly when C code,
   548  		// including C code called via cgo, calls a
   549  		// TSAN-intercepted function such as malloc.
   550  		//
   551  		// We check this condition last as g0.stack.lo
   552  		// may be not very accurate (see mstart).
   553  		st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo}
   554  		setSignalstackSP(&st, mp.g0.stack.lo)
   555  		setGsignalStack(&st, gsigStack)
   556  		return true
   557  	}
   558  
   559  	// sp is not within gsignal stack, g0 stack, or sigaltstack. Bad.
   560  	setg(nil)
   561  	needm()
   562  	if st.ss_flags&_SS_DISABLE != 0 {
   563  		noSignalStack(sig)
   564  	} else {
   565  		sigNotOnStack(sig)
   566  	}
   567  	dropm()
   568  	return false
   569  }
   570  
   571  // crashing is the number of m's we have waited for when implementing
   572  // GOTRACEBACK=crash when a signal is received.
   573  var crashing int32
   574  
   575  // testSigtrap and testSigusr1 are used by the runtime tests. If
   576  // non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the
   577  // normal behavior on this signal is suppressed.
   578  var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
   579  var testSigusr1 func(gp *g) bool
   580  
   581  // sighandler is invoked when a signal occurs. The global g will be
   582  // set to a gsignal goroutine and we will be running on the alternate
   583  // signal stack. The parameter g will be the value of the global g
   584  // when the signal occurred. The sig, info, and ctxt parameters are
   585  // from the system signal handler: they are the parameters passed when
   586  // the SA is passed to the sigaction system call.
   587  //
   588  // The garbage collector may have stopped the world, so write barriers
   589  // are not allowed.
   590  //
   591  //go:nowritebarrierrec
   592  func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
   593  	_g_ := getg()
   594  	c := &sigctxt{info, ctxt}
   595  
   596  	if sig == _SIGPROF {
   597  		mp := _g_.m
   598  		// Some platforms (Linux) have per-thread timers, which we use in
   599  		// combination with the process-wide timer. Avoid double-counting.
   600  		if validSIGPROF(mp, c) {
   601  			sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, mp)
   602  		}
   603  		return
   604  	}
   605  
   606  	if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
   607  		return
   608  	}
   609  
   610  	if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) {
   611  		return
   612  	}
   613  
   614  	if sig == sigPreempt && debug.asyncpreemptoff == 0 {
   615  		// Might be a preemption signal.
   616  		doSigPreempt(gp, c)
   617  		// Even if this was definitely a preemption signal, it
   618  		// may have been coalesced with another signal, so we
   619  		// still let it through to the application.
   620  	}
   621  
   622  	flags := int32(_SigThrow)
   623  	if sig < uint32(len(sigtable)) {
   624  		flags = sigtable[sig].flags
   625  	}
   626  	if c.sigcode() != _SI_USER && flags&_SigPanic != 0 && gp.throwsplit {
   627  		// We can't safely sigpanic because it may grow the
   628  		// stack. Abort in the signal handler instead.
   629  		flags = _SigThrow
   630  	}
   631  	if isAbortPC(c.sigpc()) {
   632  		// On many architectures, the abort function just
   633  		// causes a memory fault. Don't turn that into a panic.
   634  		flags = _SigThrow
   635  	}
   636  	if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
   637  		// The signal is going to cause a panic.
   638  		// Arrange the stack so that it looks like the point
   639  		// where the signal occurred made a call to the
   640  		// function sigpanic. Then set the PC to sigpanic.
   641  
   642  		// Have to pass arguments out of band since
   643  		// augmenting the stack frame would break
   644  		// the unwinding code.
   645  		gp.sig = sig
   646  		gp.sigcode0 = uintptr(c.sigcode())
   647  		gp.sigcode1 = uintptr(c.fault())
   648  		gp.sigpc = c.sigpc()
   649  
   650  		c.preparePanic(sig, gp)
   651  		return
   652  	}
   653  
   654  	if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
   655  		if sigsend(sig) {
   656  			return
   657  		}
   658  	}
   659  
   660  	if c.sigcode() == _SI_USER && signal_ignored(sig) {
   661  		return
   662  	}
   663  
   664  	if flags&_SigKill != 0 {
   665  		dieFromSignal(sig)
   666  	}
   667  
   668  	// _SigThrow means that we should exit now.
   669  	// If we get here with _SigPanic, it means that the signal
   670  	// was sent to us by a program (c.sigcode() == _SI_USER);
   671  	// in that case, if we didn't handle it in sigsend, we exit now.
   672  	if flags&(_SigThrow|_SigPanic) == 0 {
   673  		return
   674  	}
   675  
   676  	_g_.m.throwing = 1
   677  	_g_.m.caughtsig.set(gp)
   678  
   679  	if crashing == 0 {
   680  		startpanic_m()
   681  	}
   682  
   683  	if sig < uint32(len(sigtable)) {
   684  		print(sigtable[sig].name, "\n")
   685  	} else {
   686  		print("Signal ", sig, "\n")
   687  	}
   688  
   689  	print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n")
   690  	if _g_.m.incgo && gp == _g_.m.g0 && _g_.m.curg != nil {
   691  		print("signal arrived during cgo execution\n")
   692  		// Switch to curg so that we get a traceback of the Go code
   693  		// leading up to the cgocall, which switched from curg to g0.
   694  		gp = _g_.m.curg
   695  	}
   696  	if sig == _SIGILL || sig == _SIGFPE {
   697  		// It would be nice to know how long the instruction is.
   698  		// Unfortunately, that's complicated to do in general (mostly for x86
   699  		// and s930x, but other archs have non-standard instruction lengths also).
   700  		// Opt to print 16 bytes, which covers most instructions.
   701  		const maxN = 16
   702  		n := uintptr(maxN)
   703  		// We have to be careful, though. If we're near the end of
   704  		// a page and the following page isn't mapped, we could
   705  		// segfault. So make sure we don't straddle a page (even though
   706  		// that could lead to printing an incomplete instruction).
   707  		// We're assuming here we can read at least the page containing the PC.
   708  		// I suppose it is possible that the page is mapped executable but not readable?
   709  		pc := c.sigpc()
   710  		if n > physPageSize-pc%physPageSize {
   711  			n = physPageSize - pc%physPageSize
   712  		}
   713  		print("instruction bytes:")
   714  		b := (*[maxN]byte)(unsafe.Pointer(pc))
   715  		for i := uintptr(0); i < n; i++ {
   716  			print(" ", hex(b[i]))
   717  		}
   718  		println()
   719  	}
   720  	print("\n")
   721  
   722  	level, _, docrash := gotraceback()
   723  	if level > 0 {
   724  		goroutineheader(gp)
   725  		tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
   726  		if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
   727  			// tracebackothers on original m skipped this one; trace it now.
   728  			goroutineheader(_g_.m.curg)
   729  			traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg)
   730  		} else if crashing == 0 {
   731  			tracebackothers(gp)
   732  			print("\n")
   733  		}
   734  		dumpregs(c)
   735  	}
   736  
   737  	if docrash {
   738  		crashing++
   739  		if crashing < mcount()-int32(extraMCount) {
   740  			// There are other m's that need to dump their stacks.
   741  			// Relay SIGQUIT to the next m by sending it to the current process.
   742  			// All m's that have already received SIGQUIT have signal masks blocking
   743  			// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
   744  			// When the last m receives the SIGQUIT, it will fall through to the call to
   745  			// crash below. Just in case the relaying gets botched, each m involved in
   746  			// the relay sleeps for 5 seconds and then does the crash/exit itself.
   747  			// In expected operation, the last m has received the SIGQUIT and run
   748  			// crash/exit and the process is gone, all long before any of the
   749  			// 5-second sleeps have finished.
   750  			print("\n-----\n\n")
   751  			raiseproc(_SIGQUIT)
   752  			usleep(5 * 1000 * 1000)
   753  		}
   754  		crash()
   755  	}
   756  
   757  	printDebugLog()
   758  
   759  	exit(2)
   760  }
   761  
   762  // sigpanic turns a synchronous signal into a run-time panic.
   763  // If the signal handler sees a synchronous panic, it arranges the
   764  // stack to look like the function where the signal occurred called
   765  // sigpanic, sets the signal's PC value to sigpanic, and returns from
   766  // the signal handler. The effect is that the program will act as
   767  // though the function that got the signal simply called sigpanic
   768  // instead.
   769  //
   770  // This must NOT be nosplit because the linker doesn't know where
   771  // sigpanic calls can be injected.
   772  //
   773  // The signal handler must not inject a call to sigpanic if
   774  // getg().throwsplit, since sigpanic may need to grow the stack.
   775  //
   776  // This is exported via linkname to assembly in runtime/cgo.
   777  //go:linkname sigpanic
   778  func sigpanic() {
   779  	g := getg()
   780  	if !canpanic(g) {
   781  		throw("unexpected signal during runtime execution")
   782  	}
   783  
   784  	switch g.sig {
   785  	case _SIGBUS:
   786  		if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 {
   787  			panicmem()
   788  		}
   789  		// Support runtime/debug.SetPanicOnFault.
   790  		if g.paniconfault {
   791  			panicmemAddr(g.sigcode1)
   792  		}
   793  		print("unexpected fault address ", hex(g.sigcode1), "\n")
   794  		throw("fault")
   795  	case _SIGSEGV:
   796  		if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 {
   797  			panicmem()
   798  		}
   799  		// Support runtime/debug.SetPanicOnFault.
   800  		if g.paniconfault {
   801  			panicmemAddr(g.sigcode1)
   802  		}
   803  		print("unexpected fault address ", hex(g.sigcode1), "\n")
   804  		throw("fault")
   805  	case _SIGFPE:
   806  		switch g.sigcode0 {
   807  		case _FPE_INTDIV:
   808  			panicdivide()
   809  		case _FPE_INTOVF:
   810  			panicoverflow()
   811  		}
   812  		panicfloat()
   813  	}
   814  
   815  	if g.sig >= uint32(len(sigtable)) {
   816  		// can't happen: we looked up g.sig in sigtable to decide to call sigpanic
   817  		throw("unexpected signal value")
   818  	}
   819  	panic(errorString(sigtable[g.sig].name))
   820  }
   821  
   822  // dieFromSignal kills the program with a signal.
   823  // This provides the expected exit status for the shell.
   824  // This is only called with fatal signals expected to kill the process.
   825  //go:nosplit
   826  //go:nowritebarrierrec
   827  func dieFromSignal(sig uint32) {
   828  	unblocksig(sig)
   829  	// Mark the signal as unhandled to ensure it is forwarded.
   830  	atomic.Store(&handlingSig[sig], 0)
   831  	raise(sig)
   832  
   833  	// That should have killed us. On some systems, though, raise
   834  	// sends the signal to the whole process rather than to just
   835  	// the current thread, which means that the signal may not yet
   836  	// have been delivered. Give other threads a chance to run and
   837  	// pick up the signal.
   838  	osyield()
   839  	osyield()
   840  	osyield()
   841  
   842  	// If that didn't work, try _SIG_DFL.
   843  	setsig(sig, _SIG_DFL)
   844  	raise(sig)
   845  
   846  	osyield()
   847  	osyield()
   848  	osyield()
   849  
   850  	// If we are still somehow running, just exit with the wrong status.
   851  	exit(2)
   852  }
   853  
   854  // raisebadsignal is called when a signal is received on a non-Go
   855  // thread, and the Go program does not want to handle it (that is, the
   856  // program has not called os/signal.Notify for the signal).
   857  func raisebadsignal(sig uint32, c *sigctxt) {
   858  	if sig == _SIGPROF {
   859  		// Ignore profiling signals that arrive on non-Go threads.
   860  		return
   861  	}
   862  
   863  	var handler uintptr
   864  	if sig >= _NSIG {
   865  		handler = _SIG_DFL
   866  	} else {
   867  		handler = atomic.Loaduintptr(&fwdSig[sig])
   868  	}
   869  
   870  	// Reset the signal handler and raise the signal.
   871  	// We are currently running inside a signal handler, so the
   872  	// signal is blocked. We need to unblock it before raising the
   873  	// signal, or the signal we raise will be ignored until we return
   874  	// from the signal handler. We know that the signal was unblocked
   875  	// before entering the handler, or else we would not have received
   876  	// it. That means that we don't have to worry about blocking it
   877  	// again.
   878  	unblocksig(sig)
   879  	setsig(sig, handler)
   880  
   881  	// If we're linked into a non-Go program we want to try to
   882  	// avoid modifying the original context in which the signal
   883  	// was raised. If the handler is the default, we know it
   884  	// is non-recoverable, so we don't have to worry about
   885  	// re-installing sighandler. At this point we can just
   886  	// return and the signal will be re-raised and caught by
   887  	// the default handler with the correct context.
   888  	//
   889  	// On FreeBSD, the libthr sigaction code prevents
   890  	// this from working so we fall through to raise.
   891  	if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
   892  		return
   893  	}
   894  
   895  	raise(sig)
   896  
   897  	// Give the signal a chance to be delivered.
   898  	// In almost all real cases the program is about to crash,
   899  	// so sleeping here is not a waste of time.
   900  	usleep(1000)
   901  
   902  	// If the signal didn't cause the program to exit, restore the
   903  	// Go signal handler and carry on.
   904  	//
   905  	// We may receive another instance of the signal before we
   906  	// restore the Go handler, but that is not so bad: we know
   907  	// that the Go program has been ignoring the signal.
   908  	setsig(sig, abi.FuncPCABIInternal(sighandler))
   909  }
   910  
   911  //go:nosplit
   912  func crash() {
   913  	// OS X core dumps are linear dumps of the mapped memory,
   914  	// from the first virtual byte to the last, with zeros in the gaps.
   915  	// Because of the way we arrange the address space on 64-bit systems,
   916  	// this means the OS X core file will be >128 GB and even on a zippy
   917  	// workstation can take OS X well over an hour to write (uninterruptible).
   918  	// Save users from making that mistake.
   919  	if GOOS == "darwin" && GOARCH == "amd64" {
   920  		return
   921  	}
   922  
   923  	dieFromSignal(_SIGABRT)
   924  }
   925  
   926  // ensureSigM starts one global, sleeping thread to make sure at least one thread
   927  // is available to catch signals enabled for os/signal.
   928  func ensureSigM() {
   929  	if maskUpdatedChan != nil {
   930  		return
   931  	}
   932  	maskUpdatedChan = make(chan struct{})
   933  	disableSigChan = make(chan uint32)
   934  	enableSigChan = make(chan uint32)
   935  	go func() {
   936  		// Signal masks are per-thread, so make sure this goroutine stays on one
   937  		// thread.
   938  		LockOSThread()
   939  		defer UnlockOSThread()
   940  		// The sigBlocked mask contains the signals not active for os/signal,
   941  		// initially all signals except the essential. When signal.Notify()/Stop is called,
   942  		// sigenable/sigdisable in turn notify this thread to update its signal
   943  		// mask accordingly.
   944  		sigBlocked := sigset_all
   945  		for i := range sigtable {
   946  			if !blockableSig(uint32(i)) {
   947  				sigdelset(&sigBlocked, i)
   948  			}
   949  		}
   950  		sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
   951  		for {
   952  			select {
   953  			case sig := <-enableSigChan:
   954  				if sig > 0 {
   955  					sigdelset(&sigBlocked, int(sig))
   956  				}
   957  			case sig := <-disableSigChan:
   958  				if sig > 0 && blockableSig(sig) {
   959  					sigaddset(&sigBlocked, int(sig))
   960  				}
   961  			}
   962  			sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
   963  			maskUpdatedChan <- struct{}{}
   964  		}
   965  	}()
   966  }
   967  
   968  // This is called when we receive a signal when there is no signal stack.
   969  // This can only happen if non-Go code calls sigaltstack to disable the
   970  // signal stack.
   971  func noSignalStack(sig uint32) {
   972  	println("signal", sig, "received on thread with no signal stack")
   973  	throw("non-Go code disabled sigaltstack")
   974  }
   975  
   976  // This is called if we receive a signal when there is a signal stack
   977  // but we are not on it. This can only happen if non-Go code called
   978  // sigaction without setting the SS_ONSTACK flag.
   979  func sigNotOnStack(sig uint32) {
   980  	println("signal", sig, "received but handler not on signal stack")
   981  	throw("non-Go code set up signal handler without SA_ONSTACK flag")
   982  }
   983  
   984  // signalDuringFork is called if we receive a signal while doing a fork.
   985  // We do not want signals at that time, as a signal sent to the process
   986  // group may be delivered to the child process, causing confusion.
   987  // This should never be called, because we block signals across the fork;
   988  // this function is just a safety check. See issue 18600 for background.
   989  func signalDuringFork(sig uint32) {
   990  	println("signal", sig, "received during fork")
   991  	throw("signal received during fork")
   992  }
   993  
   994  var badginsignalMsg = "fatal: bad g in signal handler\n"
   995  
   996  // This runs on a foreign stack, without an m or a g. No stack split.
   997  //go:nosplit
   998  //go:norace
   999  //go:nowritebarrierrec
  1000  func badsignal(sig uintptr, c *sigctxt) {
  1001  	if !iscgo && !cgoHasExtraM {
  1002  		// There is no extra M. needm will not be able to grab
  1003  		// an M. Instead of hanging, just crash.
  1004  		// Cannot call split-stack function as there is no G.
  1005  		s := stringStructOf(&badginsignalMsg)
  1006  		write(2, s.str, int32(s.len))
  1007  		exit(2)
  1008  		*(*uintptr)(unsafe.Pointer(uintptr(123))) = 2
  1009  	}
  1010  	needm()
  1011  	if !sigsend(uint32(sig)) {
  1012  		// A foreign thread received the signal sig, and the
  1013  		// Go code does not want to handle it.
  1014  		raisebadsignal(uint32(sig), c)
  1015  	}
  1016  	dropm()
  1017  }
  1018  
  1019  //go:noescape
  1020  func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
  1021  
  1022  // Determines if the signal should be handled by Go and if not, forwards the
  1023  // signal to the handler that was installed before Go's. Returns whether the
  1024  // signal was forwarded.
  1025  // This is called by the signal handler, and the world may be stopped.
  1026  //go:nosplit
  1027  //go:nowritebarrierrec
  1028  func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
  1029  	if sig >= uint32(len(sigtable)) {
  1030  		return false
  1031  	}
  1032  	fwdFn := atomic.Loaduintptr(&fwdSig[sig])
  1033  	flags := sigtable[sig].flags
  1034  
  1035  	// If we aren't handling the signal, forward it.
  1036  	if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
  1037  		// If the signal is ignored, doing nothing is the same as forwarding.
  1038  		if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
  1039  			return true
  1040  		}
  1041  		// We are not handling the signal and there is no other handler to forward to.
  1042  		// Crash with the default behavior.
  1043  		if fwdFn == _SIG_DFL {
  1044  			setsig(sig, _SIG_DFL)
  1045  			dieFromSignal(sig)
  1046  			return false
  1047  		}
  1048  
  1049  		sigfwd(fwdFn, sig, info, ctx)
  1050  		return true
  1051  	}
  1052  
  1053  	// This function and its caller sigtrampgo assumes SIGPIPE is delivered on the
  1054  	// originating thread. This property does not hold on macOS (golang.org/issue/33384),
  1055  	// so we have no choice but to ignore SIGPIPE.
  1056  	if (GOOS == "darwin" || GOOS == "ios") && sig == _SIGPIPE {
  1057  		return true
  1058  	}
  1059  
  1060  	// If there is no handler to forward to, no need to forward.
  1061  	if fwdFn == _SIG_DFL {
  1062  		return false
  1063  	}
  1064  
  1065  	c := &sigctxt{info, ctx}
  1066  	// Only forward synchronous signals and SIGPIPE.
  1067  	// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
  1068  	// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
  1069  	// or pipe.
  1070  	if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE {
  1071  		return false
  1072  	}
  1073  	// Determine if the signal occurred inside Go code. We test that:
  1074  	//   (1) we weren't in VDSO page,
  1075  	//   (2) we were in a goroutine (i.e., m.curg != nil), and
  1076  	//   (3) we weren't in CGO.
  1077  	g := sigFetchG(c)
  1078  	if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo {
  1079  		return false
  1080  	}
  1081  
  1082  	// Signal not handled by Go, forward it.
  1083  	if fwdFn != _SIG_IGN {
  1084  		sigfwd(fwdFn, sig, info, ctx)
  1085  	}
  1086  
  1087  	return true
  1088  }
  1089  
  1090  // sigsave saves the current thread's signal mask into *p.
  1091  // This is used to preserve the non-Go signal mask when a non-Go
  1092  // thread calls a Go function.
  1093  // This is nosplit and nowritebarrierrec because it is called by needm
  1094  // which may be called on a non-Go thread with no g available.
  1095  //go:nosplit
  1096  //go:nowritebarrierrec
  1097  func sigsave(p *sigset) {
  1098  	sigprocmask(_SIG_SETMASK, nil, p)
  1099  }
  1100  
  1101  // msigrestore sets the current thread's signal mask to sigmask.
  1102  // This is used to restore the non-Go signal mask when a non-Go thread
  1103  // calls a Go function.
  1104  // This is nosplit and nowritebarrierrec because it is called by dropm
  1105  // after g has been cleared.
  1106  //go:nosplit
  1107  //go:nowritebarrierrec
  1108  func msigrestore(sigmask sigset) {
  1109  	sigprocmask(_SIG_SETMASK, &sigmask, nil)
  1110  }
  1111  
  1112  // sigsetAllExiting is used by sigblock(true) when a thread is
  1113  // exiting. sigset_all is defined in OS specific code, and per GOOS
  1114  // behavior may override this default for sigsetAllExiting: see
  1115  // osinit().
  1116  var sigsetAllExiting = sigset_all
  1117  
  1118  // sigblock blocks signals in the current thread's signal mask.
  1119  // This is used to block signals while setting up and tearing down g
  1120  // when a non-Go thread calls a Go function. When a thread is exiting
  1121  // we use the sigsetAllExiting value, otherwise the OS specific
  1122  // definition of sigset_all is used.
  1123  // This is nosplit and nowritebarrierrec because it is called by needm
  1124  // which may be called on a non-Go thread with no g available.
  1125  //go:nosplit
  1126  //go:nowritebarrierrec
  1127  func sigblock(exiting bool) {
  1128  	if exiting {
  1129  		sigprocmask(_SIG_SETMASK, &sigsetAllExiting, nil)
  1130  		return
  1131  	}
  1132  	sigprocmask(_SIG_SETMASK, &sigset_all, nil)
  1133  }
  1134  
  1135  // unblocksig removes sig from the current thread's signal mask.
  1136  // This is nosplit and nowritebarrierrec because it is called from
  1137  // dieFromSignal, which can be called by sigfwdgo while running in the
  1138  // signal handler, on the signal stack, with no g available.
  1139  //go:nosplit
  1140  //go:nowritebarrierrec
  1141  func unblocksig(sig uint32) {
  1142  	var set sigset
  1143  	sigaddset(&set, int(sig))
  1144  	sigprocmask(_SIG_UNBLOCK, &set, nil)
  1145  }
  1146  
  1147  // minitSignals is called when initializing a new m to set the
  1148  // thread's alternate signal stack and signal mask.
  1149  func minitSignals() {
  1150  	minitSignalStack()
  1151  	minitSignalMask()
  1152  }
  1153  
  1154  // minitSignalStack is called when initializing a new m to set the
  1155  // alternate signal stack. If the alternate signal stack is not set
  1156  // for the thread (the normal case) then set the alternate signal
  1157  // stack to the gsignal stack. If the alternate signal stack is set
  1158  // for the thread (the case when a non-Go thread sets the alternate
  1159  // signal stack and then calls a Go function) then set the gsignal
  1160  // stack to the alternate signal stack. We also set the alternate
  1161  // signal stack to the gsignal stack if cgo is not used (regardless
  1162  // of whether it is already set). Record which choice was made in
  1163  // newSigstack, so that it can be undone in unminit.
  1164  func minitSignalStack() {
  1165  	_g_ := getg()
  1166  	var st stackt
  1167  	sigaltstack(nil, &st)
  1168  	if st.ss_flags&_SS_DISABLE != 0 || !iscgo {
  1169  		signalstack(&_g_.m.gsignal.stack)
  1170  		_g_.m.newSigstack = true
  1171  	} else {
  1172  		setGsignalStack(&st, &_g_.m.goSigStack)
  1173  		_g_.m.newSigstack = false
  1174  	}
  1175  }
  1176  
  1177  // minitSignalMask is called when initializing a new m to set the
  1178  // thread's signal mask. When this is called all signals have been
  1179  // blocked for the thread.  This starts with m.sigmask, which was set
  1180  // either from initSigmask for a newly created thread or by calling
  1181  // sigsave if this is a non-Go thread calling a Go function. It
  1182  // removes all essential signals from the mask, thus causing those
  1183  // signals to not be blocked. Then it sets the thread's signal mask.
  1184  // After this is called the thread can receive signals.
  1185  func minitSignalMask() {
  1186  	nmask := getg().m.sigmask
  1187  	for i := range sigtable {
  1188  		if !blockableSig(uint32(i)) {
  1189  			sigdelset(&nmask, i)
  1190  		}
  1191  	}
  1192  	sigprocmask(_SIG_SETMASK, &nmask, nil)
  1193  }
  1194  
  1195  // unminitSignals is called from dropm, via unminit, to undo the
  1196  // effect of calling minit on a non-Go thread.
  1197  //go:nosplit
  1198  func unminitSignals() {
  1199  	if getg().m.newSigstack {
  1200  		st := stackt{ss_flags: _SS_DISABLE}
  1201  		sigaltstack(&st, nil)
  1202  	} else {
  1203  		// We got the signal stack from someone else. Restore
  1204  		// the Go-allocated stack in case this M gets reused
  1205  		// for another thread (e.g., it's an extram). Also, on
  1206  		// Android, libc allocates a signal stack for all
  1207  		// threads, so it's important to restore the Go stack
  1208  		// even on Go-created threads so we can free it.
  1209  		restoreGsignalStack(&getg().m.goSigStack)
  1210  	}
  1211  }
  1212  
  1213  // blockableSig reports whether sig may be blocked by the signal mask.
  1214  // We never want to block the signals marked _SigUnblock;
  1215  // these are the synchronous signals that turn into a Go panic.
  1216  // In a Go program--not a c-archive/c-shared--we never want to block
  1217  // the signals marked _SigKill or _SigThrow, as otherwise it's possible
  1218  // for all running threads to block them and delay their delivery until
  1219  // we start a new thread. When linked into a C program we let the C code
  1220  // decide on the disposition of those signals.
  1221  func blockableSig(sig uint32) bool {
  1222  	flags := sigtable[sig].flags
  1223  	if flags&_SigUnblock != 0 {
  1224  		return false
  1225  	}
  1226  	if isarchive || islibrary {
  1227  		return true
  1228  	}
  1229  	return flags&(_SigKill|_SigThrow) == 0
  1230  }
  1231  
  1232  // gsignalStack saves the fields of the gsignal stack changed by
  1233  // setGsignalStack.
  1234  type gsignalStack struct {
  1235  	stack       stack
  1236  	stackguard0 uintptr
  1237  	stackguard1 uintptr
  1238  	stktopsp    uintptr
  1239  }
  1240  
  1241  // setGsignalStack sets the gsignal stack of the current m to an
  1242  // alternate signal stack returned from the sigaltstack system call.
  1243  // It saves the old values in *old for use by restoreGsignalStack.
  1244  // This is used when handling a signal if non-Go code has set the
  1245  // alternate signal stack.
  1246  //go:nosplit
  1247  //go:nowritebarrierrec
  1248  func setGsignalStack(st *stackt, old *gsignalStack) {
  1249  	g := getg()
  1250  	if old != nil {
  1251  		old.stack = g.m.gsignal.stack
  1252  		old.stackguard0 = g.m.gsignal.stackguard0
  1253  		old.stackguard1 = g.m.gsignal.stackguard1
  1254  		old.stktopsp = g.m.gsignal.stktopsp
  1255  	}
  1256  	stsp := uintptr(unsafe.Pointer(st.ss_sp))
  1257  	g.m.gsignal.stack.lo = stsp
  1258  	g.m.gsignal.stack.hi = stsp + st.ss_size
  1259  	g.m.gsignal.stackguard0 = stsp + _StackGuard
  1260  	g.m.gsignal.stackguard1 = stsp + _StackGuard
  1261  }
  1262  
  1263  // restoreGsignalStack restores the gsignal stack to the value it had
  1264  // before entering the signal handler.
  1265  //go:nosplit
  1266  //go:nowritebarrierrec
  1267  func restoreGsignalStack(st *gsignalStack) {
  1268  	gp := getg().m.gsignal
  1269  	gp.stack = st.stack
  1270  	gp.stackguard0 = st.stackguard0
  1271  	gp.stackguard1 = st.stackguard1
  1272  	gp.stktopsp = st.stktopsp
  1273  }
  1274  
  1275  // signalstack sets the current thread's alternate signal stack to s.
  1276  //go:nosplit
  1277  func signalstack(s *stack) {
  1278  	st := stackt{ss_size: s.hi - s.lo}
  1279  	setSignalstackSP(&st, s.lo)
  1280  	sigaltstack(&st, nil)
  1281  }
  1282  
  1283  // setsigsegv is used on darwin/arm64 to fake a segmentation fault.
  1284  //
  1285  // This is exported via linkname to assembly in runtime/cgo.
  1286  //
  1287  //go:nosplit
  1288  //go:linkname setsigsegv
  1289  func setsigsegv(pc uintptr) {
  1290  	g := getg()
  1291  	g.sig = _SIGSEGV
  1292  	g.sigpc = pc
  1293  	g.sigcode0 = _SEGV_MAPERR
  1294  	g.sigcode1 = 0 // TODO: emulate si_addr
  1295  }