github.com/ActiveState/go@v0.0.0-20170614201249-0b81c023a722/src/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by time.Now contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	t := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	u := time.Now()
    29  //	elapsed := t.Sub(u)
    30  //
    31  // Other idioms, such as time.Since(start), time.Until(deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add adds the same duration to
    41  // both the wall clock and monotonic clock readings to compute the result.
    42  // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    43  // computations, they always strip any monotonic clock reading from their results.
    44  // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
    45  // of the wall time, they also strip any monotonic clock reading from their results.
    46  // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
    47  //
    48  // If Times t and u both contain monotonic clock readings, the operations
    49  // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
    50  // using the monotonic clock readings alone, ignoring the wall clock
    51  // readings. If either t or u contains no monotonic clock reading, these
    52  // operations fall back to using the wall clock readings.
    53  //
    54  // Because the monotonic clock reading has no meaning outside
    55  // the current process, the serialized forms generated by t.GobEncode,
    56  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    57  // clock reading, and t.Format provides no format for it. Similarly, the
    58  // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    59  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    60  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    61  // no monotonic clock reading.
    62  //
    63  // Note that the Go == operator compares not just the time instant but also
    64  // the Location and the monotonic clock reading. If time values returned
    65  // from time.Now and time values constructed by other means (for example,
    66  // by time.Parse or time.Unix) are meant to compare equal when used as map
    67  // keys, the times returned by time.Now must have the monotonic clock
    68  // reading stripped, by setting t = t.Round(0). In general, prefer
    69  // t.Equal(u) to t == u, since t.Equal uses the most accurate comparison
    70  // available and correctly handles the case when only one of its arguments
    71  // has a monotonic clock reading.
    72  //
    73  // For debugging, the result of t.String does include the monotonic
    74  // clock reading if present. If t != u because of different monotonic clock readings,
    75  // that difference will be visible when printing t.String() and u.String().
    76  //
    77  package time
    78  
    79  import "errors"
    80  
    81  // A Time represents an instant in time with nanosecond precision.
    82  //
    83  // Programs using times should typically store and pass them as values,
    84  // not pointers. That is, time variables and struct fields should be of
    85  // type time.Time, not *time.Time.
    86  //
    87  // A Time value can be used by multiple goroutines simultaneously except
    88  // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
    89  // UnmarshalText are not concurrency-safe.
    90  //
    91  // Time instants can be compared using the Before, After, and Equal methods.
    92  // The Sub method subtracts two instants, producing a Duration.
    93  // The Add method adds a Time and a Duration, producing a Time.
    94  //
    95  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    96  // As this time is unlikely to come up in practice, the IsZero method gives
    97  // a simple way of detecting a time that has not been initialized explicitly.
    98  //
    99  // Each Time has associated with it a Location, consulted when computing the
   100  // presentation form of the time, such as in the Format, Hour, and Year methods.
   101  // The methods Local, UTC, and In return a Time with a specific location.
   102  // Changing the location in this way changes only the presentation; it does not
   103  // change the instant in time being denoted and therefore does not affect the
   104  // computations described in earlier paragraphs.
   105  //
   106  // Note that the Go == operator compares not just the time instant but also the
   107  // Location and the monotonic clock reading. Therefore, Time values should not
   108  // be used as map or database keys without first guaranteeing that the
   109  // identical Location has been set for all values, which can be achieved
   110  // through use of the UTC or Local method, and that the monotonic clock reading
   111  // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
   112  // to t == u, since t.Equal uses the most accurate comparison available and
   113  // correctly handles the case when only one of its arguments has a monotonic
   114  // clock reading.
   115  //
   116  // In addition to the required “wall clock” reading, a Time may contain an optional
   117  // reading of the current process's monotonic clock, to provide additional precision
   118  // for comparison or subtraction.
   119  // See the “Monotonic Clocks” section in the package documentation for details.
   120  //
   121  type Time struct {
   122  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   123  	// and optional monotonic clock reading in nanoseconds.
   124  	//
   125  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   126  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   127  	// The nanoseconds field is in the range [0, 999999999].
   128  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   129  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   130  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   131  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   132  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   133  	wall uint64
   134  	ext  int64
   135  
   136  	// loc specifies the Location that should be used to
   137  	// determine the minute, hour, month, day, and year
   138  	// that correspond to this Time.
   139  	// The nil location means UTC.
   140  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
   141  	loc *Location
   142  }
   143  
   144  const (
   145  	hasMonotonic = 1 << 63
   146  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   147  	minWall      = wallToInternal               // year 1885
   148  	nsecMask     = 1<<30 - 1
   149  	nsecShift    = 30
   150  )
   151  
   152  // These helpers for manipulating the wall and monotonic clock readings
   153  // take pointer receivers, even when they don't modify the time,
   154  // to make them cheaper to call.
   155  
   156  // nsec returns the time's nanoseconds.
   157  func (t *Time) nsec() int32 {
   158  	return int32(t.wall & nsecMask)
   159  }
   160  
   161  // sec returns the time's seconds since Jan 1 year 1.
   162  func (t *Time) sec() int64 {
   163  	if t.wall&hasMonotonic != 0 {
   164  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   165  	}
   166  	return int64(t.ext)
   167  }
   168  
   169  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   170  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   171  
   172  // addSec adds d seconds to the time.
   173  func (t *Time) addSec(d int64) {
   174  	if t.wall&hasMonotonic != 0 {
   175  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   176  		dsec := sec + d
   177  		if 0 <= dsec && dsec <= 1<<33-1 {
   178  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   179  			return
   180  		}
   181  		// Wall second now out of range for packed field.
   182  		// Move to ext.
   183  		t.stripMono()
   184  	}
   185  
   186  	// TODO: Check for overflow.
   187  	t.ext += d
   188  }
   189  
   190  // setLoc sets the location associated with the time.
   191  func (t *Time) setLoc(loc *Location) {
   192  	if loc == &utcLoc {
   193  		loc = nil
   194  	}
   195  	t.stripMono()
   196  	t.loc = loc
   197  }
   198  
   199  // stripMono strips the monotonic clock reading in t.
   200  func (t *Time) stripMono() {
   201  	if t.wall&hasMonotonic != 0 {
   202  		t.ext = t.sec()
   203  		t.wall &= nsecMask
   204  	}
   205  }
   206  
   207  // setMono sets the monotonic clock reading in t.
   208  // If t cannot hold a monotonic clock reading,
   209  // because its wall time is too large,
   210  // setMono is a no-op.
   211  func (t *Time) setMono(m int64) {
   212  	if t.wall&hasMonotonic == 0 {
   213  		sec := int64(t.ext)
   214  		if sec < minWall || maxWall < sec {
   215  			return
   216  		}
   217  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   218  	}
   219  	t.ext = m
   220  }
   221  
   222  // mono returns t's monotonic clock reading.
   223  // It returns 0 for a missing reading.
   224  // This function is used only for testing,
   225  // so it's OK that technically 0 is a valid
   226  // monotonic clock reading as well.
   227  func (t *Time) mono() int64 {
   228  	if t.wall&hasMonotonic == 0 {
   229  		return 0
   230  	}
   231  	return t.ext
   232  }
   233  
   234  // After reports whether the time instant t is after u.
   235  func (t Time) After(u Time) bool {
   236  	if t.wall&u.wall&hasMonotonic != 0 {
   237  		return t.ext > u.ext
   238  	}
   239  	ts := t.sec()
   240  	us := u.sec()
   241  	return ts > us || ts == us && t.nsec() > u.nsec()
   242  }
   243  
   244  // Before reports whether the time instant t is before u.
   245  func (t Time) Before(u Time) bool {
   246  	if t.wall&u.wall&hasMonotonic != 0 {
   247  		return t.ext < u.ext
   248  	}
   249  	return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
   250  }
   251  
   252  // Equal reports whether t and u represent the same time instant.
   253  // Two times can be equal even if they are in different locations.
   254  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
   255  // See the documentation on the Time type for the pitfalls of using == with
   256  // Time values; most code should use Equal instead.
   257  func (t Time) Equal(u Time) bool {
   258  	if t.wall&u.wall&hasMonotonic != 0 {
   259  		return t.ext == u.ext
   260  	}
   261  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   262  }
   263  
   264  // A Month specifies a month of the year (January = 1, ...).
   265  type Month int
   266  
   267  const (
   268  	January Month = 1 + iota
   269  	February
   270  	March
   271  	April
   272  	May
   273  	June
   274  	July
   275  	August
   276  	September
   277  	October
   278  	November
   279  	December
   280  )
   281  
   282  var months = [...]string{
   283  	"January",
   284  	"February",
   285  	"March",
   286  	"April",
   287  	"May",
   288  	"June",
   289  	"July",
   290  	"August",
   291  	"September",
   292  	"October",
   293  	"November",
   294  	"December",
   295  }
   296  
   297  // String returns the English name of the month ("January", "February", ...).
   298  func (m Month) String() string {
   299  	if January <= m && m <= December {
   300  		return months[m-1]
   301  	}
   302  	buf := make([]byte, 20)
   303  	n := fmtInt(buf, uint64(m))
   304  	return "%!Month(" + string(buf[n:]) + ")"
   305  }
   306  
   307  // A Weekday specifies a day of the week (Sunday = 0, ...).
   308  type Weekday int
   309  
   310  const (
   311  	Sunday Weekday = iota
   312  	Monday
   313  	Tuesday
   314  	Wednesday
   315  	Thursday
   316  	Friday
   317  	Saturday
   318  )
   319  
   320  var days = [...]string{
   321  	"Sunday",
   322  	"Monday",
   323  	"Tuesday",
   324  	"Wednesday",
   325  	"Thursday",
   326  	"Friday",
   327  	"Saturday",
   328  }
   329  
   330  // String returns the English name of the day ("Sunday", "Monday", ...).
   331  func (d Weekday) String() string { return days[d] }
   332  
   333  // Computations on time.
   334  //
   335  // The zero value for a Time is defined to be
   336  //	January 1, year 1, 00:00:00.000000000 UTC
   337  // which (1) looks like a zero, or as close as you can get in a date
   338  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   339  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   340  // non-negative year even in time zones west of UTC, unlike 1-1-0
   341  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   342  //
   343  // The zero Time value does not force a specific epoch for the time
   344  // representation. For example, to use the Unix epoch internally, we
   345  // could define that to distinguish a zero value from Jan 1 1970, that
   346  // time would be represented by sec=-1, nsec=1e9. However, it does
   347  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   348  // epoch, and that's what we do.
   349  //
   350  // The Add and Sub computations are oblivious to the choice of epoch.
   351  //
   352  // The presentation computations - year, month, minute, and so on - all
   353  // rely heavily on division and modulus by positive constants. For
   354  // calendrical calculations we want these divisions to round down, even
   355  // for negative values, so that the remainder is always positive, but
   356  // Go's division (like most hardware division instructions) rounds to
   357  // zero. We can still do those computations and then adjust the result
   358  // for a negative numerator, but it's annoying to write the adjustment
   359  // over and over. Instead, we can change to a different epoch so long
   360  // ago that all the times we care about will be positive, and then round
   361  // to zero and round down coincide. These presentation routines already
   362  // have to add the zone offset, so adding the translation to the
   363  // alternate epoch is cheap. For example, having a non-negative time t
   364  // means that we can write
   365  //
   366  //	sec = t % 60
   367  //
   368  // instead of
   369  //
   370  //	sec = t % 60
   371  //	if sec < 0 {
   372  //		sec += 60
   373  //	}
   374  //
   375  // everywhere.
   376  //
   377  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   378  // printed for 1970-2469 will apply as well to 2370-2769. Even the days
   379  // of the week match up. It simplifies the computations to choose the
   380  // cycle boundaries so that the exceptional years are always delayed as
   381  // long as possible. That means choosing a year equal to 1 mod 400, so
   382  // that the first leap year is the 4th year, the first missed leap year
   383  // is the 100th year, and the missed missed leap year is the 400th year.
   384  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   385  // for 2401-2800.
   386  //
   387  // Finally, it's convenient if the delta between the Unix epoch and
   388  // long-ago epoch is representable by an int64 constant.
   389  //
   390  // These three considerations—choose an epoch as early as possible, that
   391  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   392  // earlier than 1970—bring us to the year -292277022399. We refer to
   393  // this year as the absolute zero year, and to times measured as a uint64
   394  // seconds since this year as absolute times.
   395  //
   396  // Times measured as an int64 seconds since the year 1—the representation
   397  // used for Time's sec field—are called internal times.
   398  //
   399  // Times measured as an int64 seconds since the year 1970 are called Unix
   400  // times.
   401  //
   402  // It is tempting to just use the year 1 as the absolute epoch, defining
   403  // that the routines are only valid for years >= 1. However, the
   404  // routines would then be invalid when displaying the epoch in time zones
   405  // west of UTC, since it is year 0. It doesn't seem tenable to say that
   406  // printing the zero time correctly isn't supported in half the time
   407  // zones. By comparison, it's reasonable to mishandle some times in
   408  // the year -292277022399.
   409  //
   410  // All this is opaque to clients of the API and can be changed if a
   411  // better implementation presents itself.
   412  
   413  const (
   414  	// The unsigned zero year for internal calculations.
   415  	// Must be 1 mod 400, and times before it will not compute correctly,
   416  	// but otherwise can be changed at will.
   417  	absoluteZeroYear = -292277022399
   418  
   419  	// The year of the zero Time.
   420  	// Assumed by the unixToInternal computation below.
   421  	internalYear = 1
   422  
   423  	// Offsets to convert between internal and absolute or Unix times.
   424  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   425  	internalToAbsolute       = -absoluteToInternal
   426  
   427  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   428  	internalToUnix int64 = -unixToInternal
   429  
   430  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   431  	internalToWall int64 = -wallToInternal
   432  )
   433  
   434  // IsZero reports whether t represents the zero time instant,
   435  // January 1, year 1, 00:00:00 UTC.
   436  func (t Time) IsZero() bool {
   437  	return t.sec() == 0 && t.nsec() == 0
   438  }
   439  
   440  // abs returns the time t as an absolute time, adjusted by the zone offset.
   441  // It is called when computing a presentation property like Month or Hour.
   442  func (t Time) abs() uint64 {
   443  	l := t.loc
   444  	// Avoid function calls when possible.
   445  	if l == nil || l == &localLoc {
   446  		l = l.get()
   447  	}
   448  	sec := t.unixSec()
   449  	if l != &utcLoc {
   450  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   451  			sec += int64(l.cacheZone.offset)
   452  		} else {
   453  			_, offset, _, _, _ := l.lookup(sec)
   454  			sec += int64(offset)
   455  		}
   456  	}
   457  	return uint64(sec + (unixToInternal + internalToAbsolute))
   458  }
   459  
   460  // locabs is a combination of the Zone and abs methods,
   461  // extracting both return values from a single zone lookup.
   462  func (t Time) locabs() (name string, offset int, abs uint64) {
   463  	l := t.loc
   464  	if l == nil || l == &localLoc {
   465  		l = l.get()
   466  	}
   467  	// Avoid function call if we hit the local time cache.
   468  	sec := t.unixSec()
   469  	if l != &utcLoc {
   470  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   471  			name = l.cacheZone.name
   472  			offset = l.cacheZone.offset
   473  		} else {
   474  			name, offset, _, _, _ = l.lookup(sec)
   475  		}
   476  		sec += int64(offset)
   477  	} else {
   478  		name = "UTC"
   479  	}
   480  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   481  	return
   482  }
   483  
   484  // Date returns the year, month, and day in which t occurs.
   485  func (t Time) Date() (year int, month Month, day int) {
   486  	year, month, day, _ = t.date(true)
   487  	return
   488  }
   489  
   490  // Year returns the year in which t occurs.
   491  func (t Time) Year() int {
   492  	year, _, _, _ := t.date(false)
   493  	return year
   494  }
   495  
   496  // Month returns the month of the year specified by t.
   497  func (t Time) Month() Month {
   498  	_, month, _, _ := t.date(true)
   499  	return month
   500  }
   501  
   502  // Day returns the day of the month specified by t.
   503  func (t Time) Day() int {
   504  	_, _, day, _ := t.date(true)
   505  	return day
   506  }
   507  
   508  // Weekday returns the day of the week specified by t.
   509  func (t Time) Weekday() Weekday {
   510  	return absWeekday(t.abs())
   511  }
   512  
   513  // absWeekday is like Weekday but operates on an absolute time.
   514  func absWeekday(abs uint64) Weekday {
   515  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   516  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   517  	return Weekday(int(sec) / secondsPerDay)
   518  }
   519  
   520  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   521  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   522  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   523  // of year n+1.
   524  func (t Time) ISOWeek() (year, week int) {
   525  	year, month, day, yday := t.date(true)
   526  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   527  	const (
   528  		Mon int = iota
   529  		Tue
   530  		Wed
   531  		Thu
   532  		Fri
   533  		Sat
   534  		Sun
   535  	)
   536  
   537  	// Calculate week as number of Mondays in year up to
   538  	// and including today, plus 1 because the first week is week 0.
   539  	// Putting the + 1 inside the numerator as a + 7 keeps the
   540  	// numerator from being negative, which would cause it to
   541  	// round incorrectly.
   542  	week = (yday - wday + 7) / 7
   543  
   544  	// The week number is now correct under the assumption
   545  	// that the first Monday of the year is in week 1.
   546  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   547  	// is actually in week 2.
   548  	jan1wday := (wday - yday + 7*53) % 7
   549  	if Tue <= jan1wday && jan1wday <= Thu {
   550  		week++
   551  	}
   552  
   553  	// If the week number is still 0, we're in early January but in
   554  	// the last week of last year.
   555  	if week == 0 {
   556  		year--
   557  		week = 52
   558  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   559  		// meaning Jan 1 of the next year is a Friday
   560  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   561  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   562  			week++
   563  		}
   564  	}
   565  
   566  	// December 29 to 31 are in week 1 of next year if
   567  	// they are after the last Thursday of the year and
   568  	// December 31 is a Monday, Tuesday, or Wednesday.
   569  	if month == December && day >= 29 && wday < Thu {
   570  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   571  			year++
   572  			week = 1
   573  		}
   574  	}
   575  
   576  	return
   577  }
   578  
   579  // Clock returns the hour, minute, and second within the day specified by t.
   580  func (t Time) Clock() (hour, min, sec int) {
   581  	return absClock(t.abs())
   582  }
   583  
   584  // absClock is like clock but operates on an absolute time.
   585  func absClock(abs uint64) (hour, min, sec int) {
   586  	sec = int(abs % secondsPerDay)
   587  	hour = sec / secondsPerHour
   588  	sec -= hour * secondsPerHour
   589  	min = sec / secondsPerMinute
   590  	sec -= min * secondsPerMinute
   591  	return
   592  }
   593  
   594  // Hour returns the hour within the day specified by t, in the range [0, 23].
   595  func (t Time) Hour() int {
   596  	return int(t.abs()%secondsPerDay) / secondsPerHour
   597  }
   598  
   599  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   600  func (t Time) Minute() int {
   601  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   602  }
   603  
   604  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   605  func (t Time) Second() int {
   606  	return int(t.abs() % secondsPerMinute)
   607  }
   608  
   609  // Nanosecond returns the nanosecond offset within the second specified by t,
   610  // in the range [0, 999999999].
   611  func (t Time) Nanosecond() int {
   612  	return int(t.nsec())
   613  }
   614  
   615  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   616  // and [1,366] in leap years.
   617  func (t Time) YearDay() int {
   618  	_, _, _, yday := t.date(false)
   619  	return yday + 1
   620  }
   621  
   622  // A Duration represents the elapsed time between two instants
   623  // as an int64 nanosecond count. The representation limits the
   624  // largest representable duration to approximately 290 years.
   625  type Duration int64
   626  
   627  const (
   628  	minDuration Duration = -1 << 63
   629  	maxDuration Duration = 1<<63 - 1
   630  )
   631  
   632  // Common durations. There is no definition for units of Day or larger
   633  // to avoid confusion across daylight savings time zone transitions.
   634  //
   635  // To count the number of units in a Duration, divide:
   636  //	second := time.Second
   637  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   638  //
   639  // To convert an integer number of units to a Duration, multiply:
   640  //	seconds := 10
   641  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   642  //
   643  const (
   644  	Nanosecond  Duration = 1
   645  	Microsecond          = 1000 * Nanosecond
   646  	Millisecond          = 1000 * Microsecond
   647  	Second               = 1000 * Millisecond
   648  	Minute               = 60 * Second
   649  	Hour                 = 60 * Minute
   650  )
   651  
   652  // String returns a string representing the duration in the form "72h3m0.5s".
   653  // Leading zero units are omitted. As a special case, durations less than one
   654  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   655  // that the leading digit is non-zero. The zero duration formats as 0s.
   656  func (d Duration) String() string {
   657  	// Largest time is 2540400h10m10.000000000s
   658  	var buf [32]byte
   659  	w := len(buf)
   660  
   661  	u := uint64(d)
   662  	neg := d < 0
   663  	if neg {
   664  		u = -u
   665  	}
   666  
   667  	if u < uint64(Second) {
   668  		// Special case: if duration is smaller than a second,
   669  		// use smaller units, like 1.2ms
   670  		var prec int
   671  		w--
   672  		buf[w] = 's'
   673  		w--
   674  		switch {
   675  		case u == 0:
   676  			return "0s"
   677  		case u < uint64(Microsecond):
   678  			// print nanoseconds
   679  			prec = 0
   680  			buf[w] = 'n'
   681  		case u < uint64(Millisecond):
   682  			// print microseconds
   683  			prec = 3
   684  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   685  			w-- // Need room for two bytes.
   686  			copy(buf[w:], "µ")
   687  		default:
   688  			// print milliseconds
   689  			prec = 6
   690  			buf[w] = 'm'
   691  		}
   692  		w, u = fmtFrac(buf[:w], u, prec)
   693  		w = fmtInt(buf[:w], u)
   694  	} else {
   695  		w--
   696  		buf[w] = 's'
   697  
   698  		w, u = fmtFrac(buf[:w], u, 9)
   699  
   700  		// u is now integer seconds
   701  		w = fmtInt(buf[:w], u%60)
   702  		u /= 60
   703  
   704  		// u is now integer minutes
   705  		if u > 0 {
   706  			w--
   707  			buf[w] = 'm'
   708  			w = fmtInt(buf[:w], u%60)
   709  			u /= 60
   710  
   711  			// u is now integer hours
   712  			// Stop at hours because days can be different lengths.
   713  			if u > 0 {
   714  				w--
   715  				buf[w] = 'h'
   716  				w = fmtInt(buf[:w], u)
   717  			}
   718  		}
   719  	}
   720  
   721  	if neg {
   722  		w--
   723  		buf[w] = '-'
   724  	}
   725  
   726  	return string(buf[w:])
   727  }
   728  
   729  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   730  // tail of buf, omitting trailing zeros. it omits the decimal
   731  // point too when the fraction is 0. It returns the index where the
   732  // output bytes begin and the value v/10**prec.
   733  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   734  	// Omit trailing zeros up to and including decimal point.
   735  	w := len(buf)
   736  	print := false
   737  	for i := 0; i < prec; i++ {
   738  		digit := v % 10
   739  		print = print || digit != 0
   740  		if print {
   741  			w--
   742  			buf[w] = byte(digit) + '0'
   743  		}
   744  		v /= 10
   745  	}
   746  	if print {
   747  		w--
   748  		buf[w] = '.'
   749  	}
   750  	return w, v
   751  }
   752  
   753  // fmtInt formats v into the tail of buf.
   754  // It returns the index where the output begins.
   755  func fmtInt(buf []byte, v uint64) int {
   756  	w := len(buf)
   757  	if v == 0 {
   758  		w--
   759  		buf[w] = '0'
   760  	} else {
   761  		for v > 0 {
   762  			w--
   763  			buf[w] = byte(v%10) + '0'
   764  			v /= 10
   765  		}
   766  	}
   767  	return w
   768  }
   769  
   770  // Nanoseconds returns the duration as an integer nanosecond count.
   771  func (d Duration) Nanoseconds() int64 { return int64(d) }
   772  
   773  // These methods return float64 because the dominant
   774  // use case is for printing a floating point number like 1.5s, and
   775  // a truncation to integer would make them not useful in those cases.
   776  // Splitting the integer and fraction ourselves guarantees that
   777  // converting the returned float64 to an integer rounds the same
   778  // way that a pure integer conversion would have, even in cases
   779  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   780  // differently.
   781  
   782  // Seconds returns the duration as a floating point number of seconds.
   783  func (d Duration) Seconds() float64 {
   784  	sec := d / Second
   785  	nsec := d % Second
   786  	return float64(sec) + float64(nsec)/1e9
   787  }
   788  
   789  // Minutes returns the duration as a floating point number of minutes.
   790  func (d Duration) Minutes() float64 {
   791  	min := d / Minute
   792  	nsec := d % Minute
   793  	return float64(min) + float64(nsec)/(60*1e9)
   794  }
   795  
   796  // Hours returns the duration as a floating point number of hours.
   797  func (d Duration) Hours() float64 {
   798  	hour := d / Hour
   799  	nsec := d % Hour
   800  	return float64(hour) + float64(nsec)/(60*60*1e9)
   801  }
   802  
   803  // Truncate returns the result of rounding d toward zero to a multiple of m.
   804  // If m <= 0, Truncate returns d unchanged.
   805  func (d Duration) Truncate(m Duration) Duration {
   806  	if m <= 0 {
   807  		return d
   808  	}
   809  	return d - d%m
   810  }
   811  
   812  // lessThanHalf reports whether x+x < y but avoids overflow,
   813  // assuming x and y are both positive (Duration is signed).
   814  func lessThanHalf(x, y Duration) bool {
   815  	return uint64(x)+uint64(x) < uint64(y)
   816  }
   817  
   818  // Round returns the result of rounding d to the nearest multiple of m.
   819  // The rounding behavior for halfway values is to round away from zero.
   820  // If the result exceeds the maximum (or minimum)
   821  // value that can be stored in a Duration,
   822  // Round returns the maximum (or minimum) duration.
   823  // If m <= 0, Round returns d unchanged.
   824  func (d Duration) Round(m Duration) Duration {
   825  	if m <= 0 {
   826  		return d
   827  	}
   828  	r := d % m
   829  	if d < 0 {
   830  		r = -r
   831  		if lessThanHalf(r, m) {
   832  			return d + r
   833  		}
   834  		if d1 := d - m + r; d1 < d {
   835  			return d1
   836  		}
   837  		return minDuration // overflow
   838  	}
   839  	if lessThanHalf(r, m) {
   840  		return d - r
   841  	}
   842  	if d1 := d + m - r; d1 > d {
   843  		return d1
   844  	}
   845  	return maxDuration // overflow
   846  }
   847  
   848  // Add returns the time t+d.
   849  func (t Time) Add(d Duration) Time {
   850  	dsec := int64(d / 1e9)
   851  	nsec := t.nsec() + int32(d%1e9)
   852  	if nsec >= 1e9 {
   853  		dsec++
   854  		nsec -= 1e9
   855  	} else if nsec < 0 {
   856  		dsec--
   857  		nsec += 1e9
   858  	}
   859  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   860  	t.addSec(dsec)
   861  	if t.wall&hasMonotonic != 0 {
   862  		te := t.ext + int64(d)
   863  		if d < 0 && te > int64(t.ext) || d > 0 && te < int64(t.ext) {
   864  			// Monotonic clock reading now out of range; degrade to wall-only.
   865  			t.stripMono()
   866  		} else {
   867  			t.ext = te
   868  		}
   869  	}
   870  	return t
   871  }
   872  
   873  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   874  // value that can be stored in a Duration, the maximum (or minimum) duration
   875  // will be returned.
   876  // To compute t-d for a duration d, use t.Add(-d).
   877  func (t Time) Sub(u Time) Duration {
   878  	if t.wall&u.wall&hasMonotonic != 0 {
   879  		te := int64(t.ext)
   880  		ue := int64(u.ext)
   881  		d := Duration(te - ue)
   882  		if d < 0 && te > ue {
   883  			return maxDuration // t - u is positive out of range
   884  		}
   885  		if d > 0 && te < ue {
   886  			return minDuration // t - u is negative out of range
   887  		}
   888  		return d
   889  	}
   890  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   891  	// Check for overflow or underflow.
   892  	switch {
   893  	case u.Add(d).Equal(t):
   894  		return d // d is correct
   895  	case t.Before(u):
   896  		return minDuration // t - u is negative out of range
   897  	default:
   898  		return maxDuration // t - u is positive out of range
   899  	}
   900  }
   901  
   902  // Since returns the time elapsed since t.
   903  // It is shorthand for time.Now().Sub(t).
   904  func Since(t Time) Duration {
   905  	return Now().Sub(t)
   906  }
   907  
   908  // Until returns the duration until t.
   909  // It is shorthand for t.Sub(time.Now()).
   910  func Until(t Time) Duration {
   911  	return t.Sub(Now())
   912  }
   913  
   914  // AddDate returns the time corresponding to adding the
   915  // given number of years, months, and days to t.
   916  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   917  // returns March 4, 2010.
   918  //
   919  // AddDate normalizes its result in the same way that Date does,
   920  // so, for example, adding one month to October 31 yields
   921  // December 1, the normalized form for November 31.
   922  func (t Time) AddDate(years int, months int, days int) Time {
   923  	year, month, day := t.Date()
   924  	hour, min, sec := t.Clock()
   925  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   926  }
   927  
   928  const (
   929  	secondsPerMinute = 60
   930  	secondsPerHour   = 60 * 60
   931  	secondsPerDay    = 24 * secondsPerHour
   932  	secondsPerWeek   = 7 * secondsPerDay
   933  	daysPer400Years  = 365*400 + 97
   934  	daysPer100Years  = 365*100 + 24
   935  	daysPer4Years    = 365*4 + 1
   936  )
   937  
   938  // date computes the year, day of year, and when full=true,
   939  // the month and day in which t occurs.
   940  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   941  	return absDate(t.abs(), full)
   942  }
   943  
   944  // absDate is like date but operates on an absolute time.
   945  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   946  	// Split into time and day.
   947  	d := abs / secondsPerDay
   948  
   949  	// Account for 400 year cycles.
   950  	n := d / daysPer400Years
   951  	y := 400 * n
   952  	d -= daysPer400Years * n
   953  
   954  	// Cut off 100-year cycles.
   955  	// The last cycle has one extra leap year, so on the last day
   956  	// of that year, day / daysPer100Years will be 4 instead of 3.
   957  	// Cut it back down to 3 by subtracting n>>2.
   958  	n = d / daysPer100Years
   959  	n -= n >> 2
   960  	y += 100 * n
   961  	d -= daysPer100Years * n
   962  
   963  	// Cut off 4-year cycles.
   964  	// The last cycle has a missing leap year, which does not
   965  	// affect the computation.
   966  	n = d / daysPer4Years
   967  	y += 4 * n
   968  	d -= daysPer4Years * n
   969  
   970  	// Cut off years within a 4-year cycle.
   971  	// The last year is a leap year, so on the last day of that year,
   972  	// day / 365 will be 4 instead of 3. Cut it back down to 3
   973  	// by subtracting n>>2.
   974  	n = d / 365
   975  	n -= n >> 2
   976  	y += n
   977  	d -= 365 * n
   978  
   979  	year = int(int64(y) + absoluteZeroYear)
   980  	yday = int(d)
   981  
   982  	if !full {
   983  		return
   984  	}
   985  
   986  	day = yday
   987  	if isLeap(year) {
   988  		// Leap year
   989  		switch {
   990  		case day > 31+29-1:
   991  			// After leap day; pretend it wasn't there.
   992  			day--
   993  		case day == 31+29-1:
   994  			// Leap day.
   995  			month = February
   996  			day = 29
   997  			return
   998  		}
   999  	}
  1000  
  1001  	// Estimate month on assumption that every month has 31 days.
  1002  	// The estimate may be too low by at most one month, so adjust.
  1003  	month = Month(day / 31)
  1004  	end := int(daysBefore[month+1])
  1005  	var begin int
  1006  	if day >= end {
  1007  		month++
  1008  		begin = end
  1009  	} else {
  1010  		begin = int(daysBefore[month])
  1011  	}
  1012  
  1013  	month++ // because January is 1
  1014  	day = day - begin + 1
  1015  	return
  1016  }
  1017  
  1018  // daysBefore[m] counts the number of days in a non-leap year
  1019  // before month m begins. There is an entry for m=12, counting
  1020  // the number of days before January of next year (365).
  1021  var daysBefore = [...]int32{
  1022  	0,
  1023  	31,
  1024  	31 + 28,
  1025  	31 + 28 + 31,
  1026  	31 + 28 + 31 + 30,
  1027  	31 + 28 + 31 + 30 + 31,
  1028  	31 + 28 + 31 + 30 + 31 + 30,
  1029  	31 + 28 + 31 + 30 + 31 + 30 + 31,
  1030  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
  1031  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
  1032  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
  1033  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
  1034  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
  1035  }
  1036  
  1037  func daysIn(m Month, year int) int {
  1038  	if m == February && isLeap(year) {
  1039  		return 29
  1040  	}
  1041  	return int(daysBefore[m] - daysBefore[m-1])
  1042  }
  1043  
  1044  // Provided by package runtime.
  1045  func now() (sec int64, nsec int32, mono int64)
  1046  
  1047  // Now returns the current local time.
  1048  func Now() Time {
  1049  	sec, nsec, mono := now()
  1050  	sec += unixToInternal - minWall
  1051  	if uint64(sec)>>33 != 0 {
  1052  		return Time{uint64(nsec), sec + minWall, Local}
  1053  	}
  1054  	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
  1055  }
  1056  
  1057  func unixTime(sec int64, nsec int32) Time {
  1058  	return Time{uint64(nsec), sec + unixToInternal, Local}
  1059  }
  1060  
  1061  // UTC returns t with the location set to UTC.
  1062  func (t Time) UTC() Time {
  1063  	t.setLoc(&utcLoc)
  1064  	return t
  1065  }
  1066  
  1067  // Local returns t with the location set to local time.
  1068  func (t Time) Local() Time {
  1069  	t.setLoc(Local)
  1070  	return t
  1071  }
  1072  
  1073  // In returns t with the location information set to loc.
  1074  //
  1075  // In panics if loc is nil.
  1076  func (t Time) In(loc *Location) Time {
  1077  	if loc == nil {
  1078  		panic("time: missing Location in call to Time.In")
  1079  	}
  1080  	t.setLoc(loc)
  1081  	return t
  1082  }
  1083  
  1084  // Location returns the time zone information associated with t.
  1085  func (t Time) Location() *Location {
  1086  	l := t.loc
  1087  	if l == nil {
  1088  		l = UTC
  1089  	}
  1090  	return l
  1091  }
  1092  
  1093  // Zone computes the time zone in effect at time t, returning the abbreviated
  1094  // name of the zone (such as "CET") and its offset in seconds east of UTC.
  1095  func (t Time) Zone() (name string, offset int) {
  1096  	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
  1097  	return
  1098  }
  1099  
  1100  // Unix returns t as a Unix time, the number of seconds elapsed
  1101  // since January 1, 1970 UTC.
  1102  func (t Time) Unix() int64 {
  1103  	return t.unixSec()
  1104  }
  1105  
  1106  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1107  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1108  // in nanoseconds cannot be represented by an int64 (a date before the year
  1109  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1110  // on the zero Time is undefined.
  1111  func (t Time) UnixNano() int64 {
  1112  	return (t.unixSec())*1e9 + int64(t.nsec())
  1113  }
  1114  
  1115  const timeBinaryVersion byte = 1
  1116  
  1117  // MarshalBinary implements the encoding.BinaryMarshaler interface.
  1118  func (t Time) MarshalBinary() ([]byte, error) {
  1119  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1120  
  1121  	if t.Location() == UTC {
  1122  		offsetMin = -1
  1123  	} else {
  1124  		_, offset := t.Zone()
  1125  		if offset%60 != 0 {
  1126  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
  1127  		}
  1128  		offset /= 60
  1129  		if offset < -32768 || offset == -1 || offset > 32767 {
  1130  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1131  		}
  1132  		offsetMin = int16(offset)
  1133  	}
  1134  
  1135  	sec := t.sec()
  1136  	nsec := t.nsec()
  1137  	enc := []byte{
  1138  		timeBinaryVersion, // byte 0 : version
  1139  		byte(sec >> 56),   // bytes 1-8: seconds
  1140  		byte(sec >> 48),
  1141  		byte(sec >> 40),
  1142  		byte(sec >> 32),
  1143  		byte(sec >> 24),
  1144  		byte(sec >> 16),
  1145  		byte(sec >> 8),
  1146  		byte(sec),
  1147  		byte(nsec >> 24), // bytes 9-12: nanoseconds
  1148  		byte(nsec >> 16),
  1149  		byte(nsec >> 8),
  1150  		byte(nsec),
  1151  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1152  		byte(offsetMin),
  1153  	}
  1154  
  1155  	return enc, nil
  1156  }
  1157  
  1158  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1159  func (t *Time) UnmarshalBinary(data []byte) error {
  1160  	buf := data
  1161  	if len(buf) == 0 {
  1162  		return errors.New("Time.UnmarshalBinary: no data")
  1163  	}
  1164  
  1165  	if buf[0] != timeBinaryVersion {
  1166  		return errors.New("Time.UnmarshalBinary: unsupported version")
  1167  	}
  1168  
  1169  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
  1170  		return errors.New("Time.UnmarshalBinary: invalid length")
  1171  	}
  1172  
  1173  	buf = buf[1:]
  1174  	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1175  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1176  
  1177  	buf = buf[8:]
  1178  	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1179  
  1180  	buf = buf[4:]
  1181  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1182  
  1183  	*t = Time{}
  1184  	t.wall = uint64(nsec)
  1185  	t.ext = sec
  1186  
  1187  	if offset == -1*60 {
  1188  		t.setLoc(&utcLoc)
  1189  	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1190  		t.setLoc(Local)
  1191  	} else {
  1192  		t.setLoc(FixedZone("", offset))
  1193  	}
  1194  
  1195  	return nil
  1196  }
  1197  
  1198  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1199  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1200  // UnmarshalBinary, UnmarshalText.
  1201  
  1202  // GobEncode implements the gob.GobEncoder interface.
  1203  func (t Time) GobEncode() ([]byte, error) {
  1204  	return t.MarshalBinary()
  1205  }
  1206  
  1207  // GobDecode implements the gob.GobDecoder interface.
  1208  func (t *Time) GobDecode(data []byte) error {
  1209  	return t.UnmarshalBinary(data)
  1210  }
  1211  
  1212  // MarshalJSON implements the json.Marshaler interface.
  1213  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
  1214  func (t Time) MarshalJSON() ([]byte, error) {
  1215  	if y := t.Year(); y < 0 || y >= 10000 {
  1216  		// RFC 3339 is clear that years are 4 digits exactly.
  1217  		// See golang.org/issue/4556#c15 for more discussion.
  1218  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
  1219  	}
  1220  
  1221  	b := make([]byte, 0, len(RFC3339Nano)+2)
  1222  	b = append(b, '"')
  1223  	b = t.AppendFormat(b, RFC3339Nano)
  1224  	b = append(b, '"')
  1225  	return b, nil
  1226  }
  1227  
  1228  // UnmarshalJSON implements the json.Unmarshaler interface.
  1229  // The time is expected to be a quoted string in RFC 3339 format.
  1230  func (t *Time) UnmarshalJSON(data []byte) error {
  1231  	// Ignore null, like in the main JSON package.
  1232  	if string(data) == "null" {
  1233  		return nil
  1234  	}
  1235  	// Fractional seconds are handled implicitly by Parse.
  1236  	var err error
  1237  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
  1238  	return err
  1239  }
  1240  
  1241  // MarshalText implements the encoding.TextMarshaler interface.
  1242  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
  1243  func (t Time) MarshalText() ([]byte, error) {
  1244  	if y := t.Year(); y < 0 || y >= 10000 {
  1245  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
  1246  	}
  1247  
  1248  	b := make([]byte, 0, len(RFC3339Nano))
  1249  	return t.AppendFormat(b, RFC3339Nano), nil
  1250  }
  1251  
  1252  // UnmarshalText implements the encoding.TextUnmarshaler interface.
  1253  // The time is expected to be in RFC 3339 format.
  1254  func (t *Time) UnmarshalText(data []byte) error {
  1255  	// Fractional seconds are handled implicitly by Parse.
  1256  	var err error
  1257  	*t, err = Parse(RFC3339, string(data))
  1258  	return err
  1259  }
  1260  
  1261  // Unix returns the local Time corresponding to the given Unix time,
  1262  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1263  // It is valid to pass nsec outside the range [0, 999999999].
  1264  // Not all sec values have a corresponding time value. One such
  1265  // value is 1<<63-1 (the largest int64 value).
  1266  func Unix(sec int64, nsec int64) Time {
  1267  	if nsec < 0 || nsec >= 1e9 {
  1268  		n := nsec / 1e9
  1269  		sec += n
  1270  		nsec -= n * 1e9
  1271  		if nsec < 0 {
  1272  			nsec += 1e9
  1273  			sec--
  1274  		}
  1275  	}
  1276  	return unixTime(sec, int32(nsec))
  1277  }
  1278  
  1279  func isLeap(year int) bool {
  1280  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1281  }
  1282  
  1283  // norm returns nhi, nlo such that
  1284  //	hi * base + lo == nhi * base + nlo
  1285  //	0 <= nlo < base
  1286  func norm(hi, lo, base int) (nhi, nlo int) {
  1287  	if lo < 0 {
  1288  		n := (-lo-1)/base + 1
  1289  		hi -= n
  1290  		lo += n * base
  1291  	}
  1292  	if lo >= base {
  1293  		n := lo / base
  1294  		hi += n
  1295  		lo -= n * base
  1296  	}
  1297  	return hi, lo
  1298  }
  1299  
  1300  // Date returns the Time corresponding to
  1301  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1302  // in the appropriate zone for that time in the given location.
  1303  //
  1304  // The month, day, hour, min, sec, and nsec values may be outside
  1305  // their usual ranges and will be normalized during the conversion.
  1306  // For example, October 32 converts to November 1.
  1307  //
  1308  // A daylight savings time transition skips or repeats times.
  1309  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1310  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1311  // choice of time zone, and therefore the time, is not well-defined.
  1312  // Date returns a time that is correct in one of the two zones involved
  1313  // in the transition, but it does not guarantee which.
  1314  //
  1315  // Date panics if loc is nil.
  1316  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1317  	if loc == nil {
  1318  		panic("time: missing Location in call to Date")
  1319  	}
  1320  
  1321  	// Normalize month, overflowing into year.
  1322  	m := int(month) - 1
  1323  	year, m = norm(year, m, 12)
  1324  	month = Month(m) + 1
  1325  
  1326  	// Normalize nsec, sec, min, hour, overflowing into day.
  1327  	sec, nsec = norm(sec, nsec, 1e9)
  1328  	min, sec = norm(min, sec, 60)
  1329  	hour, min = norm(hour, min, 60)
  1330  	day, hour = norm(day, hour, 24)
  1331  
  1332  	y := uint64(int64(year) - absoluteZeroYear)
  1333  
  1334  	// Compute days since the absolute epoch.
  1335  
  1336  	// Add in days from 400-year cycles.
  1337  	n := y / 400
  1338  	y -= 400 * n
  1339  	d := daysPer400Years * n
  1340  
  1341  	// Add in 100-year cycles.
  1342  	n = y / 100
  1343  	y -= 100 * n
  1344  	d += daysPer100Years * n
  1345  
  1346  	// Add in 4-year cycles.
  1347  	n = y / 4
  1348  	y -= 4 * n
  1349  	d += daysPer4Years * n
  1350  
  1351  	// Add in non-leap years.
  1352  	n = y
  1353  	d += 365 * n
  1354  
  1355  	// Add in days before this month.
  1356  	d += uint64(daysBefore[month-1])
  1357  	if isLeap(year) && month >= March {
  1358  		d++ // February 29
  1359  	}
  1360  
  1361  	// Add in days before today.
  1362  	d += uint64(day - 1)
  1363  
  1364  	// Add in time elapsed today.
  1365  	abs := d * secondsPerDay
  1366  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1367  
  1368  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1369  
  1370  	// Look for zone offset for t, so we can adjust to UTC.
  1371  	// The lookup function expects UTC, so we pass t in the
  1372  	// hope that it will not be too close to a zone transition,
  1373  	// and then adjust if it is.
  1374  	_, offset, _, start, end := loc.lookup(unix)
  1375  	if offset != 0 {
  1376  		switch utc := unix - int64(offset); {
  1377  		case utc < start:
  1378  			_, offset, _, _, _ = loc.lookup(start - 1)
  1379  		case utc >= end:
  1380  			_, offset, _, _, _ = loc.lookup(end)
  1381  		}
  1382  		unix -= int64(offset)
  1383  	}
  1384  
  1385  	t := unixTime(unix, int32(nsec))
  1386  	t.setLoc(loc)
  1387  	return t
  1388  }
  1389  
  1390  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1391  // If d <= 0, Truncate returns t unchanged.
  1392  //
  1393  // Truncate operates on the time as an absolute duration since the
  1394  // zero time; it does not operate on the presentation form of the
  1395  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1396  // minute, depending on the time's Location.
  1397  func (t Time) Truncate(d Duration) Time {
  1398  	t.stripMono()
  1399  	if d <= 0 {
  1400  		return t
  1401  	}
  1402  	_, r := div(t, d)
  1403  	return t.Add(-r)
  1404  }
  1405  
  1406  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1407  // The rounding behavior for halfway values is to round up.
  1408  // If d <= 0, Round returns t unchanged.
  1409  //
  1410  // Round operates on the time as an absolute duration since the
  1411  // zero time; it does not operate on the presentation form of the
  1412  // time. Thus, Round(Hour) may return a time with a non-zero
  1413  // minute, depending on the time's Location.
  1414  func (t Time) Round(d Duration) Time {
  1415  	t.stripMono()
  1416  	if d <= 0 {
  1417  		return t
  1418  	}
  1419  	_, r := div(t, d)
  1420  	if lessThanHalf(r, d) {
  1421  		return t.Add(-r)
  1422  	}
  1423  	return t.Add(d - r)
  1424  }
  1425  
  1426  // div divides t by d and returns the quotient parity and remainder.
  1427  // We don't use the quotient parity anymore (round half up instead of round to even)
  1428  // but it's still here in case we change our minds.
  1429  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1430  	neg := false
  1431  	nsec := t.nsec()
  1432  	sec := t.sec()
  1433  	if sec < 0 {
  1434  		// Operate on absolute value.
  1435  		neg = true
  1436  		sec = -sec
  1437  		nsec = -nsec
  1438  		if nsec < 0 {
  1439  			nsec += 1e9
  1440  			sec-- // sec >= 1 before the -- so safe
  1441  		}
  1442  	}
  1443  
  1444  	switch {
  1445  	// Special case: 2d divides 1 second.
  1446  	case d < Second && Second%(d+d) == 0:
  1447  		qmod2 = int(nsec/int32(d)) & 1
  1448  		r = Duration(nsec % int32(d))
  1449  
  1450  	// Special case: d is a multiple of 1 second.
  1451  	case d%Second == 0:
  1452  		d1 := int64(d / Second)
  1453  		qmod2 = int(sec/d1) & 1
  1454  		r = Duration(sec%d1)*Second + Duration(nsec)
  1455  
  1456  	// General case.
  1457  	// This could be faster if more cleverness were applied,
  1458  	// but it's really only here to avoid special case restrictions in the API.
  1459  	// No one will care about these cases.
  1460  	default:
  1461  		// Compute nanoseconds as 128-bit number.
  1462  		sec := uint64(sec)
  1463  		tmp := (sec >> 32) * 1e9
  1464  		u1 := tmp >> 32
  1465  		u0 := tmp << 32
  1466  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1467  		u0x, u0 := u0, u0+tmp
  1468  		if u0 < u0x {
  1469  			u1++
  1470  		}
  1471  		u0x, u0 = u0, u0+uint64(nsec)
  1472  		if u0 < u0x {
  1473  			u1++
  1474  		}
  1475  
  1476  		// Compute remainder by subtracting r<<k for decreasing k.
  1477  		// Quotient parity is whether we subtract on last round.
  1478  		d1 := uint64(d)
  1479  		for d1>>63 != 1 {
  1480  			d1 <<= 1
  1481  		}
  1482  		d0 := uint64(0)
  1483  		for {
  1484  			qmod2 = 0
  1485  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1486  				// subtract
  1487  				qmod2 = 1
  1488  				u0x, u0 = u0, u0-d0
  1489  				if u0 > u0x {
  1490  					u1--
  1491  				}
  1492  				u1 -= d1
  1493  			}
  1494  			if d1 == 0 && d0 == uint64(d) {
  1495  				break
  1496  			}
  1497  			d0 >>= 1
  1498  			d0 |= (d1 & 1) << 63
  1499  			d1 >>= 1
  1500  		}
  1501  		r = Duration(u0)
  1502  	}
  1503  
  1504  	if neg && r != 0 {
  1505  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1506  		//	q*d + r = -t
  1507  		// But the right answers are given by -(q-1), d-r:
  1508  		//	q*d + r = -t
  1509  		//	-q*d - r = t
  1510  		//	-(q-1)*d + (d - r) = t
  1511  		qmod2 ^= 1
  1512  		r = d - r
  1513  	}
  1514  	return
  1515  }