github.com/AndrienkoAleksandr/go@v0.0.19/src/go/parser/parser.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package parser implements a parser for Go source files. Input may be
     6  // provided in a variety of forms (see the various Parse* functions); the
     7  // output is an abstract syntax tree (AST) representing the Go source. The
     8  // parser is invoked through one of the Parse* functions.
     9  //
    10  // The parser accepts a larger language than is syntactically permitted by
    11  // the Go spec, for simplicity, and for improved robustness in the presence
    12  // of syntax errors. For instance, in method declarations, the receiver is
    13  // treated like an ordinary parameter list and thus may contain multiple
    14  // entries where the spec permits exactly one. Consequently, the corresponding
    15  // field in the AST (ast.FuncDecl.Recv) field is not restricted to one entry.
    16  package parser
    17  
    18  import (
    19  	"fmt"
    20  	"go/ast"
    21  	"go/build/constraint"
    22  	"go/internal/typeparams"
    23  	"go/scanner"
    24  	"go/token"
    25  	"strings"
    26  )
    27  
    28  // The parser structure holds the parser's internal state.
    29  type parser struct {
    30  	file    *token.File
    31  	errors  scanner.ErrorList
    32  	scanner scanner.Scanner
    33  
    34  	// Tracing/debugging
    35  	mode   Mode // parsing mode
    36  	trace  bool // == (mode&Trace != 0)
    37  	indent int  // indentation used for tracing output
    38  
    39  	// Comments
    40  	comments    []*ast.CommentGroup
    41  	leadComment *ast.CommentGroup // last lead comment
    42  	lineComment *ast.CommentGroup // last line comment
    43  	top         bool              // in top of file (before package clause)
    44  	goVersion   string            // minimum Go version found in //go:build comment
    45  
    46  	// Next token
    47  	pos token.Pos   // token position
    48  	tok token.Token // one token look-ahead
    49  	lit string      // token literal
    50  
    51  	// Error recovery
    52  	// (used to limit the number of calls to parser.advance
    53  	// w/o making scanning progress - avoids potential endless
    54  	// loops across multiple parser functions during error recovery)
    55  	syncPos token.Pos // last synchronization position
    56  	syncCnt int       // number of parser.advance calls without progress
    57  
    58  	// Non-syntactic parser control
    59  	exprLev int  // < 0: in control clause, >= 0: in expression
    60  	inRhs   bool // if set, the parser is parsing a rhs expression
    61  
    62  	imports []*ast.ImportSpec // list of imports
    63  
    64  	// nestLev is used to track and limit the recursion depth
    65  	// during parsing.
    66  	nestLev int
    67  }
    68  
    69  func (p *parser) init(fset *token.FileSet, filename string, src []byte, mode Mode) {
    70  	p.file = fset.AddFile(filename, -1, len(src))
    71  	eh := func(pos token.Position, msg string) { p.errors.Add(pos, msg) }
    72  	p.scanner.Init(p.file, src, eh, scanner.ScanComments)
    73  
    74  	p.top = true
    75  	p.mode = mode
    76  	p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently)
    77  	p.next()
    78  }
    79  
    80  // ----------------------------------------------------------------------------
    81  // Parsing support
    82  
    83  func (p *parser) printTrace(a ...any) {
    84  	const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
    85  	const n = len(dots)
    86  	pos := p.file.Position(p.pos)
    87  	fmt.Printf("%5d:%3d: ", pos.Line, pos.Column)
    88  	i := 2 * p.indent
    89  	for i > n {
    90  		fmt.Print(dots)
    91  		i -= n
    92  	}
    93  	// i <= n
    94  	fmt.Print(dots[0:i])
    95  	fmt.Println(a...)
    96  }
    97  
    98  func trace(p *parser, msg string) *parser {
    99  	p.printTrace(msg, "(")
   100  	p.indent++
   101  	return p
   102  }
   103  
   104  // Usage pattern: defer un(trace(p, "..."))
   105  func un(p *parser) {
   106  	p.indent--
   107  	p.printTrace(")")
   108  }
   109  
   110  // maxNestLev is the deepest we're willing to recurse during parsing
   111  const maxNestLev int = 1e5
   112  
   113  func incNestLev(p *parser) *parser {
   114  	p.nestLev++
   115  	if p.nestLev > maxNestLev {
   116  		p.error(p.pos, "exceeded max nesting depth")
   117  		panic(bailout{})
   118  	}
   119  	return p
   120  }
   121  
   122  // decNestLev is used to track nesting depth during parsing to prevent stack exhaustion.
   123  // It is used along with incNestLev in a similar fashion to how un and trace are used.
   124  func decNestLev(p *parser) {
   125  	p.nestLev--
   126  }
   127  
   128  // Advance to the next token.
   129  func (p *parser) next0() {
   130  	// Because of one-token look-ahead, print the previous token
   131  	// when tracing as it provides a more readable output. The
   132  	// very first token (!p.pos.IsValid()) is not initialized
   133  	// (it is token.ILLEGAL), so don't print it.
   134  	if p.trace && p.pos.IsValid() {
   135  		s := p.tok.String()
   136  		switch {
   137  		case p.tok.IsLiteral():
   138  			p.printTrace(s, p.lit)
   139  		case p.tok.IsOperator(), p.tok.IsKeyword():
   140  			p.printTrace("\"" + s + "\"")
   141  		default:
   142  			p.printTrace(s)
   143  		}
   144  	}
   145  
   146  	for {
   147  		p.pos, p.tok, p.lit = p.scanner.Scan()
   148  		if p.tok == token.COMMENT {
   149  			if p.top && strings.HasPrefix(p.lit, "//go:build") {
   150  				if x, err := constraint.Parse(p.lit); err == nil {
   151  					p.goVersion = constraint.GoVersion(x)
   152  				}
   153  			}
   154  			if p.mode&ParseComments == 0 {
   155  				continue
   156  			}
   157  		} else {
   158  			// Found a non-comment; top of file is over.
   159  			p.top = false
   160  		}
   161  		break
   162  	}
   163  }
   164  
   165  // Consume a comment and return it and the line on which it ends.
   166  func (p *parser) consumeComment() (comment *ast.Comment, endline int) {
   167  	// /*-style comments may end on a different line than where they start.
   168  	// Scan the comment for '\n' chars and adjust endline accordingly.
   169  	endline = p.file.Line(p.pos)
   170  	if p.lit[1] == '*' {
   171  		// don't use range here - no need to decode Unicode code points
   172  		for i := 0; i < len(p.lit); i++ {
   173  			if p.lit[i] == '\n' {
   174  				endline++
   175  			}
   176  		}
   177  	}
   178  
   179  	comment = &ast.Comment{Slash: p.pos, Text: p.lit}
   180  	p.next0()
   181  
   182  	return
   183  }
   184  
   185  // Consume a group of adjacent comments, add it to the parser's
   186  // comments list, and return it together with the line at which
   187  // the last comment in the group ends. A non-comment token or n
   188  // empty lines terminate a comment group.
   189  func (p *parser) consumeCommentGroup(n int) (comments *ast.CommentGroup, endline int) {
   190  	var list []*ast.Comment
   191  	endline = p.file.Line(p.pos)
   192  	for p.tok == token.COMMENT && p.file.Line(p.pos) <= endline+n {
   193  		var comment *ast.Comment
   194  		comment, endline = p.consumeComment()
   195  		list = append(list, comment)
   196  	}
   197  
   198  	// add comment group to the comments list
   199  	comments = &ast.CommentGroup{List: list}
   200  	p.comments = append(p.comments, comments)
   201  
   202  	return
   203  }
   204  
   205  // Advance to the next non-comment token. In the process, collect
   206  // any comment groups encountered, and remember the last lead and
   207  // line comments.
   208  //
   209  // A lead comment is a comment group that starts and ends in a
   210  // line without any other tokens and that is followed by a non-comment
   211  // token on the line immediately after the comment group.
   212  //
   213  // A line comment is a comment group that follows a non-comment
   214  // token on the same line, and that has no tokens after it on the line
   215  // where it ends.
   216  //
   217  // Lead and line comments may be considered documentation that is
   218  // stored in the AST.
   219  func (p *parser) next() {
   220  	p.leadComment = nil
   221  	p.lineComment = nil
   222  	prev := p.pos
   223  	p.next0()
   224  
   225  	if p.tok == token.COMMENT {
   226  		var comment *ast.CommentGroup
   227  		var endline int
   228  
   229  		if p.file.Line(p.pos) == p.file.Line(prev) {
   230  			// The comment is on same line as the previous token; it
   231  			// cannot be a lead comment but may be a line comment.
   232  			comment, endline = p.consumeCommentGroup(0)
   233  			if p.file.Line(p.pos) != endline || p.tok == token.SEMICOLON || p.tok == token.EOF {
   234  				// The next token is on a different line, thus
   235  				// the last comment group is a line comment.
   236  				p.lineComment = comment
   237  			}
   238  		}
   239  
   240  		// consume successor comments, if any
   241  		endline = -1
   242  		for p.tok == token.COMMENT {
   243  			comment, endline = p.consumeCommentGroup(1)
   244  		}
   245  
   246  		if endline+1 == p.file.Line(p.pos) {
   247  			// The next token is following on the line immediately after the
   248  			// comment group, thus the last comment group is a lead comment.
   249  			p.leadComment = comment
   250  		}
   251  	}
   252  }
   253  
   254  // A bailout panic is raised to indicate early termination. pos and msg are
   255  // only populated when bailing out of object resolution.
   256  type bailout struct {
   257  	pos token.Pos
   258  	msg string
   259  }
   260  
   261  func (p *parser) error(pos token.Pos, msg string) {
   262  	if p.trace {
   263  		defer un(trace(p, "error: "+msg))
   264  	}
   265  
   266  	epos := p.file.Position(pos)
   267  
   268  	// If AllErrors is not set, discard errors reported on the same line
   269  	// as the last recorded error and stop parsing if there are more than
   270  	// 10 errors.
   271  	if p.mode&AllErrors == 0 {
   272  		n := len(p.errors)
   273  		if n > 0 && p.errors[n-1].Pos.Line == epos.Line {
   274  			return // discard - likely a spurious error
   275  		}
   276  		if n > 10 {
   277  			panic(bailout{})
   278  		}
   279  	}
   280  
   281  	p.errors.Add(epos, msg)
   282  }
   283  
   284  func (p *parser) errorExpected(pos token.Pos, msg string) {
   285  	msg = "expected " + msg
   286  	if pos == p.pos {
   287  		// the error happened at the current position;
   288  		// make the error message more specific
   289  		switch {
   290  		case p.tok == token.SEMICOLON && p.lit == "\n":
   291  			msg += ", found newline"
   292  		case p.tok.IsLiteral():
   293  			// print 123 rather than 'INT', etc.
   294  			msg += ", found " + p.lit
   295  		default:
   296  			msg += ", found '" + p.tok.String() + "'"
   297  		}
   298  	}
   299  	p.error(pos, msg)
   300  }
   301  
   302  func (p *parser) expect(tok token.Token) token.Pos {
   303  	pos := p.pos
   304  	if p.tok != tok {
   305  		p.errorExpected(pos, "'"+tok.String()+"'")
   306  	}
   307  	p.next() // make progress
   308  	return pos
   309  }
   310  
   311  // expect2 is like expect, but it returns an invalid position
   312  // if the expected token is not found.
   313  func (p *parser) expect2(tok token.Token) (pos token.Pos) {
   314  	if p.tok == tok {
   315  		pos = p.pos
   316  	} else {
   317  		p.errorExpected(p.pos, "'"+tok.String()+"'")
   318  	}
   319  	p.next() // make progress
   320  	return
   321  }
   322  
   323  // expectClosing is like expect but provides a better error message
   324  // for the common case of a missing comma before a newline.
   325  func (p *parser) expectClosing(tok token.Token, context string) token.Pos {
   326  	if p.tok != tok && p.tok == token.SEMICOLON && p.lit == "\n" {
   327  		p.error(p.pos, "missing ',' before newline in "+context)
   328  		p.next()
   329  	}
   330  	return p.expect(tok)
   331  }
   332  
   333  // expectSemi consumes a semicolon and returns the applicable line comment.
   334  func (p *parser) expectSemi() (comment *ast.CommentGroup) {
   335  	// semicolon is optional before a closing ')' or '}'
   336  	if p.tok != token.RPAREN && p.tok != token.RBRACE {
   337  		switch p.tok {
   338  		case token.COMMA:
   339  			// permit a ',' instead of a ';' but complain
   340  			p.errorExpected(p.pos, "';'")
   341  			fallthrough
   342  		case token.SEMICOLON:
   343  			if p.lit == ";" {
   344  				// explicit semicolon
   345  				p.next()
   346  				comment = p.lineComment // use following comments
   347  			} else {
   348  				// artificial semicolon
   349  				comment = p.lineComment // use preceding comments
   350  				p.next()
   351  			}
   352  			return comment
   353  		default:
   354  			p.errorExpected(p.pos, "';'")
   355  			p.advance(stmtStart)
   356  		}
   357  	}
   358  	return nil
   359  }
   360  
   361  func (p *parser) atComma(context string, follow token.Token) bool {
   362  	if p.tok == token.COMMA {
   363  		return true
   364  	}
   365  	if p.tok != follow {
   366  		msg := "missing ','"
   367  		if p.tok == token.SEMICOLON && p.lit == "\n" {
   368  			msg += " before newline"
   369  		}
   370  		p.error(p.pos, msg+" in "+context)
   371  		return true // "insert" comma and continue
   372  	}
   373  	return false
   374  }
   375  
   376  func assert(cond bool, msg string) {
   377  	if !cond {
   378  		panic("go/parser internal error: " + msg)
   379  	}
   380  }
   381  
   382  // advance consumes tokens until the current token p.tok
   383  // is in the 'to' set, or token.EOF. For error recovery.
   384  func (p *parser) advance(to map[token.Token]bool) {
   385  	for ; p.tok != token.EOF; p.next() {
   386  		if to[p.tok] {
   387  			// Return only if parser made some progress since last
   388  			// sync or if it has not reached 10 advance calls without
   389  			// progress. Otherwise consume at least one token to
   390  			// avoid an endless parser loop (it is possible that
   391  			// both parseOperand and parseStmt call advance and
   392  			// correctly do not advance, thus the need for the
   393  			// invocation limit p.syncCnt).
   394  			if p.pos == p.syncPos && p.syncCnt < 10 {
   395  				p.syncCnt++
   396  				return
   397  			}
   398  			if p.pos > p.syncPos {
   399  				p.syncPos = p.pos
   400  				p.syncCnt = 0
   401  				return
   402  			}
   403  			// Reaching here indicates a parser bug, likely an
   404  			// incorrect token list in this function, but it only
   405  			// leads to skipping of possibly correct code if a
   406  			// previous error is present, and thus is preferred
   407  			// over a non-terminating parse.
   408  		}
   409  	}
   410  }
   411  
   412  var stmtStart = map[token.Token]bool{
   413  	token.BREAK:       true,
   414  	token.CONST:       true,
   415  	token.CONTINUE:    true,
   416  	token.DEFER:       true,
   417  	token.FALLTHROUGH: true,
   418  	token.FOR:         true,
   419  	token.GO:          true,
   420  	token.GOTO:        true,
   421  	token.IF:          true,
   422  	token.RETURN:      true,
   423  	token.SELECT:      true,
   424  	token.SWITCH:      true,
   425  	token.TYPE:        true,
   426  	token.VAR:         true,
   427  }
   428  
   429  var declStart = map[token.Token]bool{
   430  	token.IMPORT: true,
   431  	token.CONST:  true,
   432  	token.TYPE:   true,
   433  	token.VAR:    true,
   434  }
   435  
   436  var exprEnd = map[token.Token]bool{
   437  	token.COMMA:     true,
   438  	token.COLON:     true,
   439  	token.SEMICOLON: true,
   440  	token.RPAREN:    true,
   441  	token.RBRACK:    true,
   442  	token.RBRACE:    true,
   443  }
   444  
   445  // safePos returns a valid file position for a given position: If pos
   446  // is valid to begin with, safePos returns pos. If pos is out-of-range,
   447  // safePos returns the EOF position.
   448  //
   449  // This is hack to work around "artificial" end positions in the AST which
   450  // are computed by adding 1 to (presumably valid) token positions. If the
   451  // token positions are invalid due to parse errors, the resulting end position
   452  // may be past the file's EOF position, which would lead to panics if used
   453  // later on.
   454  func (p *parser) safePos(pos token.Pos) (res token.Pos) {
   455  	defer func() {
   456  		if recover() != nil {
   457  			res = token.Pos(p.file.Base() + p.file.Size()) // EOF position
   458  		}
   459  	}()
   460  	_ = p.file.Offset(pos) // trigger a panic if position is out-of-range
   461  	return pos
   462  }
   463  
   464  // ----------------------------------------------------------------------------
   465  // Identifiers
   466  
   467  func (p *parser) parseIdent() *ast.Ident {
   468  	pos := p.pos
   469  	name := "_"
   470  	if p.tok == token.IDENT {
   471  		name = p.lit
   472  		p.next()
   473  	} else {
   474  		p.expect(token.IDENT) // use expect() error handling
   475  	}
   476  	return &ast.Ident{NamePos: pos, Name: name}
   477  }
   478  
   479  func (p *parser) parseIdentList() (list []*ast.Ident) {
   480  	if p.trace {
   481  		defer un(trace(p, "IdentList"))
   482  	}
   483  
   484  	list = append(list, p.parseIdent())
   485  	for p.tok == token.COMMA {
   486  		p.next()
   487  		list = append(list, p.parseIdent())
   488  	}
   489  
   490  	return
   491  }
   492  
   493  // ----------------------------------------------------------------------------
   494  // Common productions
   495  
   496  // If lhs is set, result list elements which are identifiers are not resolved.
   497  func (p *parser) parseExprList() (list []ast.Expr) {
   498  	if p.trace {
   499  		defer un(trace(p, "ExpressionList"))
   500  	}
   501  
   502  	list = append(list, p.parseExpr())
   503  	for p.tok == token.COMMA {
   504  		p.next()
   505  		list = append(list, p.parseExpr())
   506  	}
   507  
   508  	return
   509  }
   510  
   511  func (p *parser) parseList(inRhs bool) []ast.Expr {
   512  	old := p.inRhs
   513  	p.inRhs = inRhs
   514  	list := p.parseExprList()
   515  	p.inRhs = old
   516  	return list
   517  }
   518  
   519  // ----------------------------------------------------------------------------
   520  // Types
   521  
   522  func (p *parser) parseType() ast.Expr {
   523  	if p.trace {
   524  		defer un(trace(p, "Type"))
   525  	}
   526  
   527  	typ := p.tryIdentOrType()
   528  
   529  	if typ == nil {
   530  		pos := p.pos
   531  		p.errorExpected(pos, "type")
   532  		p.advance(exprEnd)
   533  		return &ast.BadExpr{From: pos, To: p.pos}
   534  	}
   535  
   536  	return typ
   537  }
   538  
   539  func (p *parser) parseQualifiedIdent(ident *ast.Ident) ast.Expr {
   540  	if p.trace {
   541  		defer un(trace(p, "QualifiedIdent"))
   542  	}
   543  
   544  	typ := p.parseTypeName(ident)
   545  	if p.tok == token.LBRACK {
   546  		typ = p.parseTypeInstance(typ)
   547  	}
   548  
   549  	return typ
   550  }
   551  
   552  // If the result is an identifier, it is not resolved.
   553  func (p *parser) parseTypeName(ident *ast.Ident) ast.Expr {
   554  	if p.trace {
   555  		defer un(trace(p, "TypeName"))
   556  	}
   557  
   558  	if ident == nil {
   559  		ident = p.parseIdent()
   560  	}
   561  
   562  	if p.tok == token.PERIOD {
   563  		// ident is a package name
   564  		p.next()
   565  		sel := p.parseIdent()
   566  		return &ast.SelectorExpr{X: ident, Sel: sel}
   567  	}
   568  
   569  	return ident
   570  }
   571  
   572  // "[" has already been consumed, and lbrack is its position.
   573  // If len != nil it is the already consumed array length.
   574  func (p *parser) parseArrayType(lbrack token.Pos, len ast.Expr) *ast.ArrayType {
   575  	if p.trace {
   576  		defer un(trace(p, "ArrayType"))
   577  	}
   578  
   579  	if len == nil {
   580  		p.exprLev++
   581  		// always permit ellipsis for more fault-tolerant parsing
   582  		if p.tok == token.ELLIPSIS {
   583  			len = &ast.Ellipsis{Ellipsis: p.pos}
   584  			p.next()
   585  		} else if p.tok != token.RBRACK {
   586  			len = p.parseRhs()
   587  		}
   588  		p.exprLev--
   589  	}
   590  	if p.tok == token.COMMA {
   591  		// Trailing commas are accepted in type parameter
   592  		// lists but not in array type declarations.
   593  		// Accept for better error handling but complain.
   594  		p.error(p.pos, "unexpected comma; expecting ]")
   595  		p.next()
   596  	}
   597  	p.expect(token.RBRACK)
   598  	elt := p.parseType()
   599  	return &ast.ArrayType{Lbrack: lbrack, Len: len, Elt: elt}
   600  }
   601  
   602  func (p *parser) parseArrayFieldOrTypeInstance(x *ast.Ident) (*ast.Ident, ast.Expr) {
   603  	if p.trace {
   604  		defer un(trace(p, "ArrayFieldOrTypeInstance"))
   605  	}
   606  
   607  	lbrack := p.expect(token.LBRACK)
   608  	trailingComma := token.NoPos // if valid, the position of a trailing comma preceding the ']'
   609  	var args []ast.Expr
   610  	if p.tok != token.RBRACK {
   611  		p.exprLev++
   612  		args = append(args, p.parseRhs())
   613  		for p.tok == token.COMMA {
   614  			comma := p.pos
   615  			p.next()
   616  			if p.tok == token.RBRACK {
   617  				trailingComma = comma
   618  				break
   619  			}
   620  			args = append(args, p.parseRhs())
   621  		}
   622  		p.exprLev--
   623  	}
   624  	rbrack := p.expect(token.RBRACK)
   625  
   626  	if len(args) == 0 {
   627  		// x []E
   628  		elt := p.parseType()
   629  		return x, &ast.ArrayType{Lbrack: lbrack, Elt: elt}
   630  	}
   631  
   632  	// x [P]E or x[P]
   633  	if len(args) == 1 {
   634  		elt := p.tryIdentOrType()
   635  		if elt != nil {
   636  			// x [P]E
   637  			if trailingComma.IsValid() {
   638  				// Trailing commas are invalid in array type fields.
   639  				p.error(trailingComma, "unexpected comma; expecting ]")
   640  			}
   641  			return x, &ast.ArrayType{Lbrack: lbrack, Len: args[0], Elt: elt}
   642  		}
   643  	}
   644  
   645  	// x[P], x[P1, P2], ...
   646  	return nil, typeparams.PackIndexExpr(x, lbrack, args, rbrack)
   647  }
   648  
   649  func (p *parser) parseFieldDecl() *ast.Field {
   650  	if p.trace {
   651  		defer un(trace(p, "FieldDecl"))
   652  	}
   653  
   654  	doc := p.leadComment
   655  
   656  	var names []*ast.Ident
   657  	var typ ast.Expr
   658  	switch p.tok {
   659  	case token.IDENT:
   660  		name := p.parseIdent()
   661  		if p.tok == token.PERIOD || p.tok == token.STRING || p.tok == token.SEMICOLON || p.tok == token.RBRACE {
   662  			// embedded type
   663  			typ = name
   664  			if p.tok == token.PERIOD {
   665  				typ = p.parseQualifiedIdent(name)
   666  			}
   667  		} else {
   668  			// name1, name2, ... T
   669  			names = []*ast.Ident{name}
   670  			for p.tok == token.COMMA {
   671  				p.next()
   672  				names = append(names, p.parseIdent())
   673  			}
   674  			// Careful dance: We don't know if we have an embedded instantiated
   675  			// type T[P1, P2, ...] or a field T of array type []E or [P]E.
   676  			if len(names) == 1 && p.tok == token.LBRACK {
   677  				name, typ = p.parseArrayFieldOrTypeInstance(name)
   678  				if name == nil {
   679  					names = nil
   680  				}
   681  			} else {
   682  				// T P
   683  				typ = p.parseType()
   684  			}
   685  		}
   686  	case token.MUL:
   687  		star := p.pos
   688  		p.next()
   689  		if p.tok == token.LPAREN {
   690  			// *(T)
   691  			p.error(p.pos, "cannot parenthesize embedded type")
   692  			p.next()
   693  			typ = p.parseQualifiedIdent(nil)
   694  			// expect closing ')' but no need to complain if missing
   695  			if p.tok == token.RPAREN {
   696  				p.next()
   697  			}
   698  		} else {
   699  			// *T
   700  			typ = p.parseQualifiedIdent(nil)
   701  		}
   702  		typ = &ast.StarExpr{Star: star, X: typ}
   703  
   704  	case token.LPAREN:
   705  		p.error(p.pos, "cannot parenthesize embedded type")
   706  		p.next()
   707  		if p.tok == token.MUL {
   708  			// (*T)
   709  			star := p.pos
   710  			p.next()
   711  			typ = &ast.StarExpr{Star: star, X: p.parseQualifiedIdent(nil)}
   712  		} else {
   713  			// (T)
   714  			typ = p.parseQualifiedIdent(nil)
   715  		}
   716  		// expect closing ')' but no need to complain if missing
   717  		if p.tok == token.RPAREN {
   718  			p.next()
   719  		}
   720  
   721  	default:
   722  		pos := p.pos
   723  		p.errorExpected(pos, "field name or embedded type")
   724  		p.advance(exprEnd)
   725  		typ = &ast.BadExpr{From: pos, To: p.pos}
   726  	}
   727  
   728  	var tag *ast.BasicLit
   729  	if p.tok == token.STRING {
   730  		tag = &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit}
   731  		p.next()
   732  	}
   733  
   734  	comment := p.expectSemi()
   735  
   736  	field := &ast.Field{Doc: doc, Names: names, Type: typ, Tag: tag, Comment: comment}
   737  	return field
   738  }
   739  
   740  func (p *parser) parseStructType() *ast.StructType {
   741  	if p.trace {
   742  		defer un(trace(p, "StructType"))
   743  	}
   744  
   745  	pos := p.expect(token.STRUCT)
   746  	lbrace := p.expect(token.LBRACE)
   747  	var list []*ast.Field
   748  	for p.tok == token.IDENT || p.tok == token.MUL || p.tok == token.LPAREN {
   749  		// a field declaration cannot start with a '(' but we accept
   750  		// it here for more robust parsing and better error messages
   751  		// (parseFieldDecl will check and complain if necessary)
   752  		list = append(list, p.parseFieldDecl())
   753  	}
   754  	rbrace := p.expect(token.RBRACE)
   755  
   756  	return &ast.StructType{
   757  		Struct: pos,
   758  		Fields: &ast.FieldList{
   759  			Opening: lbrace,
   760  			List:    list,
   761  			Closing: rbrace,
   762  		},
   763  	}
   764  }
   765  
   766  func (p *parser) parsePointerType() *ast.StarExpr {
   767  	if p.trace {
   768  		defer un(trace(p, "PointerType"))
   769  	}
   770  
   771  	star := p.expect(token.MUL)
   772  	base := p.parseType()
   773  
   774  	return &ast.StarExpr{Star: star, X: base}
   775  }
   776  
   777  func (p *parser) parseDotsType() *ast.Ellipsis {
   778  	if p.trace {
   779  		defer un(trace(p, "DotsType"))
   780  	}
   781  
   782  	pos := p.expect(token.ELLIPSIS)
   783  	elt := p.parseType()
   784  
   785  	return &ast.Ellipsis{Ellipsis: pos, Elt: elt}
   786  }
   787  
   788  type field struct {
   789  	name *ast.Ident
   790  	typ  ast.Expr
   791  }
   792  
   793  func (p *parser) parseParamDecl(name *ast.Ident, typeSetsOK bool) (f field) {
   794  	// TODO(rFindley) refactor to be more similar to paramDeclOrNil in the syntax
   795  	// package
   796  	if p.trace {
   797  		defer un(trace(p, "ParamDeclOrNil"))
   798  	}
   799  
   800  	ptok := p.tok
   801  	if name != nil {
   802  		p.tok = token.IDENT // force token.IDENT case in switch below
   803  	} else if typeSetsOK && p.tok == token.TILDE {
   804  		// "~" ...
   805  		return field{nil, p.embeddedElem(nil)}
   806  	}
   807  
   808  	switch p.tok {
   809  	case token.IDENT:
   810  		// name
   811  		if name != nil {
   812  			f.name = name
   813  			p.tok = ptok
   814  		} else {
   815  			f.name = p.parseIdent()
   816  		}
   817  		switch p.tok {
   818  		case token.IDENT, token.MUL, token.ARROW, token.FUNC, token.CHAN, token.MAP, token.STRUCT, token.INTERFACE, token.LPAREN:
   819  			// name type
   820  			f.typ = p.parseType()
   821  
   822  		case token.LBRACK:
   823  			// name "[" type1, ..., typeN "]" or name "[" n "]" type
   824  			f.name, f.typ = p.parseArrayFieldOrTypeInstance(f.name)
   825  
   826  		case token.ELLIPSIS:
   827  			// name "..." type
   828  			f.typ = p.parseDotsType()
   829  			return // don't allow ...type "|" ...
   830  
   831  		case token.PERIOD:
   832  			// name "." ...
   833  			f.typ = p.parseQualifiedIdent(f.name)
   834  			f.name = nil
   835  
   836  		case token.TILDE:
   837  			if typeSetsOK {
   838  				f.typ = p.embeddedElem(nil)
   839  				return
   840  			}
   841  
   842  		case token.OR:
   843  			if typeSetsOK {
   844  				// name "|" typeset
   845  				f.typ = p.embeddedElem(f.name)
   846  				f.name = nil
   847  				return
   848  			}
   849  		}
   850  
   851  	case token.MUL, token.ARROW, token.FUNC, token.LBRACK, token.CHAN, token.MAP, token.STRUCT, token.INTERFACE, token.LPAREN:
   852  		// type
   853  		f.typ = p.parseType()
   854  
   855  	case token.ELLIPSIS:
   856  		// "..." type
   857  		// (always accepted)
   858  		f.typ = p.parseDotsType()
   859  		return // don't allow ...type "|" ...
   860  
   861  	default:
   862  		// TODO(rfindley): this is incorrect in the case of type parameter lists
   863  		//                 (should be "']'" in that case)
   864  		p.errorExpected(p.pos, "')'")
   865  		p.advance(exprEnd)
   866  	}
   867  
   868  	// [name] type "|"
   869  	if typeSetsOK && p.tok == token.OR && f.typ != nil {
   870  		f.typ = p.embeddedElem(f.typ)
   871  	}
   872  
   873  	return
   874  }
   875  
   876  func (p *parser) parseParameterList(name0 *ast.Ident, typ0 ast.Expr, closing token.Token) (params []*ast.Field) {
   877  	if p.trace {
   878  		defer un(trace(p, "ParameterList"))
   879  	}
   880  
   881  	// Type parameters are the only parameter list closed by ']'.
   882  	tparams := closing == token.RBRACK
   883  	// Type set notation is ok in type parameter lists.
   884  	typeSetsOK := tparams
   885  
   886  	pos := p.pos
   887  	if name0 != nil {
   888  		pos = name0.Pos()
   889  	}
   890  
   891  	var list []field
   892  	var named int // number of parameters that have an explicit name and type
   893  
   894  	for name0 != nil || p.tok != closing && p.tok != token.EOF {
   895  		var par field
   896  		if typ0 != nil {
   897  			if typeSetsOK {
   898  				typ0 = p.embeddedElem(typ0)
   899  			}
   900  			par = field{name0, typ0}
   901  		} else {
   902  			par = p.parseParamDecl(name0, typeSetsOK)
   903  		}
   904  		name0 = nil // 1st name was consumed if present
   905  		typ0 = nil  // 1st typ was consumed if present
   906  		if par.name != nil || par.typ != nil {
   907  			list = append(list, par)
   908  			if par.name != nil && par.typ != nil {
   909  				named++
   910  			}
   911  		}
   912  		if !p.atComma("parameter list", closing) {
   913  			break
   914  		}
   915  		p.next()
   916  	}
   917  
   918  	if len(list) == 0 {
   919  		return // not uncommon
   920  	}
   921  
   922  	// TODO(gri) parameter distribution and conversion to []*ast.Field
   923  	//           can be combined and made more efficient
   924  
   925  	// distribute parameter types
   926  	if named == 0 {
   927  		// all unnamed => found names are type names
   928  		for i := 0; i < len(list); i++ {
   929  			par := &list[i]
   930  			if typ := par.name; typ != nil {
   931  				par.typ = typ
   932  				par.name = nil
   933  			}
   934  		}
   935  		if tparams {
   936  			p.error(pos, "type parameters must be named")
   937  		}
   938  	} else if named != len(list) {
   939  		// some named => all must be named
   940  		ok := true
   941  		var typ ast.Expr
   942  		missingName := pos
   943  		for i := len(list) - 1; i >= 0; i-- {
   944  			if par := &list[i]; par.typ != nil {
   945  				typ = par.typ
   946  				if par.name == nil {
   947  					ok = false
   948  					missingName = par.typ.Pos()
   949  					n := ast.NewIdent("_")
   950  					n.NamePos = typ.Pos() // correct position
   951  					par.name = n
   952  				}
   953  			} else if typ != nil {
   954  				par.typ = typ
   955  			} else {
   956  				// par.typ == nil && typ == nil => we only have a par.name
   957  				ok = false
   958  				missingName = par.name.Pos()
   959  				par.typ = &ast.BadExpr{From: par.name.Pos(), To: p.pos}
   960  			}
   961  		}
   962  		if !ok {
   963  			if tparams {
   964  				p.error(missingName, "type parameters must be named")
   965  			} else {
   966  				p.error(pos, "mixed named and unnamed parameters")
   967  			}
   968  		}
   969  	}
   970  
   971  	// convert list []*ast.Field
   972  	if named == 0 {
   973  		// parameter list consists of types only
   974  		for _, par := range list {
   975  			assert(par.typ != nil, "nil type in unnamed parameter list")
   976  			params = append(params, &ast.Field{Type: par.typ})
   977  		}
   978  		return
   979  	}
   980  
   981  	// parameter list consists of named parameters with types
   982  	var names []*ast.Ident
   983  	var typ ast.Expr
   984  	addParams := func() {
   985  		assert(typ != nil, "nil type in named parameter list")
   986  		field := &ast.Field{Names: names, Type: typ}
   987  		params = append(params, field)
   988  		names = nil
   989  	}
   990  	for _, par := range list {
   991  		if par.typ != typ {
   992  			if len(names) > 0 {
   993  				addParams()
   994  			}
   995  			typ = par.typ
   996  		}
   997  		names = append(names, par.name)
   998  	}
   999  	if len(names) > 0 {
  1000  		addParams()
  1001  	}
  1002  	return
  1003  }
  1004  
  1005  func (p *parser) parseParameters(acceptTParams bool) (tparams, params *ast.FieldList) {
  1006  	if p.trace {
  1007  		defer un(trace(p, "Parameters"))
  1008  	}
  1009  
  1010  	if acceptTParams && p.tok == token.LBRACK {
  1011  		opening := p.pos
  1012  		p.next()
  1013  		// [T any](params) syntax
  1014  		list := p.parseParameterList(nil, nil, token.RBRACK)
  1015  		rbrack := p.expect(token.RBRACK)
  1016  		tparams = &ast.FieldList{Opening: opening, List: list, Closing: rbrack}
  1017  		// Type parameter lists must not be empty.
  1018  		if tparams.NumFields() == 0 {
  1019  			p.error(tparams.Closing, "empty type parameter list")
  1020  			tparams = nil // avoid follow-on errors
  1021  		}
  1022  	}
  1023  
  1024  	opening := p.expect(token.LPAREN)
  1025  
  1026  	var fields []*ast.Field
  1027  	if p.tok != token.RPAREN {
  1028  		fields = p.parseParameterList(nil, nil, token.RPAREN)
  1029  	}
  1030  
  1031  	rparen := p.expect(token.RPAREN)
  1032  	params = &ast.FieldList{Opening: opening, List: fields, Closing: rparen}
  1033  
  1034  	return
  1035  }
  1036  
  1037  func (p *parser) parseResult() *ast.FieldList {
  1038  	if p.trace {
  1039  		defer un(trace(p, "Result"))
  1040  	}
  1041  
  1042  	if p.tok == token.LPAREN {
  1043  		_, results := p.parseParameters(false)
  1044  		return results
  1045  	}
  1046  
  1047  	typ := p.tryIdentOrType()
  1048  	if typ != nil {
  1049  		list := make([]*ast.Field, 1)
  1050  		list[0] = &ast.Field{Type: typ}
  1051  		return &ast.FieldList{List: list}
  1052  	}
  1053  
  1054  	return nil
  1055  }
  1056  
  1057  func (p *parser) parseFuncType() *ast.FuncType {
  1058  	if p.trace {
  1059  		defer un(trace(p, "FuncType"))
  1060  	}
  1061  
  1062  	pos := p.expect(token.FUNC)
  1063  	tparams, params := p.parseParameters(true)
  1064  	if tparams != nil {
  1065  		p.error(tparams.Pos(), "function type must have no type parameters")
  1066  	}
  1067  	results := p.parseResult()
  1068  
  1069  	return &ast.FuncType{Func: pos, Params: params, Results: results}
  1070  }
  1071  
  1072  func (p *parser) parseMethodSpec() *ast.Field {
  1073  	if p.trace {
  1074  		defer un(trace(p, "MethodSpec"))
  1075  	}
  1076  
  1077  	doc := p.leadComment
  1078  	var idents []*ast.Ident
  1079  	var typ ast.Expr
  1080  	x := p.parseTypeName(nil)
  1081  	if ident, _ := x.(*ast.Ident); ident != nil {
  1082  		switch {
  1083  		case p.tok == token.LBRACK:
  1084  			// generic method or embedded instantiated type
  1085  			lbrack := p.pos
  1086  			p.next()
  1087  			p.exprLev++
  1088  			x := p.parseExpr()
  1089  			p.exprLev--
  1090  			if name0, _ := x.(*ast.Ident); name0 != nil && p.tok != token.COMMA && p.tok != token.RBRACK {
  1091  				// generic method m[T any]
  1092  				//
  1093  				// Interface methods do not have type parameters. We parse them for a
  1094  				// better error message and improved error recovery.
  1095  				_ = p.parseParameterList(name0, nil, token.RBRACK)
  1096  				_ = p.expect(token.RBRACK)
  1097  				p.error(lbrack, "interface method must have no type parameters")
  1098  
  1099  				// TODO(rfindley) refactor to share code with parseFuncType.
  1100  				_, params := p.parseParameters(false)
  1101  				results := p.parseResult()
  1102  				idents = []*ast.Ident{ident}
  1103  				typ = &ast.FuncType{
  1104  					Func:    token.NoPos,
  1105  					Params:  params,
  1106  					Results: results,
  1107  				}
  1108  			} else {
  1109  				// embedded instantiated type
  1110  				// TODO(rfindley) should resolve all identifiers in x.
  1111  				list := []ast.Expr{x}
  1112  				if p.atComma("type argument list", token.RBRACK) {
  1113  					p.exprLev++
  1114  					p.next()
  1115  					for p.tok != token.RBRACK && p.tok != token.EOF {
  1116  						list = append(list, p.parseType())
  1117  						if !p.atComma("type argument list", token.RBRACK) {
  1118  							break
  1119  						}
  1120  						p.next()
  1121  					}
  1122  					p.exprLev--
  1123  				}
  1124  				rbrack := p.expectClosing(token.RBRACK, "type argument list")
  1125  				typ = typeparams.PackIndexExpr(ident, lbrack, list, rbrack)
  1126  			}
  1127  		case p.tok == token.LPAREN:
  1128  			// ordinary method
  1129  			// TODO(rfindley) refactor to share code with parseFuncType.
  1130  			_, params := p.parseParameters(false)
  1131  			results := p.parseResult()
  1132  			idents = []*ast.Ident{ident}
  1133  			typ = &ast.FuncType{Func: token.NoPos, Params: params, Results: results}
  1134  		default:
  1135  			// embedded type
  1136  			typ = x
  1137  		}
  1138  	} else {
  1139  		// embedded, possibly instantiated type
  1140  		typ = x
  1141  		if p.tok == token.LBRACK {
  1142  			// embedded instantiated interface
  1143  			typ = p.parseTypeInstance(typ)
  1144  		}
  1145  	}
  1146  
  1147  	// Comment is added at the callsite: the field below may joined with
  1148  	// additional type specs using '|'.
  1149  	// TODO(rfindley) this should be refactored.
  1150  	// TODO(rfindley) add more tests for comment handling.
  1151  	return &ast.Field{Doc: doc, Names: idents, Type: typ}
  1152  }
  1153  
  1154  func (p *parser) embeddedElem(x ast.Expr) ast.Expr {
  1155  	if p.trace {
  1156  		defer un(trace(p, "EmbeddedElem"))
  1157  	}
  1158  	if x == nil {
  1159  		x = p.embeddedTerm()
  1160  	}
  1161  	for p.tok == token.OR {
  1162  		t := new(ast.BinaryExpr)
  1163  		t.OpPos = p.pos
  1164  		t.Op = token.OR
  1165  		p.next()
  1166  		t.X = x
  1167  		t.Y = p.embeddedTerm()
  1168  		x = t
  1169  	}
  1170  	return x
  1171  }
  1172  
  1173  func (p *parser) embeddedTerm() ast.Expr {
  1174  	if p.trace {
  1175  		defer un(trace(p, "EmbeddedTerm"))
  1176  	}
  1177  	if p.tok == token.TILDE {
  1178  		t := new(ast.UnaryExpr)
  1179  		t.OpPos = p.pos
  1180  		t.Op = token.TILDE
  1181  		p.next()
  1182  		t.X = p.parseType()
  1183  		return t
  1184  	}
  1185  
  1186  	t := p.tryIdentOrType()
  1187  	if t == nil {
  1188  		pos := p.pos
  1189  		p.errorExpected(pos, "~ term or type")
  1190  		p.advance(exprEnd)
  1191  		return &ast.BadExpr{From: pos, To: p.pos}
  1192  	}
  1193  
  1194  	return t
  1195  }
  1196  
  1197  func (p *parser) parseInterfaceType() *ast.InterfaceType {
  1198  	if p.trace {
  1199  		defer un(trace(p, "InterfaceType"))
  1200  	}
  1201  
  1202  	pos := p.expect(token.INTERFACE)
  1203  	lbrace := p.expect(token.LBRACE)
  1204  
  1205  	var list []*ast.Field
  1206  
  1207  parseElements:
  1208  	for {
  1209  		switch {
  1210  		case p.tok == token.IDENT:
  1211  			f := p.parseMethodSpec()
  1212  			if f.Names == nil {
  1213  				f.Type = p.embeddedElem(f.Type)
  1214  			}
  1215  			f.Comment = p.expectSemi()
  1216  			list = append(list, f)
  1217  		case p.tok == token.TILDE:
  1218  			typ := p.embeddedElem(nil)
  1219  			comment := p.expectSemi()
  1220  			list = append(list, &ast.Field{Type: typ, Comment: comment})
  1221  		default:
  1222  			if t := p.tryIdentOrType(); t != nil {
  1223  				typ := p.embeddedElem(t)
  1224  				comment := p.expectSemi()
  1225  				list = append(list, &ast.Field{Type: typ, Comment: comment})
  1226  			} else {
  1227  				break parseElements
  1228  			}
  1229  		}
  1230  	}
  1231  
  1232  	// TODO(rfindley): the error produced here could be improved, since we could
  1233  	// accept an identifier, 'type', or a '}' at this point.
  1234  	rbrace := p.expect(token.RBRACE)
  1235  
  1236  	return &ast.InterfaceType{
  1237  		Interface: pos,
  1238  		Methods: &ast.FieldList{
  1239  			Opening: lbrace,
  1240  			List:    list,
  1241  			Closing: rbrace,
  1242  		},
  1243  	}
  1244  }
  1245  
  1246  func (p *parser) parseMapType() *ast.MapType {
  1247  	if p.trace {
  1248  		defer un(trace(p, "MapType"))
  1249  	}
  1250  
  1251  	pos := p.expect(token.MAP)
  1252  	p.expect(token.LBRACK)
  1253  	key := p.parseType()
  1254  	p.expect(token.RBRACK)
  1255  	value := p.parseType()
  1256  
  1257  	return &ast.MapType{Map: pos, Key: key, Value: value}
  1258  }
  1259  
  1260  func (p *parser) parseChanType() *ast.ChanType {
  1261  	if p.trace {
  1262  		defer un(trace(p, "ChanType"))
  1263  	}
  1264  
  1265  	pos := p.pos
  1266  	dir := ast.SEND | ast.RECV
  1267  	var arrow token.Pos
  1268  	if p.tok == token.CHAN {
  1269  		p.next()
  1270  		if p.tok == token.ARROW {
  1271  			arrow = p.pos
  1272  			p.next()
  1273  			dir = ast.SEND
  1274  		}
  1275  	} else {
  1276  		arrow = p.expect(token.ARROW)
  1277  		p.expect(token.CHAN)
  1278  		dir = ast.RECV
  1279  	}
  1280  	value := p.parseType()
  1281  
  1282  	return &ast.ChanType{Begin: pos, Arrow: arrow, Dir: dir, Value: value}
  1283  }
  1284  
  1285  func (p *parser) parseTypeInstance(typ ast.Expr) ast.Expr {
  1286  	if p.trace {
  1287  		defer un(trace(p, "TypeInstance"))
  1288  	}
  1289  
  1290  	opening := p.expect(token.LBRACK)
  1291  	p.exprLev++
  1292  	var list []ast.Expr
  1293  	for p.tok != token.RBRACK && p.tok != token.EOF {
  1294  		list = append(list, p.parseType())
  1295  		if !p.atComma("type argument list", token.RBRACK) {
  1296  			break
  1297  		}
  1298  		p.next()
  1299  	}
  1300  	p.exprLev--
  1301  
  1302  	closing := p.expectClosing(token.RBRACK, "type argument list")
  1303  
  1304  	if len(list) == 0 {
  1305  		p.errorExpected(closing, "type argument list")
  1306  		return &ast.IndexExpr{
  1307  			X:      typ,
  1308  			Lbrack: opening,
  1309  			Index:  &ast.BadExpr{From: opening + 1, To: closing},
  1310  			Rbrack: closing,
  1311  		}
  1312  	}
  1313  
  1314  	return typeparams.PackIndexExpr(typ, opening, list, closing)
  1315  }
  1316  
  1317  func (p *parser) tryIdentOrType() ast.Expr {
  1318  	defer decNestLev(incNestLev(p))
  1319  
  1320  	switch p.tok {
  1321  	case token.IDENT:
  1322  		typ := p.parseTypeName(nil)
  1323  		if p.tok == token.LBRACK {
  1324  			typ = p.parseTypeInstance(typ)
  1325  		}
  1326  		return typ
  1327  	case token.LBRACK:
  1328  		lbrack := p.expect(token.LBRACK)
  1329  		return p.parseArrayType(lbrack, nil)
  1330  	case token.STRUCT:
  1331  		return p.parseStructType()
  1332  	case token.MUL:
  1333  		return p.parsePointerType()
  1334  	case token.FUNC:
  1335  		return p.parseFuncType()
  1336  	case token.INTERFACE:
  1337  		return p.parseInterfaceType()
  1338  	case token.MAP:
  1339  		return p.parseMapType()
  1340  	case token.CHAN, token.ARROW:
  1341  		return p.parseChanType()
  1342  	case token.LPAREN:
  1343  		lparen := p.pos
  1344  		p.next()
  1345  		typ := p.parseType()
  1346  		rparen := p.expect(token.RPAREN)
  1347  		return &ast.ParenExpr{Lparen: lparen, X: typ, Rparen: rparen}
  1348  	}
  1349  
  1350  	// no type found
  1351  	return nil
  1352  }
  1353  
  1354  // ----------------------------------------------------------------------------
  1355  // Blocks
  1356  
  1357  func (p *parser) parseStmtList() (list []ast.Stmt) {
  1358  	if p.trace {
  1359  		defer un(trace(p, "StatementList"))
  1360  	}
  1361  
  1362  	for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF {
  1363  		list = append(list, p.parseStmt())
  1364  	}
  1365  
  1366  	return
  1367  }
  1368  
  1369  func (p *parser) parseBody() *ast.BlockStmt {
  1370  	if p.trace {
  1371  		defer un(trace(p, "Body"))
  1372  	}
  1373  
  1374  	lbrace := p.expect(token.LBRACE)
  1375  	list := p.parseStmtList()
  1376  	rbrace := p.expect2(token.RBRACE)
  1377  
  1378  	return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  1379  }
  1380  
  1381  func (p *parser) parseBlockStmt() *ast.BlockStmt {
  1382  	if p.trace {
  1383  		defer un(trace(p, "BlockStmt"))
  1384  	}
  1385  
  1386  	lbrace := p.expect(token.LBRACE)
  1387  	list := p.parseStmtList()
  1388  	rbrace := p.expect2(token.RBRACE)
  1389  
  1390  	return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  1391  }
  1392  
  1393  // ----------------------------------------------------------------------------
  1394  // Expressions
  1395  
  1396  func (p *parser) parseFuncTypeOrLit() ast.Expr {
  1397  	if p.trace {
  1398  		defer un(trace(p, "FuncTypeOrLit"))
  1399  	}
  1400  
  1401  	typ := p.parseFuncType()
  1402  	if p.tok != token.LBRACE {
  1403  		// function type only
  1404  		return typ
  1405  	}
  1406  
  1407  	p.exprLev++
  1408  	body := p.parseBody()
  1409  	p.exprLev--
  1410  
  1411  	return &ast.FuncLit{Type: typ, Body: body}
  1412  }
  1413  
  1414  // parseOperand may return an expression or a raw type (incl. array
  1415  // types of the form [...]T). Callers must verify the result.
  1416  func (p *parser) parseOperand() ast.Expr {
  1417  	if p.trace {
  1418  		defer un(trace(p, "Operand"))
  1419  	}
  1420  
  1421  	switch p.tok {
  1422  	case token.IDENT:
  1423  		x := p.parseIdent()
  1424  		return x
  1425  
  1426  	case token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING:
  1427  		x := &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit}
  1428  		p.next()
  1429  		return x
  1430  
  1431  	case token.LPAREN:
  1432  		lparen := p.pos
  1433  		p.next()
  1434  		p.exprLev++
  1435  		x := p.parseRhs() // types may be parenthesized: (some type)
  1436  		p.exprLev--
  1437  		rparen := p.expect(token.RPAREN)
  1438  		return &ast.ParenExpr{Lparen: lparen, X: x, Rparen: rparen}
  1439  
  1440  	case token.FUNC:
  1441  		return p.parseFuncTypeOrLit()
  1442  	}
  1443  
  1444  	if typ := p.tryIdentOrType(); typ != nil { // do not consume trailing type parameters
  1445  		// could be type for composite literal or conversion
  1446  		_, isIdent := typ.(*ast.Ident)
  1447  		assert(!isIdent, "type cannot be identifier")
  1448  		return typ
  1449  	}
  1450  
  1451  	// we have an error
  1452  	pos := p.pos
  1453  	p.errorExpected(pos, "operand")
  1454  	p.advance(stmtStart)
  1455  	return &ast.BadExpr{From: pos, To: p.pos}
  1456  }
  1457  
  1458  func (p *parser) parseSelector(x ast.Expr) ast.Expr {
  1459  	if p.trace {
  1460  		defer un(trace(p, "Selector"))
  1461  	}
  1462  
  1463  	sel := p.parseIdent()
  1464  
  1465  	return &ast.SelectorExpr{X: x, Sel: sel}
  1466  }
  1467  
  1468  func (p *parser) parseTypeAssertion(x ast.Expr) ast.Expr {
  1469  	if p.trace {
  1470  		defer un(trace(p, "TypeAssertion"))
  1471  	}
  1472  
  1473  	lparen := p.expect(token.LPAREN)
  1474  	var typ ast.Expr
  1475  	if p.tok == token.TYPE {
  1476  		// type switch: typ == nil
  1477  		p.next()
  1478  	} else {
  1479  		typ = p.parseType()
  1480  	}
  1481  	rparen := p.expect(token.RPAREN)
  1482  
  1483  	return &ast.TypeAssertExpr{X: x, Type: typ, Lparen: lparen, Rparen: rparen}
  1484  }
  1485  
  1486  func (p *parser) parseIndexOrSliceOrInstance(x ast.Expr) ast.Expr {
  1487  	if p.trace {
  1488  		defer un(trace(p, "parseIndexOrSliceOrInstance"))
  1489  	}
  1490  
  1491  	lbrack := p.expect(token.LBRACK)
  1492  	if p.tok == token.RBRACK {
  1493  		// empty index, slice or index expressions are not permitted;
  1494  		// accept them for parsing tolerance, but complain
  1495  		p.errorExpected(p.pos, "operand")
  1496  		rbrack := p.pos
  1497  		p.next()
  1498  		return &ast.IndexExpr{
  1499  			X:      x,
  1500  			Lbrack: lbrack,
  1501  			Index:  &ast.BadExpr{From: rbrack, To: rbrack},
  1502  			Rbrack: rbrack,
  1503  		}
  1504  	}
  1505  	p.exprLev++
  1506  
  1507  	const N = 3 // change the 3 to 2 to disable 3-index slices
  1508  	var args []ast.Expr
  1509  	var index [N]ast.Expr
  1510  	var colons [N - 1]token.Pos
  1511  	if p.tok != token.COLON {
  1512  		// We can't know if we have an index expression or a type instantiation;
  1513  		// so even if we see a (named) type we are not going to be in type context.
  1514  		index[0] = p.parseRhs()
  1515  	}
  1516  	ncolons := 0
  1517  	switch p.tok {
  1518  	case token.COLON:
  1519  		// slice expression
  1520  		for p.tok == token.COLON && ncolons < len(colons) {
  1521  			colons[ncolons] = p.pos
  1522  			ncolons++
  1523  			p.next()
  1524  			if p.tok != token.COLON && p.tok != token.RBRACK && p.tok != token.EOF {
  1525  				index[ncolons] = p.parseRhs()
  1526  			}
  1527  		}
  1528  	case token.COMMA:
  1529  		// instance expression
  1530  		args = append(args, index[0])
  1531  		for p.tok == token.COMMA {
  1532  			p.next()
  1533  			if p.tok != token.RBRACK && p.tok != token.EOF {
  1534  				args = append(args, p.parseType())
  1535  			}
  1536  		}
  1537  	}
  1538  
  1539  	p.exprLev--
  1540  	rbrack := p.expect(token.RBRACK)
  1541  
  1542  	if ncolons > 0 {
  1543  		// slice expression
  1544  		slice3 := false
  1545  		if ncolons == 2 {
  1546  			slice3 = true
  1547  			// Check presence of middle and final index here rather than during type-checking
  1548  			// to prevent erroneous programs from passing through gofmt (was issue 7305).
  1549  			if index[1] == nil {
  1550  				p.error(colons[0], "middle index required in 3-index slice")
  1551  				index[1] = &ast.BadExpr{From: colons[0] + 1, To: colons[1]}
  1552  			}
  1553  			if index[2] == nil {
  1554  				p.error(colons[1], "final index required in 3-index slice")
  1555  				index[2] = &ast.BadExpr{From: colons[1] + 1, To: rbrack}
  1556  			}
  1557  		}
  1558  		return &ast.SliceExpr{X: x, Lbrack: lbrack, Low: index[0], High: index[1], Max: index[2], Slice3: slice3, Rbrack: rbrack}
  1559  	}
  1560  
  1561  	if len(args) == 0 {
  1562  		// index expression
  1563  		return &ast.IndexExpr{X: x, Lbrack: lbrack, Index: index[0], Rbrack: rbrack}
  1564  	}
  1565  
  1566  	// instance expression
  1567  	return typeparams.PackIndexExpr(x, lbrack, args, rbrack)
  1568  }
  1569  
  1570  func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr {
  1571  	if p.trace {
  1572  		defer un(trace(p, "CallOrConversion"))
  1573  	}
  1574  
  1575  	lparen := p.expect(token.LPAREN)
  1576  	p.exprLev++
  1577  	var list []ast.Expr
  1578  	var ellipsis token.Pos
  1579  	for p.tok != token.RPAREN && p.tok != token.EOF && !ellipsis.IsValid() {
  1580  		list = append(list, p.parseRhs()) // builtins may expect a type: make(some type, ...)
  1581  		if p.tok == token.ELLIPSIS {
  1582  			ellipsis = p.pos
  1583  			p.next()
  1584  		}
  1585  		if !p.atComma("argument list", token.RPAREN) {
  1586  			break
  1587  		}
  1588  		p.next()
  1589  	}
  1590  	p.exprLev--
  1591  	rparen := p.expectClosing(token.RPAREN, "argument list")
  1592  
  1593  	return &ast.CallExpr{Fun: fun, Lparen: lparen, Args: list, Ellipsis: ellipsis, Rparen: rparen}
  1594  }
  1595  
  1596  func (p *parser) parseValue() ast.Expr {
  1597  	if p.trace {
  1598  		defer un(trace(p, "Element"))
  1599  	}
  1600  
  1601  	if p.tok == token.LBRACE {
  1602  		return p.parseLiteralValue(nil)
  1603  	}
  1604  
  1605  	x := p.parseExpr()
  1606  
  1607  	return x
  1608  }
  1609  
  1610  func (p *parser) parseElement() ast.Expr {
  1611  	if p.trace {
  1612  		defer un(trace(p, "Element"))
  1613  	}
  1614  
  1615  	x := p.parseValue()
  1616  	if p.tok == token.COLON {
  1617  		colon := p.pos
  1618  		p.next()
  1619  		x = &ast.KeyValueExpr{Key: x, Colon: colon, Value: p.parseValue()}
  1620  	}
  1621  
  1622  	return x
  1623  }
  1624  
  1625  func (p *parser) parseElementList() (list []ast.Expr) {
  1626  	if p.trace {
  1627  		defer un(trace(p, "ElementList"))
  1628  	}
  1629  
  1630  	for p.tok != token.RBRACE && p.tok != token.EOF {
  1631  		list = append(list, p.parseElement())
  1632  		if !p.atComma("composite literal", token.RBRACE) {
  1633  			break
  1634  		}
  1635  		p.next()
  1636  	}
  1637  
  1638  	return
  1639  }
  1640  
  1641  func (p *parser) parseLiteralValue(typ ast.Expr) ast.Expr {
  1642  	if p.trace {
  1643  		defer un(trace(p, "LiteralValue"))
  1644  	}
  1645  
  1646  	lbrace := p.expect(token.LBRACE)
  1647  	var elts []ast.Expr
  1648  	p.exprLev++
  1649  	if p.tok != token.RBRACE {
  1650  		elts = p.parseElementList()
  1651  	}
  1652  	p.exprLev--
  1653  	rbrace := p.expectClosing(token.RBRACE, "composite literal")
  1654  	return &ast.CompositeLit{Type: typ, Lbrace: lbrace, Elts: elts, Rbrace: rbrace}
  1655  }
  1656  
  1657  // If x is of the form (T), unparen returns unparen(T), otherwise it returns x.
  1658  func unparen(x ast.Expr) ast.Expr {
  1659  	if p, isParen := x.(*ast.ParenExpr); isParen {
  1660  		x = unparen(p.X)
  1661  	}
  1662  	return x
  1663  }
  1664  
  1665  func (p *parser) parsePrimaryExpr(x ast.Expr) ast.Expr {
  1666  	if p.trace {
  1667  		defer un(trace(p, "PrimaryExpr"))
  1668  	}
  1669  
  1670  	if x == nil {
  1671  		x = p.parseOperand()
  1672  	}
  1673  	// We track the nesting here rather than at the entry for the function,
  1674  	// since it can iteratively produce a nested output, and we want to
  1675  	// limit how deep a structure we generate.
  1676  	var n int
  1677  	defer func() { p.nestLev -= n }()
  1678  	for n = 1; ; n++ {
  1679  		incNestLev(p)
  1680  		switch p.tok {
  1681  		case token.PERIOD:
  1682  			p.next()
  1683  			switch p.tok {
  1684  			case token.IDENT:
  1685  				x = p.parseSelector(x)
  1686  			case token.LPAREN:
  1687  				x = p.parseTypeAssertion(x)
  1688  			default:
  1689  				pos := p.pos
  1690  				p.errorExpected(pos, "selector or type assertion")
  1691  				// TODO(rFindley) The check for token.RBRACE below is a targeted fix
  1692  				//                to error recovery sufficient to make the x/tools tests to
  1693  				//                pass with the new parsing logic introduced for type
  1694  				//                parameters. Remove this once error recovery has been
  1695  				//                more generally reconsidered.
  1696  				if p.tok != token.RBRACE {
  1697  					p.next() // make progress
  1698  				}
  1699  				sel := &ast.Ident{NamePos: pos, Name: "_"}
  1700  				x = &ast.SelectorExpr{X: x, Sel: sel}
  1701  			}
  1702  		case token.LBRACK:
  1703  			x = p.parseIndexOrSliceOrInstance(x)
  1704  		case token.LPAREN:
  1705  			x = p.parseCallOrConversion(x)
  1706  		case token.LBRACE:
  1707  			// operand may have returned a parenthesized complit
  1708  			// type; accept it but complain if we have a complit
  1709  			t := unparen(x)
  1710  			// determine if '{' belongs to a composite literal or a block statement
  1711  			switch t.(type) {
  1712  			case *ast.BadExpr, *ast.Ident, *ast.SelectorExpr:
  1713  				if p.exprLev < 0 {
  1714  					return x
  1715  				}
  1716  				// x is possibly a composite literal type
  1717  			case *ast.IndexExpr, *ast.IndexListExpr:
  1718  				if p.exprLev < 0 {
  1719  					return x
  1720  				}
  1721  				// x is possibly a composite literal type
  1722  			case *ast.ArrayType, *ast.StructType, *ast.MapType:
  1723  				// x is a composite literal type
  1724  			default:
  1725  				return x
  1726  			}
  1727  			if t != x {
  1728  				p.error(t.Pos(), "cannot parenthesize type in composite literal")
  1729  				// already progressed, no need to advance
  1730  			}
  1731  			x = p.parseLiteralValue(x)
  1732  		default:
  1733  			return x
  1734  		}
  1735  	}
  1736  }
  1737  
  1738  func (p *parser) parseUnaryExpr() ast.Expr {
  1739  	defer decNestLev(incNestLev(p))
  1740  
  1741  	if p.trace {
  1742  		defer un(trace(p, "UnaryExpr"))
  1743  	}
  1744  
  1745  	switch p.tok {
  1746  	case token.ADD, token.SUB, token.NOT, token.XOR, token.AND, token.TILDE:
  1747  		pos, op := p.pos, p.tok
  1748  		p.next()
  1749  		x := p.parseUnaryExpr()
  1750  		return &ast.UnaryExpr{OpPos: pos, Op: op, X: x}
  1751  
  1752  	case token.ARROW:
  1753  		// channel type or receive expression
  1754  		arrow := p.pos
  1755  		p.next()
  1756  
  1757  		// If the next token is token.CHAN we still don't know if it
  1758  		// is a channel type or a receive operation - we only know
  1759  		// once we have found the end of the unary expression. There
  1760  		// are two cases:
  1761  		//
  1762  		//   <- type  => (<-type) must be channel type
  1763  		//   <- expr  => <-(expr) is a receive from an expression
  1764  		//
  1765  		// In the first case, the arrow must be re-associated with
  1766  		// the channel type parsed already:
  1767  		//
  1768  		//   <- (chan type)    =>  (<-chan type)
  1769  		//   <- (chan<- type)  =>  (<-chan (<-type))
  1770  
  1771  		x := p.parseUnaryExpr()
  1772  
  1773  		// determine which case we have
  1774  		if typ, ok := x.(*ast.ChanType); ok {
  1775  			// (<-type)
  1776  
  1777  			// re-associate position info and <-
  1778  			dir := ast.SEND
  1779  			for ok && dir == ast.SEND {
  1780  				if typ.Dir == ast.RECV {
  1781  					// error: (<-type) is (<-(<-chan T))
  1782  					p.errorExpected(typ.Arrow, "'chan'")
  1783  				}
  1784  				arrow, typ.Begin, typ.Arrow = typ.Arrow, arrow, arrow
  1785  				dir, typ.Dir = typ.Dir, ast.RECV
  1786  				typ, ok = typ.Value.(*ast.ChanType)
  1787  			}
  1788  			if dir == ast.SEND {
  1789  				p.errorExpected(arrow, "channel type")
  1790  			}
  1791  
  1792  			return x
  1793  		}
  1794  
  1795  		// <-(expr)
  1796  		return &ast.UnaryExpr{OpPos: arrow, Op: token.ARROW, X: x}
  1797  
  1798  	case token.MUL:
  1799  		// pointer type or unary "*" expression
  1800  		pos := p.pos
  1801  		p.next()
  1802  		x := p.parseUnaryExpr()
  1803  		return &ast.StarExpr{Star: pos, X: x}
  1804  	}
  1805  
  1806  	return p.parsePrimaryExpr(nil)
  1807  }
  1808  
  1809  func (p *parser) tokPrec() (token.Token, int) {
  1810  	tok := p.tok
  1811  	if p.inRhs && tok == token.ASSIGN {
  1812  		tok = token.EQL
  1813  	}
  1814  	return tok, tok.Precedence()
  1815  }
  1816  
  1817  // parseBinaryExpr parses a (possibly) binary expression.
  1818  // If x is non-nil, it is used as the left operand.
  1819  //
  1820  // TODO(rfindley): parseBinaryExpr has become overloaded. Consider refactoring.
  1821  func (p *parser) parseBinaryExpr(x ast.Expr, prec1 int) ast.Expr {
  1822  	if p.trace {
  1823  		defer un(trace(p, "BinaryExpr"))
  1824  	}
  1825  
  1826  	if x == nil {
  1827  		x = p.parseUnaryExpr()
  1828  	}
  1829  	// We track the nesting here rather than at the entry for the function,
  1830  	// since it can iteratively produce a nested output, and we want to
  1831  	// limit how deep a structure we generate.
  1832  	var n int
  1833  	defer func() { p.nestLev -= n }()
  1834  	for n = 1; ; n++ {
  1835  		incNestLev(p)
  1836  		op, oprec := p.tokPrec()
  1837  		if oprec < prec1 {
  1838  			return x
  1839  		}
  1840  		pos := p.expect(op)
  1841  		y := p.parseBinaryExpr(nil, oprec+1)
  1842  		x = &ast.BinaryExpr{X: x, OpPos: pos, Op: op, Y: y}
  1843  	}
  1844  }
  1845  
  1846  // The result may be a type or even a raw type ([...]int).
  1847  func (p *parser) parseExpr() ast.Expr {
  1848  	if p.trace {
  1849  		defer un(trace(p, "Expression"))
  1850  	}
  1851  
  1852  	return p.parseBinaryExpr(nil, token.LowestPrec+1)
  1853  }
  1854  
  1855  func (p *parser) parseRhs() ast.Expr {
  1856  	old := p.inRhs
  1857  	p.inRhs = true
  1858  	x := p.parseExpr()
  1859  	p.inRhs = old
  1860  	return x
  1861  }
  1862  
  1863  // ----------------------------------------------------------------------------
  1864  // Statements
  1865  
  1866  // Parsing modes for parseSimpleStmt.
  1867  const (
  1868  	basic = iota
  1869  	labelOk
  1870  	rangeOk
  1871  )
  1872  
  1873  // parseSimpleStmt returns true as 2nd result if it parsed the assignment
  1874  // of a range clause (with mode == rangeOk). The returned statement is an
  1875  // assignment with a right-hand side that is a single unary expression of
  1876  // the form "range x". No guarantees are given for the left-hand side.
  1877  func (p *parser) parseSimpleStmt(mode int) (ast.Stmt, bool) {
  1878  	if p.trace {
  1879  		defer un(trace(p, "SimpleStmt"))
  1880  	}
  1881  
  1882  	x := p.parseList(false)
  1883  
  1884  	switch p.tok {
  1885  	case
  1886  		token.DEFINE, token.ASSIGN, token.ADD_ASSIGN,
  1887  		token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN,
  1888  		token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN,
  1889  		token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN:
  1890  		// assignment statement, possibly part of a range clause
  1891  		pos, tok := p.pos, p.tok
  1892  		p.next()
  1893  		var y []ast.Expr
  1894  		isRange := false
  1895  		if mode == rangeOk && p.tok == token.RANGE && (tok == token.DEFINE || tok == token.ASSIGN) {
  1896  			pos := p.pos
  1897  			p.next()
  1898  			y = []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}}
  1899  			isRange = true
  1900  		} else {
  1901  			y = p.parseList(true)
  1902  		}
  1903  		return &ast.AssignStmt{Lhs: x, TokPos: pos, Tok: tok, Rhs: y}, isRange
  1904  	}
  1905  
  1906  	if len(x) > 1 {
  1907  		p.errorExpected(x[0].Pos(), "1 expression")
  1908  		// continue with first expression
  1909  	}
  1910  
  1911  	switch p.tok {
  1912  	case token.COLON:
  1913  		// labeled statement
  1914  		colon := p.pos
  1915  		p.next()
  1916  		if label, isIdent := x[0].(*ast.Ident); mode == labelOk && isIdent {
  1917  			// Go spec: The scope of a label is the body of the function
  1918  			// in which it is declared and excludes the body of any nested
  1919  			// function.
  1920  			stmt := &ast.LabeledStmt{Label: label, Colon: colon, Stmt: p.parseStmt()}
  1921  			return stmt, false
  1922  		}
  1923  		// The label declaration typically starts at x[0].Pos(), but the label
  1924  		// declaration may be erroneous due to a token after that position (and
  1925  		// before the ':'). If SpuriousErrors is not set, the (only) error
  1926  		// reported for the line is the illegal label error instead of the token
  1927  		// before the ':' that caused the problem. Thus, use the (latest) colon
  1928  		// position for error reporting.
  1929  		p.error(colon, "illegal label declaration")
  1930  		return &ast.BadStmt{From: x[0].Pos(), To: colon + 1}, false
  1931  
  1932  	case token.ARROW:
  1933  		// send statement
  1934  		arrow := p.pos
  1935  		p.next()
  1936  		y := p.parseRhs()
  1937  		return &ast.SendStmt{Chan: x[0], Arrow: arrow, Value: y}, false
  1938  
  1939  	case token.INC, token.DEC:
  1940  		// increment or decrement
  1941  		s := &ast.IncDecStmt{X: x[0], TokPos: p.pos, Tok: p.tok}
  1942  		p.next()
  1943  		return s, false
  1944  	}
  1945  
  1946  	// expression
  1947  	return &ast.ExprStmt{X: x[0]}, false
  1948  }
  1949  
  1950  func (p *parser) parseCallExpr(callType string) *ast.CallExpr {
  1951  	x := p.parseRhs() // could be a conversion: (some type)(x)
  1952  	if t := unparen(x); t != x {
  1953  		p.error(x.Pos(), fmt.Sprintf("expression in %s must not be parenthesized", callType))
  1954  		x = t
  1955  	}
  1956  	if call, isCall := x.(*ast.CallExpr); isCall {
  1957  		return call
  1958  	}
  1959  	if _, isBad := x.(*ast.BadExpr); !isBad {
  1960  		// only report error if it's a new one
  1961  		p.error(p.safePos(x.End()), fmt.Sprintf("expression in %s must be function call", callType))
  1962  	}
  1963  	return nil
  1964  }
  1965  
  1966  func (p *parser) parseGoStmt() ast.Stmt {
  1967  	if p.trace {
  1968  		defer un(trace(p, "GoStmt"))
  1969  	}
  1970  
  1971  	pos := p.expect(token.GO)
  1972  	call := p.parseCallExpr("go")
  1973  	p.expectSemi()
  1974  	if call == nil {
  1975  		return &ast.BadStmt{From: pos, To: pos + 2} // len("go")
  1976  	}
  1977  
  1978  	return &ast.GoStmt{Go: pos, Call: call}
  1979  }
  1980  
  1981  func (p *parser) parseDeferStmt() ast.Stmt {
  1982  	if p.trace {
  1983  		defer un(trace(p, "DeferStmt"))
  1984  	}
  1985  
  1986  	pos := p.expect(token.DEFER)
  1987  	call := p.parseCallExpr("defer")
  1988  	p.expectSemi()
  1989  	if call == nil {
  1990  		return &ast.BadStmt{From: pos, To: pos + 5} // len("defer")
  1991  	}
  1992  
  1993  	return &ast.DeferStmt{Defer: pos, Call: call}
  1994  }
  1995  
  1996  func (p *parser) parseReturnStmt() *ast.ReturnStmt {
  1997  	if p.trace {
  1998  		defer un(trace(p, "ReturnStmt"))
  1999  	}
  2000  
  2001  	pos := p.pos
  2002  	p.expect(token.RETURN)
  2003  	var x []ast.Expr
  2004  	if p.tok != token.SEMICOLON && p.tok != token.RBRACE {
  2005  		x = p.parseList(true)
  2006  	}
  2007  	p.expectSemi()
  2008  
  2009  	return &ast.ReturnStmt{Return: pos, Results: x}
  2010  }
  2011  
  2012  func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt {
  2013  	if p.trace {
  2014  		defer un(trace(p, "BranchStmt"))
  2015  	}
  2016  
  2017  	pos := p.expect(tok)
  2018  	var label *ast.Ident
  2019  	if tok != token.FALLTHROUGH && p.tok == token.IDENT {
  2020  		label = p.parseIdent()
  2021  	}
  2022  	p.expectSemi()
  2023  
  2024  	return &ast.BranchStmt{TokPos: pos, Tok: tok, Label: label}
  2025  }
  2026  
  2027  func (p *parser) makeExpr(s ast.Stmt, want string) ast.Expr {
  2028  	if s == nil {
  2029  		return nil
  2030  	}
  2031  	if es, isExpr := s.(*ast.ExprStmt); isExpr {
  2032  		return es.X
  2033  	}
  2034  	found := "simple statement"
  2035  	if _, isAss := s.(*ast.AssignStmt); isAss {
  2036  		found = "assignment"
  2037  	}
  2038  	p.error(s.Pos(), fmt.Sprintf("expected %s, found %s (missing parentheses around composite literal?)", want, found))
  2039  	return &ast.BadExpr{From: s.Pos(), To: p.safePos(s.End())}
  2040  }
  2041  
  2042  // parseIfHeader is an adjusted version of parser.header
  2043  // in cmd/compile/internal/syntax/parser.go, which has
  2044  // been tuned for better error handling.
  2045  func (p *parser) parseIfHeader() (init ast.Stmt, cond ast.Expr) {
  2046  	if p.tok == token.LBRACE {
  2047  		p.error(p.pos, "missing condition in if statement")
  2048  		cond = &ast.BadExpr{From: p.pos, To: p.pos}
  2049  		return
  2050  	}
  2051  	// p.tok != token.LBRACE
  2052  
  2053  	prevLev := p.exprLev
  2054  	p.exprLev = -1
  2055  
  2056  	if p.tok != token.SEMICOLON {
  2057  		// accept potential variable declaration but complain
  2058  		if p.tok == token.VAR {
  2059  			p.next()
  2060  			p.error(p.pos, "var declaration not allowed in if initializer")
  2061  		}
  2062  		init, _ = p.parseSimpleStmt(basic)
  2063  	}
  2064  
  2065  	var condStmt ast.Stmt
  2066  	var semi struct {
  2067  		pos token.Pos
  2068  		lit string // ";" or "\n"; valid if pos.IsValid()
  2069  	}
  2070  	if p.tok != token.LBRACE {
  2071  		if p.tok == token.SEMICOLON {
  2072  			semi.pos = p.pos
  2073  			semi.lit = p.lit
  2074  			p.next()
  2075  		} else {
  2076  			p.expect(token.SEMICOLON)
  2077  		}
  2078  		if p.tok != token.LBRACE {
  2079  			condStmt, _ = p.parseSimpleStmt(basic)
  2080  		}
  2081  	} else {
  2082  		condStmt = init
  2083  		init = nil
  2084  	}
  2085  
  2086  	if condStmt != nil {
  2087  		cond = p.makeExpr(condStmt, "boolean expression")
  2088  	} else if semi.pos.IsValid() {
  2089  		if semi.lit == "\n" {
  2090  			p.error(semi.pos, "unexpected newline, expecting { after if clause")
  2091  		} else {
  2092  			p.error(semi.pos, "missing condition in if statement")
  2093  		}
  2094  	}
  2095  
  2096  	// make sure we have a valid AST
  2097  	if cond == nil {
  2098  		cond = &ast.BadExpr{From: p.pos, To: p.pos}
  2099  	}
  2100  
  2101  	p.exprLev = prevLev
  2102  	return
  2103  }
  2104  
  2105  func (p *parser) parseIfStmt() *ast.IfStmt {
  2106  	defer decNestLev(incNestLev(p))
  2107  
  2108  	if p.trace {
  2109  		defer un(trace(p, "IfStmt"))
  2110  	}
  2111  
  2112  	pos := p.expect(token.IF)
  2113  
  2114  	init, cond := p.parseIfHeader()
  2115  	body := p.parseBlockStmt()
  2116  
  2117  	var else_ ast.Stmt
  2118  	if p.tok == token.ELSE {
  2119  		p.next()
  2120  		switch p.tok {
  2121  		case token.IF:
  2122  			else_ = p.parseIfStmt()
  2123  		case token.LBRACE:
  2124  			else_ = p.parseBlockStmt()
  2125  			p.expectSemi()
  2126  		default:
  2127  			p.errorExpected(p.pos, "if statement or block")
  2128  			else_ = &ast.BadStmt{From: p.pos, To: p.pos}
  2129  		}
  2130  	} else {
  2131  		p.expectSemi()
  2132  	}
  2133  
  2134  	return &ast.IfStmt{If: pos, Init: init, Cond: cond, Body: body, Else: else_}
  2135  }
  2136  
  2137  func (p *parser) parseCaseClause() *ast.CaseClause {
  2138  	if p.trace {
  2139  		defer un(trace(p, "CaseClause"))
  2140  	}
  2141  
  2142  	pos := p.pos
  2143  	var list []ast.Expr
  2144  	if p.tok == token.CASE {
  2145  		p.next()
  2146  		list = p.parseList(true)
  2147  	} else {
  2148  		p.expect(token.DEFAULT)
  2149  	}
  2150  
  2151  	colon := p.expect(token.COLON)
  2152  	body := p.parseStmtList()
  2153  
  2154  	return &ast.CaseClause{Case: pos, List: list, Colon: colon, Body: body}
  2155  }
  2156  
  2157  func isTypeSwitchAssert(x ast.Expr) bool {
  2158  	a, ok := x.(*ast.TypeAssertExpr)
  2159  	return ok && a.Type == nil
  2160  }
  2161  
  2162  func (p *parser) isTypeSwitchGuard(s ast.Stmt) bool {
  2163  	switch t := s.(type) {
  2164  	case *ast.ExprStmt:
  2165  		// x.(type)
  2166  		return isTypeSwitchAssert(t.X)
  2167  	case *ast.AssignStmt:
  2168  		// v := x.(type)
  2169  		if len(t.Lhs) == 1 && len(t.Rhs) == 1 && isTypeSwitchAssert(t.Rhs[0]) {
  2170  			switch t.Tok {
  2171  			case token.ASSIGN:
  2172  				// permit v = x.(type) but complain
  2173  				p.error(t.TokPos, "expected ':=', found '='")
  2174  				fallthrough
  2175  			case token.DEFINE:
  2176  				return true
  2177  			}
  2178  		}
  2179  	}
  2180  	return false
  2181  }
  2182  
  2183  func (p *parser) parseSwitchStmt() ast.Stmt {
  2184  	if p.trace {
  2185  		defer un(trace(p, "SwitchStmt"))
  2186  	}
  2187  
  2188  	pos := p.expect(token.SWITCH)
  2189  
  2190  	var s1, s2 ast.Stmt
  2191  	if p.tok != token.LBRACE {
  2192  		prevLev := p.exprLev
  2193  		p.exprLev = -1
  2194  		if p.tok != token.SEMICOLON {
  2195  			s2, _ = p.parseSimpleStmt(basic)
  2196  		}
  2197  		if p.tok == token.SEMICOLON {
  2198  			p.next()
  2199  			s1 = s2
  2200  			s2 = nil
  2201  			if p.tok != token.LBRACE {
  2202  				// A TypeSwitchGuard may declare a variable in addition
  2203  				// to the variable declared in the initial SimpleStmt.
  2204  				// Introduce extra scope to avoid redeclaration errors:
  2205  				//
  2206  				//	switch t := 0; t := x.(T) { ... }
  2207  				//
  2208  				// (this code is not valid Go because the first t
  2209  				// cannot be accessed and thus is never used, the extra
  2210  				// scope is needed for the correct error message).
  2211  				//
  2212  				// If we don't have a type switch, s2 must be an expression.
  2213  				// Having the extra nested but empty scope won't affect it.
  2214  				s2, _ = p.parseSimpleStmt(basic)
  2215  			}
  2216  		}
  2217  		p.exprLev = prevLev
  2218  	}
  2219  
  2220  	typeSwitch := p.isTypeSwitchGuard(s2)
  2221  	lbrace := p.expect(token.LBRACE)
  2222  	var list []ast.Stmt
  2223  	for p.tok == token.CASE || p.tok == token.DEFAULT {
  2224  		list = append(list, p.parseCaseClause())
  2225  	}
  2226  	rbrace := p.expect(token.RBRACE)
  2227  	p.expectSemi()
  2228  	body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  2229  
  2230  	if typeSwitch {
  2231  		return &ast.TypeSwitchStmt{Switch: pos, Init: s1, Assign: s2, Body: body}
  2232  	}
  2233  
  2234  	return &ast.SwitchStmt{Switch: pos, Init: s1, Tag: p.makeExpr(s2, "switch expression"), Body: body}
  2235  }
  2236  
  2237  func (p *parser) parseCommClause() *ast.CommClause {
  2238  	if p.trace {
  2239  		defer un(trace(p, "CommClause"))
  2240  	}
  2241  
  2242  	pos := p.pos
  2243  	var comm ast.Stmt
  2244  	if p.tok == token.CASE {
  2245  		p.next()
  2246  		lhs := p.parseList(false)
  2247  		if p.tok == token.ARROW {
  2248  			// SendStmt
  2249  			if len(lhs) > 1 {
  2250  				p.errorExpected(lhs[0].Pos(), "1 expression")
  2251  				// continue with first expression
  2252  			}
  2253  			arrow := p.pos
  2254  			p.next()
  2255  			rhs := p.parseRhs()
  2256  			comm = &ast.SendStmt{Chan: lhs[0], Arrow: arrow, Value: rhs}
  2257  		} else {
  2258  			// RecvStmt
  2259  			if tok := p.tok; tok == token.ASSIGN || tok == token.DEFINE {
  2260  				// RecvStmt with assignment
  2261  				if len(lhs) > 2 {
  2262  					p.errorExpected(lhs[0].Pos(), "1 or 2 expressions")
  2263  					// continue with first two expressions
  2264  					lhs = lhs[0:2]
  2265  				}
  2266  				pos := p.pos
  2267  				p.next()
  2268  				rhs := p.parseRhs()
  2269  				comm = &ast.AssignStmt{Lhs: lhs, TokPos: pos, Tok: tok, Rhs: []ast.Expr{rhs}}
  2270  			} else {
  2271  				// lhs must be single receive operation
  2272  				if len(lhs) > 1 {
  2273  					p.errorExpected(lhs[0].Pos(), "1 expression")
  2274  					// continue with first expression
  2275  				}
  2276  				comm = &ast.ExprStmt{X: lhs[0]}
  2277  			}
  2278  		}
  2279  	} else {
  2280  		p.expect(token.DEFAULT)
  2281  	}
  2282  
  2283  	colon := p.expect(token.COLON)
  2284  	body := p.parseStmtList()
  2285  
  2286  	return &ast.CommClause{Case: pos, Comm: comm, Colon: colon, Body: body}
  2287  }
  2288  
  2289  func (p *parser) parseSelectStmt() *ast.SelectStmt {
  2290  	if p.trace {
  2291  		defer un(trace(p, "SelectStmt"))
  2292  	}
  2293  
  2294  	pos := p.expect(token.SELECT)
  2295  	lbrace := p.expect(token.LBRACE)
  2296  	var list []ast.Stmt
  2297  	for p.tok == token.CASE || p.tok == token.DEFAULT {
  2298  		list = append(list, p.parseCommClause())
  2299  	}
  2300  	rbrace := p.expect(token.RBRACE)
  2301  	p.expectSemi()
  2302  	body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  2303  
  2304  	return &ast.SelectStmt{Select: pos, Body: body}
  2305  }
  2306  
  2307  func (p *parser) parseForStmt() ast.Stmt {
  2308  	if p.trace {
  2309  		defer un(trace(p, "ForStmt"))
  2310  	}
  2311  
  2312  	pos := p.expect(token.FOR)
  2313  
  2314  	var s1, s2, s3 ast.Stmt
  2315  	var isRange bool
  2316  	if p.tok != token.LBRACE {
  2317  		prevLev := p.exprLev
  2318  		p.exprLev = -1
  2319  		if p.tok != token.SEMICOLON {
  2320  			if p.tok == token.RANGE {
  2321  				// "for range x" (nil lhs in assignment)
  2322  				pos := p.pos
  2323  				p.next()
  2324  				y := []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}}
  2325  				s2 = &ast.AssignStmt{Rhs: y}
  2326  				isRange = true
  2327  			} else {
  2328  				s2, isRange = p.parseSimpleStmt(rangeOk)
  2329  			}
  2330  		}
  2331  		if !isRange && p.tok == token.SEMICOLON {
  2332  			p.next()
  2333  			s1 = s2
  2334  			s2 = nil
  2335  			if p.tok != token.SEMICOLON {
  2336  				s2, _ = p.parseSimpleStmt(basic)
  2337  			}
  2338  			p.expectSemi()
  2339  			if p.tok != token.LBRACE {
  2340  				s3, _ = p.parseSimpleStmt(basic)
  2341  			}
  2342  		}
  2343  		p.exprLev = prevLev
  2344  	}
  2345  
  2346  	body := p.parseBlockStmt()
  2347  	p.expectSemi()
  2348  
  2349  	if isRange {
  2350  		as := s2.(*ast.AssignStmt)
  2351  		// check lhs
  2352  		var key, value ast.Expr
  2353  		switch len(as.Lhs) {
  2354  		case 0:
  2355  			// nothing to do
  2356  		case 1:
  2357  			key = as.Lhs[0]
  2358  		case 2:
  2359  			key, value = as.Lhs[0], as.Lhs[1]
  2360  		default:
  2361  			p.errorExpected(as.Lhs[len(as.Lhs)-1].Pos(), "at most 2 expressions")
  2362  			return &ast.BadStmt{From: pos, To: p.safePos(body.End())}
  2363  		}
  2364  		// parseSimpleStmt returned a right-hand side that
  2365  		// is a single unary expression of the form "range x"
  2366  		x := as.Rhs[0].(*ast.UnaryExpr).X
  2367  		return &ast.RangeStmt{
  2368  			For:    pos,
  2369  			Key:    key,
  2370  			Value:  value,
  2371  			TokPos: as.TokPos,
  2372  			Tok:    as.Tok,
  2373  			Range:  as.Rhs[0].Pos(),
  2374  			X:      x,
  2375  			Body:   body,
  2376  		}
  2377  	}
  2378  
  2379  	// regular for statement
  2380  	return &ast.ForStmt{
  2381  		For:  pos,
  2382  		Init: s1,
  2383  		Cond: p.makeExpr(s2, "boolean or range expression"),
  2384  		Post: s3,
  2385  		Body: body,
  2386  	}
  2387  }
  2388  
  2389  func (p *parser) parseStmt() (s ast.Stmt) {
  2390  	defer decNestLev(incNestLev(p))
  2391  
  2392  	if p.trace {
  2393  		defer un(trace(p, "Statement"))
  2394  	}
  2395  
  2396  	switch p.tok {
  2397  	case token.CONST, token.TYPE, token.VAR:
  2398  		s = &ast.DeclStmt{Decl: p.parseDecl(stmtStart)}
  2399  	case
  2400  		// tokens that may start an expression
  2401  		token.IDENT, token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operands
  2402  		token.LBRACK, token.STRUCT, token.MAP, token.CHAN, token.INTERFACE, // composite types
  2403  		token.ADD, token.SUB, token.MUL, token.AND, token.XOR, token.ARROW, token.NOT: // unary operators
  2404  		s, _ = p.parseSimpleStmt(labelOk)
  2405  		// because of the required look-ahead, labeled statements are
  2406  		// parsed by parseSimpleStmt - don't expect a semicolon after
  2407  		// them
  2408  		if _, isLabeledStmt := s.(*ast.LabeledStmt); !isLabeledStmt {
  2409  			p.expectSemi()
  2410  		}
  2411  	case token.GO:
  2412  		s = p.parseGoStmt()
  2413  	case token.DEFER:
  2414  		s = p.parseDeferStmt()
  2415  	case token.RETURN:
  2416  		s = p.parseReturnStmt()
  2417  	case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH:
  2418  		s = p.parseBranchStmt(p.tok)
  2419  	case token.LBRACE:
  2420  		s = p.parseBlockStmt()
  2421  		p.expectSemi()
  2422  	case token.IF:
  2423  		s = p.parseIfStmt()
  2424  	case token.SWITCH:
  2425  		s = p.parseSwitchStmt()
  2426  	case token.SELECT:
  2427  		s = p.parseSelectStmt()
  2428  	case token.FOR:
  2429  		s = p.parseForStmt()
  2430  	case token.SEMICOLON:
  2431  		// Is it ever possible to have an implicit semicolon
  2432  		// producing an empty statement in a valid program?
  2433  		// (handle correctly anyway)
  2434  		s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: p.lit == "\n"}
  2435  		p.next()
  2436  	case token.RBRACE:
  2437  		// a semicolon may be omitted before a closing "}"
  2438  		s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: true}
  2439  	default:
  2440  		// no statement found
  2441  		pos := p.pos
  2442  		p.errorExpected(pos, "statement")
  2443  		p.advance(stmtStart)
  2444  		s = &ast.BadStmt{From: pos, To: p.pos}
  2445  	}
  2446  
  2447  	return
  2448  }
  2449  
  2450  // ----------------------------------------------------------------------------
  2451  // Declarations
  2452  
  2453  type parseSpecFunction func(doc *ast.CommentGroup, keyword token.Token, iota int) ast.Spec
  2454  
  2455  func (p *parser) parseImportSpec(doc *ast.CommentGroup, _ token.Token, _ int) ast.Spec {
  2456  	if p.trace {
  2457  		defer un(trace(p, "ImportSpec"))
  2458  	}
  2459  
  2460  	var ident *ast.Ident
  2461  	switch p.tok {
  2462  	case token.IDENT:
  2463  		ident = p.parseIdent()
  2464  	case token.PERIOD:
  2465  		ident = &ast.Ident{NamePos: p.pos, Name: "."}
  2466  		p.next()
  2467  	}
  2468  
  2469  	pos := p.pos
  2470  	var path string
  2471  	if p.tok == token.STRING {
  2472  		path = p.lit
  2473  		p.next()
  2474  	} else if p.tok.IsLiteral() {
  2475  		p.error(pos, "import path must be a string")
  2476  		p.next()
  2477  	} else {
  2478  		p.error(pos, "missing import path")
  2479  		p.advance(exprEnd)
  2480  	}
  2481  	comment := p.expectSemi()
  2482  
  2483  	// collect imports
  2484  	spec := &ast.ImportSpec{
  2485  		Doc:     doc,
  2486  		Name:    ident,
  2487  		Path:    &ast.BasicLit{ValuePos: pos, Kind: token.STRING, Value: path},
  2488  		Comment: comment,
  2489  	}
  2490  	p.imports = append(p.imports, spec)
  2491  
  2492  	return spec
  2493  }
  2494  
  2495  func (p *parser) parseValueSpec(doc *ast.CommentGroup, keyword token.Token, iota int) ast.Spec {
  2496  	if p.trace {
  2497  		defer un(trace(p, keyword.String()+"Spec"))
  2498  	}
  2499  
  2500  	idents := p.parseIdentList()
  2501  	var typ ast.Expr
  2502  	var values []ast.Expr
  2503  	switch keyword {
  2504  	case token.CONST:
  2505  		// always permit optional type and initialization for more tolerant parsing
  2506  		if p.tok != token.EOF && p.tok != token.SEMICOLON && p.tok != token.RPAREN {
  2507  			typ = p.tryIdentOrType()
  2508  			if p.tok == token.ASSIGN {
  2509  				p.next()
  2510  				values = p.parseList(true)
  2511  			}
  2512  		}
  2513  	case token.VAR:
  2514  		if p.tok != token.ASSIGN {
  2515  			typ = p.parseType()
  2516  		}
  2517  		if p.tok == token.ASSIGN {
  2518  			p.next()
  2519  			values = p.parseList(true)
  2520  		}
  2521  	default:
  2522  		panic("unreachable")
  2523  	}
  2524  	comment := p.expectSemi()
  2525  
  2526  	spec := &ast.ValueSpec{
  2527  		Doc:     doc,
  2528  		Names:   idents,
  2529  		Type:    typ,
  2530  		Values:  values,
  2531  		Comment: comment,
  2532  	}
  2533  	return spec
  2534  }
  2535  
  2536  func (p *parser) parseGenericType(spec *ast.TypeSpec, openPos token.Pos, name0 *ast.Ident, typ0 ast.Expr) {
  2537  	if p.trace {
  2538  		defer un(trace(p, "parseGenericType"))
  2539  	}
  2540  
  2541  	list := p.parseParameterList(name0, typ0, token.RBRACK)
  2542  	closePos := p.expect(token.RBRACK)
  2543  	spec.TypeParams = &ast.FieldList{Opening: openPos, List: list, Closing: closePos}
  2544  	// Let the type checker decide whether to accept type parameters on aliases:
  2545  	// see issue #46477.
  2546  	if p.tok == token.ASSIGN {
  2547  		// type alias
  2548  		spec.Assign = p.pos
  2549  		p.next()
  2550  	}
  2551  	spec.Type = p.parseType()
  2552  }
  2553  
  2554  func (p *parser) parseTypeSpec(doc *ast.CommentGroup, _ token.Token, _ int) ast.Spec {
  2555  	if p.trace {
  2556  		defer un(trace(p, "TypeSpec"))
  2557  	}
  2558  
  2559  	name := p.parseIdent()
  2560  	spec := &ast.TypeSpec{Doc: doc, Name: name}
  2561  
  2562  	if p.tok == token.LBRACK {
  2563  		// spec.Name "[" ...
  2564  		// array/slice type or type parameter list
  2565  		lbrack := p.pos
  2566  		p.next()
  2567  		if p.tok == token.IDENT {
  2568  			// We may have an array type or a type parameter list.
  2569  			// In either case we expect an expression x (which may
  2570  			// just be a name, or a more complex expression) which
  2571  			// we can analyze further.
  2572  			//
  2573  			// A type parameter list may have a type bound starting
  2574  			// with a "[" as in: P []E. In that case, simply parsing
  2575  			// an expression would lead to an error: P[] is invalid.
  2576  			// But since index or slice expressions are never constant
  2577  			// and thus invalid array length expressions, if the name
  2578  			// is followed by "[" it must be the start of an array or
  2579  			// slice constraint. Only if we don't see a "[" do we
  2580  			// need to parse a full expression. Notably, name <- x
  2581  			// is not a concern because name <- x is a statement and
  2582  			// not an expression.
  2583  			var x ast.Expr = p.parseIdent()
  2584  			if p.tok != token.LBRACK {
  2585  				// To parse the expression starting with name, expand
  2586  				// the call sequence we would get by passing in name
  2587  				// to parser.expr, and pass in name to parsePrimaryExpr.
  2588  				p.exprLev++
  2589  				lhs := p.parsePrimaryExpr(x)
  2590  				x = p.parseBinaryExpr(lhs, token.LowestPrec+1)
  2591  				p.exprLev--
  2592  			}
  2593  			// Analyze expression x. If we can split x into a type parameter
  2594  			// name, possibly followed by a type parameter type, we consider
  2595  			// this the start of a type parameter list, with some caveats:
  2596  			// a single name followed by "]" tilts the decision towards an
  2597  			// array declaration; a type parameter type that could also be
  2598  			// an ordinary expression but which is followed by a comma tilts
  2599  			// the decision towards a type parameter list.
  2600  			if pname, ptype := extractName(x, p.tok == token.COMMA); pname != nil && (ptype != nil || p.tok != token.RBRACK) {
  2601  				// spec.Name "[" pname ...
  2602  				// spec.Name "[" pname ptype ...
  2603  				// spec.Name "[" pname ptype "," ...
  2604  				p.parseGenericType(spec, lbrack, pname, ptype) // ptype may be nil
  2605  			} else {
  2606  				// spec.Name "[" pname "]" ...
  2607  				// spec.Name "[" x ...
  2608  				spec.Type = p.parseArrayType(lbrack, x)
  2609  			}
  2610  		} else {
  2611  			// array type
  2612  			spec.Type = p.parseArrayType(lbrack, nil)
  2613  		}
  2614  	} else {
  2615  		// no type parameters
  2616  		if p.tok == token.ASSIGN {
  2617  			// type alias
  2618  			spec.Assign = p.pos
  2619  			p.next()
  2620  		}
  2621  		spec.Type = p.parseType()
  2622  	}
  2623  
  2624  	spec.Comment = p.expectSemi()
  2625  
  2626  	return spec
  2627  }
  2628  
  2629  // extractName splits the expression x into (name, expr) if syntactically
  2630  // x can be written as name expr. The split only happens if expr is a type
  2631  // element (per the isTypeElem predicate) or if force is set.
  2632  // If x is just a name, the result is (name, nil). If the split succeeds,
  2633  // the result is (name, expr). Otherwise the result is (nil, x).
  2634  // Examples:
  2635  //
  2636  //	x           force    name    expr
  2637  //	------------------------------------
  2638  //	P*[]int     T/F      P       *[]int
  2639  //	P*E         T        P       *E
  2640  //	P*E         F        nil     P*E
  2641  //	P([]int)    T/F      P       []int
  2642  //	P(E)        T        P       E
  2643  //	P(E)        F        nil     P(E)
  2644  //	P*E|F|~G    T/F      P       *E|F|~G
  2645  //	P*E|F|G     T        P       *E|F|G
  2646  //	P*E|F|G     F        nil     P*E|F|G
  2647  func extractName(x ast.Expr, force bool) (*ast.Ident, ast.Expr) {
  2648  	switch x := x.(type) {
  2649  	case *ast.Ident:
  2650  		return x, nil
  2651  	case *ast.BinaryExpr:
  2652  		switch x.Op {
  2653  		case token.MUL:
  2654  			if name, _ := x.X.(*ast.Ident); name != nil && (force || isTypeElem(x.Y)) {
  2655  				// x = name *x.Y
  2656  				return name, &ast.StarExpr{Star: x.OpPos, X: x.Y}
  2657  			}
  2658  		case token.OR:
  2659  			if name, lhs := extractName(x.X, force || isTypeElem(x.Y)); name != nil && lhs != nil {
  2660  				// x = name lhs|x.Y
  2661  				op := *x
  2662  				op.X = lhs
  2663  				return name, &op
  2664  			}
  2665  		}
  2666  	case *ast.CallExpr:
  2667  		if name, _ := x.Fun.(*ast.Ident); name != nil {
  2668  			if len(x.Args) == 1 && x.Ellipsis == token.NoPos && (force || isTypeElem(x.Args[0])) {
  2669  				// x = name "(" x.ArgList[0] ")"
  2670  				return name, x.Args[0]
  2671  			}
  2672  		}
  2673  	}
  2674  	return nil, x
  2675  }
  2676  
  2677  // isTypeElem reports whether x is a (possibly parenthesized) type element expression.
  2678  // The result is false if x could be a type element OR an ordinary (value) expression.
  2679  func isTypeElem(x ast.Expr) bool {
  2680  	switch x := x.(type) {
  2681  	case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
  2682  		return true
  2683  	case *ast.BinaryExpr:
  2684  		return isTypeElem(x.X) || isTypeElem(x.Y)
  2685  	case *ast.UnaryExpr:
  2686  		return x.Op == token.TILDE
  2687  	case *ast.ParenExpr:
  2688  		return isTypeElem(x.X)
  2689  	}
  2690  	return false
  2691  }
  2692  
  2693  func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction) *ast.GenDecl {
  2694  	if p.trace {
  2695  		defer un(trace(p, "GenDecl("+keyword.String()+")"))
  2696  	}
  2697  
  2698  	doc := p.leadComment
  2699  	pos := p.expect(keyword)
  2700  	var lparen, rparen token.Pos
  2701  	var list []ast.Spec
  2702  	if p.tok == token.LPAREN {
  2703  		lparen = p.pos
  2704  		p.next()
  2705  		for iota := 0; p.tok != token.RPAREN && p.tok != token.EOF; iota++ {
  2706  			list = append(list, f(p.leadComment, keyword, iota))
  2707  		}
  2708  		rparen = p.expect(token.RPAREN)
  2709  		p.expectSemi()
  2710  	} else {
  2711  		list = append(list, f(nil, keyword, 0))
  2712  	}
  2713  
  2714  	return &ast.GenDecl{
  2715  		Doc:    doc,
  2716  		TokPos: pos,
  2717  		Tok:    keyword,
  2718  		Lparen: lparen,
  2719  		Specs:  list,
  2720  		Rparen: rparen,
  2721  	}
  2722  }
  2723  
  2724  func (p *parser) parseFuncDecl() *ast.FuncDecl {
  2725  	if p.trace {
  2726  		defer un(trace(p, "FunctionDecl"))
  2727  	}
  2728  
  2729  	doc := p.leadComment
  2730  	pos := p.expect(token.FUNC)
  2731  
  2732  	var recv *ast.FieldList
  2733  	if p.tok == token.LPAREN {
  2734  		_, recv = p.parseParameters(false)
  2735  	}
  2736  
  2737  	ident := p.parseIdent()
  2738  
  2739  	tparams, params := p.parseParameters(true)
  2740  	if recv != nil && tparams != nil {
  2741  		// Method declarations do not have type parameters. We parse them for a
  2742  		// better error message and improved error recovery.
  2743  		p.error(tparams.Opening, "method must have no type parameters")
  2744  		tparams = nil
  2745  	}
  2746  	results := p.parseResult()
  2747  
  2748  	var body *ast.BlockStmt
  2749  	switch p.tok {
  2750  	case token.LBRACE:
  2751  		body = p.parseBody()
  2752  		p.expectSemi()
  2753  	case token.SEMICOLON:
  2754  		p.next()
  2755  		if p.tok == token.LBRACE {
  2756  			// opening { of function declaration on next line
  2757  			p.error(p.pos, "unexpected semicolon or newline before {")
  2758  			body = p.parseBody()
  2759  			p.expectSemi()
  2760  		}
  2761  	default:
  2762  		p.expectSemi()
  2763  	}
  2764  
  2765  	decl := &ast.FuncDecl{
  2766  		Doc:  doc,
  2767  		Recv: recv,
  2768  		Name: ident,
  2769  		Type: &ast.FuncType{
  2770  			Func:       pos,
  2771  			TypeParams: tparams,
  2772  			Params:     params,
  2773  			Results:    results,
  2774  		},
  2775  		Body: body,
  2776  	}
  2777  	return decl
  2778  }
  2779  
  2780  func (p *parser) parseDecl(sync map[token.Token]bool) ast.Decl {
  2781  	if p.trace {
  2782  		defer un(trace(p, "Declaration"))
  2783  	}
  2784  
  2785  	var f parseSpecFunction
  2786  	switch p.tok {
  2787  	case token.IMPORT:
  2788  		f = p.parseImportSpec
  2789  
  2790  	case token.CONST, token.VAR:
  2791  		f = p.parseValueSpec
  2792  
  2793  	case token.TYPE:
  2794  		f = p.parseTypeSpec
  2795  
  2796  	case token.FUNC:
  2797  		return p.parseFuncDecl()
  2798  
  2799  	default:
  2800  		pos := p.pos
  2801  		p.errorExpected(pos, "declaration")
  2802  		p.advance(sync)
  2803  		return &ast.BadDecl{From: pos, To: p.pos}
  2804  	}
  2805  
  2806  	return p.parseGenDecl(p.tok, f)
  2807  }
  2808  
  2809  // ----------------------------------------------------------------------------
  2810  // Source files
  2811  
  2812  func (p *parser) parseFile() *ast.File {
  2813  	if p.trace {
  2814  		defer un(trace(p, "File"))
  2815  	}
  2816  
  2817  	// Don't bother parsing the rest if we had errors scanning the first token.
  2818  	// Likely not a Go source file at all.
  2819  	if p.errors.Len() != 0 {
  2820  		return nil
  2821  	}
  2822  
  2823  	// package clause
  2824  	doc := p.leadComment
  2825  	pos := p.expect(token.PACKAGE)
  2826  	// Go spec: The package clause is not a declaration;
  2827  	// the package name does not appear in any scope.
  2828  	ident := p.parseIdent()
  2829  	if ident.Name == "_" && p.mode&DeclarationErrors != 0 {
  2830  		p.error(p.pos, "invalid package name _")
  2831  	}
  2832  	p.expectSemi()
  2833  
  2834  	// Don't bother parsing the rest if we had errors parsing the package clause.
  2835  	// Likely not a Go source file at all.
  2836  	if p.errors.Len() != 0 {
  2837  		return nil
  2838  	}
  2839  
  2840  	var decls []ast.Decl
  2841  	if p.mode&PackageClauseOnly == 0 {
  2842  		// import decls
  2843  		for p.tok == token.IMPORT {
  2844  			decls = append(decls, p.parseGenDecl(token.IMPORT, p.parseImportSpec))
  2845  		}
  2846  
  2847  		if p.mode&ImportsOnly == 0 {
  2848  			// rest of package body
  2849  			prev := token.IMPORT
  2850  			for p.tok != token.EOF {
  2851  				// Continue to accept import declarations for error tolerance, but complain.
  2852  				if p.tok == token.IMPORT && prev != token.IMPORT {
  2853  					p.error(p.pos, "imports must appear before other declarations")
  2854  				}
  2855  				prev = p.tok
  2856  
  2857  				decls = append(decls, p.parseDecl(declStart))
  2858  			}
  2859  		}
  2860  	}
  2861  
  2862  	f := &ast.File{
  2863  		Doc:       doc,
  2864  		Package:   pos,
  2865  		Name:      ident,
  2866  		Decls:     decls,
  2867  		FileStart: token.Pos(p.file.Base()),
  2868  		FileEnd:   token.Pos(p.file.Base() + p.file.Size()),
  2869  		Imports:   p.imports,
  2870  		Comments:  p.comments,
  2871  		GoVersion: p.goVersion,
  2872  	}
  2873  	var declErr func(token.Pos, string)
  2874  	if p.mode&DeclarationErrors != 0 {
  2875  		declErr = p.error
  2876  	}
  2877  	if p.mode&SkipObjectResolution == 0 {
  2878  		resolveFile(f, p.file, declErr)
  2879  	}
  2880  
  2881  	return f
  2882  }