github.com/AndrienkoAleksandr/go@v0.0.19/src/go/types/infer.go (about)

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  
     3  // Copyright 2018 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // This file implements type parameter inference.
     8  
     9  package types
    10  
    11  import (
    12  	"fmt"
    13  	"go/token"
    14  	. "internal/types/errors"
    15  	"strings"
    16  )
    17  
    18  // If enableReverseTypeInference is set, uninstantiated and
    19  // partially instantiated generic functions may be assigned
    20  // (incl. returned) to variables of function type and type
    21  // inference will attempt to infer the missing type arguments.
    22  // Available with go1.21.
    23  const enableReverseTypeInference = true // disable for debugging
    24  
    25  // infer attempts to infer the complete set of type arguments for generic function instantiation/call
    26  // based on the given type parameters tparams, type arguments targs, function parameters params, and
    27  // function arguments args, if any. There must be at least one type parameter, no more type arguments
    28  // than type parameters, and params and args must match in number (incl. zero).
    29  // If successful, infer returns the complete list of given and inferred type arguments, one for each
    30  // type parameter. Otherwise the result is nil and appropriate errors will be reported.
    31  func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
    32  	if debug {
    33  		defer func() {
    34  			assert(inferred == nil || len(inferred) == len(tparams) && !containsNil(inferred))
    35  		}()
    36  	}
    37  
    38  	if traceInference {
    39  		check.dump("== infer : %s%s ➞ %s", tparams, params, targs) // aligned with rename print below
    40  		defer func() {
    41  			check.dump("=> %s ➞ %s\n", tparams, inferred)
    42  		}()
    43  	}
    44  
    45  	// There must be at least one type parameter, and no more type arguments than type parameters.
    46  	n := len(tparams)
    47  	assert(n > 0 && len(targs) <= n)
    48  
    49  	// Parameters and arguments must match in number.
    50  	assert(params.Len() == len(args))
    51  
    52  	// If we already have all type arguments, we're done.
    53  	if len(targs) == n && !containsNil(targs) {
    54  		return targs
    55  	}
    56  
    57  	// Make sure we have a "full" list of type arguments, some of which may
    58  	// be nil (unknown). Make a copy so as to not clobber the incoming slice.
    59  	if len(targs) < n {
    60  		targs2 := make([]Type, n)
    61  		copy(targs2, targs)
    62  		targs = targs2
    63  	}
    64  	// len(targs) == n
    65  
    66  	// Continue with the type arguments we have. Avoid matching generic
    67  	// parameters that already have type arguments against function arguments:
    68  	// It may fail because matching uses type identity while parameter passing
    69  	// uses assignment rules. Instantiate the parameter list with the type
    70  	// arguments we have, and continue with that parameter list.
    71  
    72  	// Substitute type arguments for their respective type parameters in params,
    73  	// if any. Note that nil targs entries are ignored by check.subst.
    74  	// We do this for better error messages; it's not needed for correctness.
    75  	// For instance, given:
    76  	//
    77  	//   func f[P, Q any](P, Q) {}
    78  	//
    79  	//   func _(s string) {
    80  	//           f[int](s, s) // ERROR
    81  	//   }
    82  	//
    83  	// With substitution, we get the error:
    84  	//   "cannot use s (variable of type string) as int value in argument to f[int]"
    85  	//
    86  	// Without substitution we get the (worse) error:
    87  	//   "type string of s does not match inferred type int for P"
    88  	// even though the type int was provided (not inferred) for P.
    89  	//
    90  	// TODO(gri) We might be able to finesse this in the error message reporting
    91  	//           (which only happens in case of an error) and then avoid doing
    92  	//           the substitution (which always happens).
    93  	if params.Len() > 0 {
    94  		smap := makeSubstMap(tparams, targs)
    95  		params = check.subst(nopos, params, smap, nil, check.context()).(*Tuple)
    96  	}
    97  
    98  	// Unify parameter and argument types for generic parameters with typed arguments
    99  	// and collect the indices of generic parameters with untyped arguments.
   100  	// Terminology: generic parameter = function parameter with a type-parameterized type
   101  	u := newUnifier(tparams, targs)
   102  
   103  	errorf := func(kind string, tpar, targ Type, arg *operand) {
   104  		// provide a better error message if we can
   105  		targs := u.inferred(tparams)
   106  		if targs[0] == nil {
   107  			// The first type parameter couldn't be inferred.
   108  			// If none of them could be inferred, don't try
   109  			// to provide the inferred type in the error msg.
   110  			allFailed := true
   111  			for _, targ := range targs {
   112  				if targ != nil {
   113  					allFailed = false
   114  					break
   115  				}
   116  			}
   117  			if allFailed {
   118  				check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams))
   119  				return
   120  			}
   121  		}
   122  		smap := makeSubstMap(tparams, targs)
   123  		// TODO(gri): pass a poser here, rather than arg.Pos().
   124  		inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context())
   125  		// CannotInferTypeArgs indicates a failure of inference, though the actual
   126  		// error may be better attributed to a user-provided type argument (hence
   127  		// InvalidTypeArg). We can't differentiate these cases, so fall back on
   128  		// the more general CannotInferTypeArgs.
   129  		if inferred != tpar {
   130  			check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar)
   131  		} else {
   132  			check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar)
   133  		}
   134  	}
   135  
   136  	// indices of generic parameters with untyped arguments, for later use
   137  	var untyped []int
   138  
   139  	// --- 1 ---
   140  	// use information from function arguments
   141  
   142  	if traceInference {
   143  		u.tracef("== function parameters: %s", params)
   144  		u.tracef("-- function arguments : %s", args)
   145  	}
   146  
   147  	for i, arg := range args {
   148  		if arg.mode == invalid {
   149  			// An error was reported earlier. Ignore this arg
   150  			// and continue, we may still be able to infer all
   151  			// targs resulting in fewer follow-on errors.
   152  			// TODO(gri) determine if we still need this check
   153  			continue
   154  		}
   155  		par := params.At(i)
   156  		if isParameterized(tparams, par.typ) || isParameterized(tparams, arg.typ) {
   157  			// Function parameters are always typed. Arguments may be untyped.
   158  			// Collect the indices of untyped arguments and handle them later.
   159  			if isTyped(arg.typ) {
   160  				if !u.unify(par.typ, arg.typ, assign) {
   161  					errorf("type", par.typ, arg.typ, arg)
   162  					return nil
   163  				}
   164  			} else if _, ok := par.typ.(*TypeParam); ok && !arg.isNil() {
   165  				// Since default types are all basic (i.e., non-composite) types, an
   166  				// untyped argument will never match a composite parameter type; the
   167  				// only parameter type it can possibly match against is a *TypeParam.
   168  				// Thus, for untyped arguments we only need to look at parameter types
   169  				// that are single type parameters.
   170  				// Also, untyped nils don't have a default type and can be ignored.
   171  				untyped = append(untyped, i)
   172  			}
   173  		}
   174  	}
   175  
   176  	if traceInference {
   177  		inferred := u.inferred(tparams)
   178  		u.tracef("=> %s ➞ %s\n", tparams, inferred)
   179  	}
   180  
   181  	// --- 2 ---
   182  	// use information from type parameter constraints
   183  
   184  	if traceInference {
   185  		u.tracef("== type parameters: %s", tparams)
   186  	}
   187  
   188  	// Unify type parameters with their constraints as long
   189  	// as progress is being made.
   190  	//
   191  	// This is an O(n^2) algorithm where n is the number of
   192  	// type parameters: if there is progress, at least one
   193  	// type argument is inferred per iteration, and we have
   194  	// a doubly nested loop.
   195  	//
   196  	// In practice this is not a problem because the number
   197  	// of type parameters tends to be very small (< 5 or so).
   198  	// (It should be possible for unification to efficiently
   199  	// signal newly inferred type arguments; then the loops
   200  	// here could handle the respective type parameters only,
   201  	// but that will come at a cost of extra complexity which
   202  	// may not be worth it.)
   203  	for i := 0; ; i++ {
   204  		nn := u.unknowns()
   205  		if traceInference {
   206  			if i > 0 {
   207  				fmt.Println()
   208  			}
   209  			u.tracef("-- iteration %d", i)
   210  		}
   211  
   212  		for _, tpar := range tparams {
   213  			tx := u.at(tpar)
   214  			core, single := coreTerm(tpar)
   215  			if traceInference {
   216  				u.tracef("-- type parameter %s = %s: core(%s) = %s, single = %v", tpar, tx, tpar, core, single)
   217  			}
   218  
   219  			// If there is a core term (i.e., a core type with tilde information)
   220  			// unify the type parameter with the core type.
   221  			if core != nil {
   222  				// A type parameter can be unified with its core type in two cases.
   223  				switch {
   224  				case tx != nil:
   225  					// The corresponding type argument tx is known. There are 2 cases:
   226  					// 1) If the core type has a tilde, per spec requirement for tilde
   227  					//    elements, the core type is an underlying (literal) type.
   228  					//    And because of the tilde, the underlying type of tx must match
   229  					//    against the core type.
   230  					//    But because unify automatically matches a defined type against
   231  					//    an underlying literal type, we can simply unify tx with the
   232  					//    core type.
   233  					// 2) If the core type doesn't have a tilde, we also must unify tx
   234  					//    with the core type.
   235  					if !u.unify(tx, core.typ, 0) {
   236  						// TODO(gri) Type parameters that appear in the constraint and
   237  						//           for which we have type arguments inferred should
   238  						//           use those type arguments for a better error message.
   239  						check.errorf(posn, CannotInferTypeArgs, "%s (type %s) does not satisfy %s", tpar, tx, tpar.Constraint())
   240  						return nil
   241  					}
   242  				case single && !core.tilde:
   243  					// The corresponding type argument tx is unknown and there's a single
   244  					// specific type and no tilde.
   245  					// In this case the type argument must be that single type; set it.
   246  					u.set(tpar, core.typ)
   247  				}
   248  			} else {
   249  				if tx != nil {
   250  					// We don't have a core type, but the type argument tx is known.
   251  					// It must have (at least) all the methods of the type constraint,
   252  					// and the method signatures must unify; otherwise tx cannot satisfy
   253  					// the constraint.
   254  					// TODO(gri) Now that unification handles interfaces, this code can
   255  					//           be reduced to calling u.unify(tx, tpar.iface(), assign)
   256  					//           (which will compare signatures exactly as we do below).
   257  					//           We leave it as is for now because missingMethod provides
   258  					//           a failure cause which allows for a better error message.
   259  					//           Eventually, unify should return an error with cause.
   260  					var cause string
   261  					constraint := tpar.iface()
   262  					if m, _ := check.missingMethod(tx, constraint, true, func(x, y Type) bool { return u.unify(x, y, exact) }, &cause); m != nil {
   263  						// TODO(gri) better error message (see TODO above)
   264  						check.errorf(posn, CannotInferTypeArgs, "%s (type %s) does not satisfy %s %s", tpar, tx, tpar.Constraint(), cause)
   265  						return nil
   266  					}
   267  				}
   268  			}
   269  		}
   270  
   271  		if u.unknowns() == nn {
   272  			break // no progress
   273  		}
   274  	}
   275  
   276  	if traceInference {
   277  		inferred := u.inferred(tparams)
   278  		u.tracef("=> %s ➞ %s\n", tparams, inferred)
   279  	}
   280  
   281  	// --- 3 ---
   282  	// use information from untyped constants
   283  
   284  	if traceInference {
   285  		u.tracef("== untyped arguments: %v", untyped)
   286  	}
   287  
   288  	// Some generic parameters with untyped arguments may have been given a type by now.
   289  	// Collect all remaining parameters that don't have a type yet and determine the
   290  	// maximum untyped type for each of those parameters, if possible.
   291  	var maxUntyped map[*TypeParam]Type // lazily allocated (we may not need it)
   292  	for _, index := range untyped {
   293  		tpar := params.At(index).typ.(*TypeParam) // is type parameter by construction of untyped
   294  		if u.at(tpar) == nil {
   295  			arg := args[index] // arg corresponding to tpar
   296  			if maxUntyped == nil {
   297  				maxUntyped = make(map[*TypeParam]Type)
   298  			}
   299  			max := maxUntyped[tpar]
   300  			if max == nil {
   301  				max = arg.typ
   302  			} else {
   303  				m := maxType(max, arg.typ)
   304  				if m == nil {
   305  					check.errorf(arg, CannotInferTypeArgs, "mismatched types %s and %s (cannot infer %s)", max, arg.typ, tpar)
   306  					return nil
   307  				}
   308  				max = m
   309  			}
   310  			maxUntyped[tpar] = max
   311  		}
   312  	}
   313  	// maxUntyped contains the maximum untyped type for each type parameter
   314  	// which doesn't have a type yet. Set the respective default types.
   315  	for tpar, typ := range maxUntyped {
   316  		d := Default(typ)
   317  		assert(isTyped(d))
   318  		u.set(tpar, d)
   319  	}
   320  
   321  	// --- simplify ---
   322  
   323  	// u.inferred(tparams) now contains the incoming type arguments plus any additional type
   324  	// arguments which were inferred. The inferred non-nil entries may still contain
   325  	// references to other type parameters found in constraints.
   326  	// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
   327  	// was given, unification produced the type list [int, []C, *A]. We eliminate the
   328  	// remaining type parameters by substituting the type parameters in this type list
   329  	// until nothing changes anymore.
   330  	inferred = u.inferred(tparams)
   331  	if debug {
   332  		for i, targ := range targs {
   333  			assert(targ == nil || inferred[i] == targ)
   334  		}
   335  	}
   336  
   337  	// The data structure of each (provided or inferred) type represents a graph, where
   338  	// each node corresponds to a type and each (directed) vertex points to a component
   339  	// type. The substitution process described above repeatedly replaces type parameter
   340  	// nodes in these graphs with the graphs of the types the type parameters stand for,
   341  	// which creates a new (possibly bigger) graph for each type.
   342  	// The substitution process will not stop if the replacement graph for a type parameter
   343  	// also contains that type parameter.
   344  	// For instance, for [A interface{ *A }], without any type argument provided for A,
   345  	// unification produces the type list [*A]. Substituting A in *A with the value for
   346  	// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
   347  	// because the graph A -> *A has a cycle through A.
   348  	// Generally, cycles may occur across multiple type parameters and inferred types
   349  	// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
   350  	// We eliminate cycles by walking the graphs for all type parameters. If a cycle
   351  	// through a type parameter is detected, killCycles nils out the respective type
   352  	// (in the inferred list) which kills the cycle, and marks the corresponding type
   353  	// parameter as not inferred.
   354  	//
   355  	// TODO(gri) If useful, we could report the respective cycle as an error. We don't
   356  	//           do this now because type inference will fail anyway, and furthermore,
   357  	//           constraints with cycles of this kind cannot currently be satisfied by
   358  	//           any user-supplied type. But should that change, reporting an error
   359  	//           would be wrong.
   360  	killCycles(tparams, inferred)
   361  
   362  	// dirty tracks the indices of all types that may still contain type parameters.
   363  	// We know that nil type entries and entries corresponding to provided (non-nil)
   364  	// type arguments are clean, so exclude them from the start.
   365  	var dirty []int
   366  	for i, typ := range inferred {
   367  		if typ != nil && (i >= len(targs) || targs[i] == nil) {
   368  			dirty = append(dirty, i)
   369  		}
   370  	}
   371  
   372  	for len(dirty) > 0 {
   373  		if traceInference {
   374  			u.tracef("-- simplify %s ➞ %s", tparams, inferred)
   375  		}
   376  		// TODO(gri) Instead of creating a new substMap for each iteration,
   377  		// provide an update operation for substMaps and only change when
   378  		// needed. Optimization.
   379  		smap := makeSubstMap(tparams, inferred)
   380  		n := 0
   381  		for _, index := range dirty {
   382  			t0 := inferred[index]
   383  			if t1 := check.subst(nopos, t0, smap, nil, check.context()); t1 != t0 {
   384  				// t0 was simplified to t1.
   385  				// If t0 was a generic function, but the simplified signature t1 does
   386  				// not contain any type parameters anymore, the function is not generic
   387  				// anymore. Remove it's type parameters. (go.dev/issue/59953)
   388  				// Note that if t0 was a signature, t1 must be a signature, and t1
   389  				// can only be a generic signature if it originated from a generic
   390  				// function argument. Those signatures are never defined types and
   391  				// thus there is no need to call under below.
   392  				// TODO(gri) Consider doing this in Checker.subst.
   393  				//           Then this would fall out automatically here and also
   394  				//           in instantiation (where we also explicitly nil out
   395  				//           type parameters). See the *Signature TODO in subst.
   396  				if sig, _ := t1.(*Signature); sig != nil && sig.TypeParams().Len() > 0 && !isParameterized(tparams, sig) {
   397  					sig.tparams = nil
   398  				}
   399  				inferred[index] = t1
   400  				dirty[n] = index
   401  				n++
   402  			}
   403  		}
   404  		dirty = dirty[:n]
   405  	}
   406  
   407  	// Once nothing changes anymore, we may still have type parameters left;
   408  	// e.g., a constraint with core type *P may match a type parameter Q but
   409  	// we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548).
   410  	// Don't let such inferences escape; instead treat them as unresolved.
   411  	for i, typ := range inferred {
   412  		if typ == nil || isParameterized(tparams, typ) {
   413  			obj := tparams[i].obj
   414  			check.errorf(posn, CannotInferTypeArgs, "cannot infer %s (%s)", obj.name, obj.pos)
   415  			return nil
   416  		}
   417  	}
   418  
   419  	return
   420  }
   421  
   422  // containsNil reports whether list contains a nil entry.
   423  func containsNil(list []Type) bool {
   424  	for _, t := range list {
   425  		if t == nil {
   426  			return true
   427  		}
   428  	}
   429  	return false
   430  }
   431  
   432  // renameTParams renames the type parameters in the given type such that each type
   433  // parameter is given a new identity. renameTParams returns the new type parameters
   434  // and updated type. If the result type is unchanged from the argument type, none
   435  // of the type parameters in tparams occurred in the type.
   436  // If typ is a generic function, type parameters held with typ are not changed and
   437  // must be updated separately if desired.
   438  // The positions is only used for debug traces.
   439  func (check *Checker) renameTParams(pos token.Pos, tparams []*TypeParam, typ Type) ([]*TypeParam, Type) {
   440  	// For the purpose of type inference we must differentiate type parameters
   441  	// occurring in explicit type or value function arguments from the type
   442  	// parameters we are solving for via unification because they may be the
   443  	// same in self-recursive calls:
   444  	//
   445  	//   func f[P constraint](x P) {
   446  	//           f(x)
   447  	//   }
   448  	//
   449  	// In this example, without type parameter renaming, the P used in the
   450  	// instantiation f[P] has the same pointer identity as the P we are trying
   451  	// to solve for through type inference. This causes problems for type
   452  	// unification. Because any such self-recursive call is equivalent to
   453  	// a mutually recursive call, type parameter renaming can be used to
   454  	// create separate, disentangled type parameters. The above example
   455  	// can be rewritten into the following equivalent code:
   456  	//
   457  	//   func f[P constraint](x P) {
   458  	//           f2(x)
   459  	//   }
   460  	//
   461  	//   func f2[P2 constraint](x P2) {
   462  	//           f(x)
   463  	//   }
   464  	//
   465  	// Type parameter renaming turns the first example into the second
   466  	// example by renaming the type parameter P into P2.
   467  	if len(tparams) == 0 {
   468  		return nil, typ // nothing to do
   469  	}
   470  
   471  	tparams2 := make([]*TypeParam, len(tparams))
   472  	for i, tparam := range tparams {
   473  		tname := NewTypeName(tparam.Obj().Pos(), tparam.Obj().Pkg(), tparam.Obj().Name(), nil)
   474  		tparams2[i] = NewTypeParam(tname, nil)
   475  		tparams2[i].index = tparam.index // == i
   476  	}
   477  
   478  	renameMap := makeRenameMap(tparams, tparams2)
   479  	for i, tparam := range tparams {
   480  		tparams2[i].bound = check.subst(pos, tparam.bound, renameMap, nil, check.context())
   481  	}
   482  
   483  	return tparams2, check.subst(pos, typ, renameMap, nil, check.context())
   484  }
   485  
   486  // typeParamsString produces a string containing all the type parameter names
   487  // in list suitable for human consumption.
   488  func typeParamsString(list []*TypeParam) string {
   489  	// common cases
   490  	n := len(list)
   491  	switch n {
   492  	case 0:
   493  		return ""
   494  	case 1:
   495  		return list[0].obj.name
   496  	case 2:
   497  		return list[0].obj.name + " and " + list[1].obj.name
   498  	}
   499  
   500  	// general case (n > 2)
   501  	var buf strings.Builder
   502  	for i, tname := range list[:n-1] {
   503  		if i > 0 {
   504  			buf.WriteString(", ")
   505  		}
   506  		buf.WriteString(tname.obj.name)
   507  	}
   508  	buf.WriteString(", and ")
   509  	buf.WriteString(list[n-1].obj.name)
   510  	return buf.String()
   511  }
   512  
   513  // isParameterized reports whether typ contains any of the type parameters of tparams.
   514  // If typ is a generic function, isParameterized ignores the type parameter declarations;
   515  // it only considers the signature proper (incoming and result parameters).
   516  func isParameterized(tparams []*TypeParam, typ Type) bool {
   517  	w := tpWalker{
   518  		tparams: tparams,
   519  		seen:    make(map[Type]bool),
   520  	}
   521  	return w.isParameterized(typ)
   522  }
   523  
   524  type tpWalker struct {
   525  	tparams []*TypeParam
   526  	seen    map[Type]bool
   527  }
   528  
   529  func (w *tpWalker) isParameterized(typ Type) (res bool) {
   530  	// detect cycles
   531  	if x, ok := w.seen[typ]; ok {
   532  		return x
   533  	}
   534  	w.seen[typ] = false
   535  	defer func() {
   536  		w.seen[typ] = res
   537  	}()
   538  
   539  	switch t := typ.(type) {
   540  	case *Basic:
   541  		// nothing to do
   542  
   543  	case *Array:
   544  		return w.isParameterized(t.elem)
   545  
   546  	case *Slice:
   547  		return w.isParameterized(t.elem)
   548  
   549  	case *Struct:
   550  		return w.varList(t.fields)
   551  
   552  	case *Pointer:
   553  		return w.isParameterized(t.base)
   554  
   555  	case *Tuple:
   556  		// This case does not occur from within isParameterized
   557  		// because tuples only appear in signatures where they
   558  		// are handled explicitly. But isParameterized is also
   559  		// called by Checker.callExpr with a function result tuple
   560  		// if instantiation failed (go.dev/issue/59890).
   561  		return t != nil && w.varList(t.vars)
   562  
   563  	case *Signature:
   564  		// t.tparams may not be nil if we are looking at a signature
   565  		// of a generic function type (or an interface method) that is
   566  		// part of the type we're testing. We don't care about these type
   567  		// parameters.
   568  		// Similarly, the receiver of a method may declare (rather than
   569  		// use) type parameters, we don't care about those either.
   570  		// Thus, we only need to look at the input and result parameters.
   571  		return t.params != nil && w.varList(t.params.vars) || t.results != nil && w.varList(t.results.vars)
   572  
   573  	case *Interface:
   574  		tset := t.typeSet()
   575  		for _, m := range tset.methods {
   576  			if w.isParameterized(m.typ) {
   577  				return true
   578  			}
   579  		}
   580  		return tset.is(func(t *term) bool {
   581  			return t != nil && w.isParameterized(t.typ)
   582  		})
   583  
   584  	case *Map:
   585  		return w.isParameterized(t.key) || w.isParameterized(t.elem)
   586  
   587  	case *Chan:
   588  		return w.isParameterized(t.elem)
   589  
   590  	case *Named:
   591  		for _, t := range t.TypeArgs().list() {
   592  			if w.isParameterized(t) {
   593  				return true
   594  			}
   595  		}
   596  
   597  	case *TypeParam:
   598  		return tparamIndex(w.tparams, t) >= 0
   599  
   600  	default:
   601  		panic(fmt.Sprintf("unexpected %T", typ))
   602  	}
   603  
   604  	return false
   605  }
   606  
   607  func (w *tpWalker) varList(list []*Var) bool {
   608  	for _, v := range list {
   609  		if w.isParameterized(v.typ) {
   610  			return true
   611  		}
   612  	}
   613  	return false
   614  }
   615  
   616  // If the type parameter has a single specific type S, coreTerm returns (S, true).
   617  // Otherwise, if tpar has a core type T, it returns a term corresponding to that
   618  // core type and false. In that case, if any term of tpar has a tilde, the core
   619  // term has a tilde. In all other cases coreTerm returns (nil, false).
   620  func coreTerm(tpar *TypeParam) (*term, bool) {
   621  	n := 0
   622  	var single *term // valid if n == 1
   623  	var tilde bool
   624  	tpar.is(func(t *term) bool {
   625  		if t == nil {
   626  			assert(n == 0)
   627  			return false // no terms
   628  		}
   629  		n++
   630  		single = t
   631  		if t.tilde {
   632  			tilde = true
   633  		}
   634  		return true
   635  	})
   636  	if n == 1 {
   637  		if debug {
   638  			assert(debug && under(single.typ) == coreType(tpar))
   639  		}
   640  		return single, true
   641  	}
   642  	if typ := coreType(tpar); typ != nil {
   643  		// A core type is always an underlying type.
   644  		// If any term of tpar has a tilde, we don't
   645  		// have a precise core type and we must return
   646  		// a tilde as well.
   647  		return &term{tilde, typ}, false
   648  	}
   649  	return nil, false
   650  }
   651  
   652  // killCycles walks through the given type parameters and looks for cycles
   653  // created by type parameters whose inferred types refer back to that type
   654  // parameter, either directly or indirectly. If such a cycle is detected,
   655  // it is killed by setting the corresponding inferred type to nil.
   656  //
   657  // TODO(gri) Determine if we can simply abort inference as soon as we have
   658  // found a single cycle.
   659  func killCycles(tparams []*TypeParam, inferred []Type) {
   660  	w := cycleFinder{tparams, inferred, make(map[Type]bool)}
   661  	for _, t := range tparams {
   662  		w.typ(t) // t != nil
   663  	}
   664  }
   665  
   666  type cycleFinder struct {
   667  	tparams  []*TypeParam
   668  	inferred []Type
   669  	seen     map[Type]bool
   670  }
   671  
   672  func (w *cycleFinder) typ(typ Type) {
   673  	if w.seen[typ] {
   674  		// We have seen typ before. If it is one of the type parameters
   675  		// in w.tparams, iterative substitution will lead to infinite expansion.
   676  		// Nil out the corresponding type which effectively kills the cycle.
   677  		if tpar, _ := typ.(*TypeParam); tpar != nil {
   678  			if i := tparamIndex(w.tparams, tpar); i >= 0 {
   679  				// cycle through tpar
   680  				w.inferred[i] = nil
   681  			}
   682  		}
   683  		// If we don't have one of our type parameters, the cycle is due
   684  		// to an ordinary recursive type and we can just stop walking it.
   685  		return
   686  	}
   687  	w.seen[typ] = true
   688  	defer delete(w.seen, typ)
   689  
   690  	switch t := typ.(type) {
   691  	case *Basic:
   692  		// nothing to do
   693  
   694  	case *Array:
   695  		w.typ(t.elem)
   696  
   697  	case *Slice:
   698  		w.typ(t.elem)
   699  
   700  	case *Struct:
   701  		w.varList(t.fields)
   702  
   703  	case *Pointer:
   704  		w.typ(t.base)
   705  
   706  	// case *Tuple:
   707  	//      This case should not occur because tuples only appear
   708  	//      in signatures where they are handled explicitly.
   709  
   710  	case *Signature:
   711  		if t.params != nil {
   712  			w.varList(t.params.vars)
   713  		}
   714  		if t.results != nil {
   715  			w.varList(t.results.vars)
   716  		}
   717  
   718  	case *Union:
   719  		for _, t := range t.terms {
   720  			w.typ(t.typ)
   721  		}
   722  
   723  	case *Interface:
   724  		for _, m := range t.methods {
   725  			w.typ(m.typ)
   726  		}
   727  		for _, t := range t.embeddeds {
   728  			w.typ(t)
   729  		}
   730  
   731  	case *Map:
   732  		w.typ(t.key)
   733  		w.typ(t.elem)
   734  
   735  	case *Chan:
   736  		w.typ(t.elem)
   737  
   738  	case *Named:
   739  		for _, tpar := range t.TypeArgs().list() {
   740  			w.typ(tpar)
   741  		}
   742  
   743  	case *TypeParam:
   744  		if i := tparamIndex(w.tparams, t); i >= 0 && w.inferred[i] != nil {
   745  			w.typ(w.inferred[i])
   746  		}
   747  
   748  	default:
   749  		panic(fmt.Sprintf("unexpected %T", typ))
   750  	}
   751  }
   752  
   753  func (w *cycleFinder) varList(list []*Var) {
   754  	for _, v := range list {
   755  		w.typ(v.typ)
   756  	}
   757  }
   758  
   759  // If tpar is a type parameter in list, tparamIndex returns the index
   760  // of the type parameter in list. Otherwise the result is < 0.
   761  func tparamIndex(list []*TypeParam, tpar *TypeParam) int {
   762  	for i, p := range list {
   763  		if p == tpar {
   764  			return i
   765  		}
   766  	}
   767  	return -1
   768  }