github.com/AndrienkoAleksandr/go@v0.0.19/src/go/parser/testdata/linalg.go2 (about) 1 // Copyright 2019 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package linalg 6 7 import "math" 8 9 // Numeric is type bound that matches any numeric type. 10 // It would likely be in a constraints package in the standard library. 11 type Numeric interface { 12 ~int|~int8|~int16|~int32|~int64| 13 ~uint|~uint8|~uint16|~uint32|~uint64|~uintptr| 14 ~float32|~float64| 15 ~complex64|~complex128 16 } 17 18 func DotProduct[T Numeric](s1, s2 []T) T { 19 if len(s1) != len(s2) { 20 panic("DotProduct: slices of unequal length") 21 } 22 var r T 23 for i := range s1 { 24 r += s1[i] * s2[i] 25 } 26 return r 27 } 28 29 // NumericAbs matches numeric types with an Abs method. 30 type NumericAbs[T any] interface { 31 Numeric 32 33 Abs() T 34 } 35 36 // AbsDifference computes the absolute value of the difference of 37 // a and b, where the absolute value is determined by the Abs method. 38 func AbsDifference[T NumericAbs](a, b T) T { 39 d := a - b 40 return d.Abs() 41 } 42 43 // OrderedNumeric is a type bound that matches numeric types that support the < operator. 44 type OrderedNumeric interface { 45 ~int|~int8|~int16|~int32|~int64| 46 ~uint|~uint8|~uint16|~uint32|~uint64|~uintptr| 47 ~float32|~float64 48 } 49 50 // Complex is a type bound that matches the two complex types, which do not have a < operator. 51 type Complex interface { 52 ~complex64|~complex128 53 } 54 55 // OrderedAbs is a helper type that defines an Abs method for 56 // ordered numeric types. 57 type OrderedAbs[T OrderedNumeric] T 58 59 func (a OrderedAbs[T]) Abs() OrderedAbs[T] { 60 if a < 0 { 61 return -a 62 } 63 return a 64 } 65 66 // ComplexAbs is a helper type that defines an Abs method for 67 // complex types. 68 type ComplexAbs[T Complex] T 69 70 func (a ComplexAbs[T]) Abs() ComplexAbs[T] { 71 r := float64(real(a)) 72 i := float64(imag(a)) 73 d := math.Sqrt(r * r + i * i) 74 return ComplexAbs[T](complex(d, 0)) 75 } 76 77 func OrderedAbsDifference[T OrderedNumeric](a, b T) T { 78 return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b))) 79 } 80 81 func ComplexAbsDifference[T Complex](a, b T) T { 82 return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b))) 83 }