github.com/BlockABC/godash@v0.0.0-20191112120524-f4aa3a32c566/btcec/signature.go (about) 1 // Copyright (c) 2013-2014 The btcsuite developers 2 // Copyright (c) 2016 The Dash developers 3 // Use of this source code is governed by an ISC 4 // license that can be found in the LICENSE file. 5 6 package btcec 7 8 import ( 9 "bytes" 10 "crypto/ecdsa" 11 "crypto/elliptic" 12 "crypto/hmac" 13 "errors" 14 "fmt" 15 "hash" 16 "math/big" 17 18 "github.com/btcsuite/fastsha256" 19 ) 20 21 // Errors returned by canonicalPadding. 22 var ( 23 errNegativeValue = errors.New("value may be interpreted as negative") 24 errExcessivelyPaddedValue = errors.New("value is excessively padded") 25 ) 26 27 // Signature is a type representing an ecdsa signature. 28 type Signature struct { 29 R *big.Int 30 S *big.Int 31 } 32 33 var ( 34 // Curve order and halforder, used to tame ECDSA malleability (see BIP-0062) 35 order = new(big.Int).Set(S256().N) 36 halforder = new(big.Int).Rsh(order, 1) 37 38 // Used in RFC6979 implementation when testing the nonce for correctness 39 one = big.NewInt(1) 40 41 // oneInitializer is used to fill a byte slice with byte 0x01. It is provided 42 // here to avoid the need to create it multiple times. 43 oneInitializer = []byte{0x01} 44 ) 45 46 // Serialize returns the ECDSA signature in the more strict DER format. Note 47 // that the serialized bytes returned do not include the appended hash type 48 // used in Bitcoin signature scripts. 49 // 50 // encoding/asn1 is broken so we hand roll this output: 51 // 52 // 0x30 <length> 0x02 <length r> r 0x02 <length s> s 53 func (sig *Signature) Serialize() []byte { 54 // low 'S' malleability breaker 55 sigS := sig.S 56 if sigS.Cmp(halforder) == 1 { 57 sigS = new(big.Int).Sub(order, sigS) 58 } 59 // Ensure the encoded bytes for the r and s values are canonical and 60 // thus suitable for DER encoding. 61 rb := canonicalizeInt(sig.R) 62 sb := canonicalizeInt(sigS) 63 64 // total length of returned signature is 1 byte for each magic and 65 // length (6 total), plus lengths of r and s 66 length := 6 + len(rb) + len(sb) 67 b := make([]byte, length, length) 68 69 b[0] = 0x30 70 b[1] = byte(length - 2) 71 b[2] = 0x02 72 b[3] = byte(len(rb)) 73 offset := copy(b[4:], rb) + 4 74 b[offset] = 0x02 75 b[offset+1] = byte(len(sb)) 76 copy(b[offset+2:], sb) 77 return b 78 } 79 80 // Verify calls ecdsa.Verify to verify the signature of hash using the public 81 // key. It returns true if the signature is valid, false otherwise. 82 func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool { 83 return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S) 84 } 85 86 // IsEqual compares this Signature instance to the one passed, returning true 87 // if both Signatures are equivalent. A signature is equivalent to another, if 88 // they both have the same scalar value for R and S. 89 func (sig *Signature) IsEqual(otherSig *Signature) bool { 90 return sig.R.Cmp(otherSig.R) == 0 && 91 sig.S.Cmp(otherSig.S) == 0 92 } 93 94 func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) { 95 // Originally this code used encoding/asn1 in order to parse the 96 // signature, but a number of problems were found with this approach. 97 // Despite the fact that signatures are stored as DER, the difference 98 // between go's idea of a bignum (and that they have sign) doesn't agree 99 // with the openssl one (where they do not). The above is true as of 100 // Go 1.1. In the end it was simpler to rewrite the code to explicitly 101 // understand the format which is this: 102 // 0x30 <length of whole message> <0x02> <length of R> <R> 0x2 103 // <length of S> <S>. 104 105 signature := &Signature{} 106 107 // minimal message is when both numbers are 1 bytes. adding up to: 108 // 0x30 + len + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte> 109 if len(sigStr) < 8 { 110 return nil, errors.New("malformed signature: too short") 111 } 112 // 0x30 113 index := 0 114 if sigStr[index] != 0x30 { 115 return nil, errors.New("malformed signature: no header magic") 116 } 117 index++ 118 // length of remaining message 119 siglen := sigStr[index] 120 index++ 121 if int(siglen+2) > len(sigStr) { 122 return nil, errors.New("malformed signature: bad length") 123 } 124 // trim the slice we're working on so we only look at what matters. 125 sigStr = sigStr[:siglen+2] 126 127 // 0x02 128 if sigStr[index] != 0x02 { 129 return nil, 130 errors.New("malformed signature: no 1st int marker") 131 } 132 index++ 133 134 // Length of signature R. 135 rLen := int(sigStr[index]) 136 // must be positive, must be able to fit in another 0x2, <len> <s> 137 // hence the -3. We assume that the length must be at least one byte. 138 index++ 139 if rLen <= 0 || rLen > len(sigStr)-index-3 { 140 return nil, errors.New("malformed signature: bogus R length") 141 } 142 143 // Then R itself. 144 rBytes := sigStr[index : index+rLen] 145 if der { 146 switch err := canonicalPadding(rBytes); err { 147 case errNegativeValue: 148 return nil, errors.New("signature R is negative") 149 case errExcessivelyPaddedValue: 150 return nil, errors.New("signature R is excessively padded") 151 } 152 } 153 signature.R = new(big.Int).SetBytes(rBytes) 154 index += rLen 155 // 0x02. length already checked in previous if. 156 if sigStr[index] != 0x02 { 157 return nil, errors.New("malformed signature: no 2nd int marker") 158 } 159 index++ 160 161 // Length of signature S. 162 sLen := int(sigStr[index]) 163 index++ 164 // S should be the rest of the string. 165 if sLen <= 0 || sLen > len(sigStr)-index { 166 return nil, errors.New("malformed signature: bogus S length") 167 } 168 169 // Then S itself. 170 sBytes := sigStr[index : index+sLen] 171 if der { 172 switch err := canonicalPadding(sBytes); err { 173 case errNegativeValue: 174 return nil, errors.New("signature S is negative") 175 case errExcessivelyPaddedValue: 176 return nil, errors.New("signature S is excessively padded") 177 } 178 } 179 signature.S = new(big.Int).SetBytes(sBytes) 180 index += sLen 181 182 // sanity check length parsing 183 if index != len(sigStr) { 184 return nil, fmt.Errorf("malformed signature: bad final length %v != %v", 185 index, len(sigStr)) 186 } 187 188 // Verify also checks this, but we can be more sure that we parsed 189 // correctly if we verify here too. 190 // FWIW the ecdsa spec states that R and S must be | 1, N - 1 | 191 // but crypto/ecdsa only checks for Sign != 0. Mirror that. 192 if signature.R.Sign() != 1 { 193 return nil, errors.New("signature R isn't 1 or more") 194 } 195 if signature.S.Sign() != 1 { 196 return nil, errors.New("signature S isn't 1 or more") 197 } 198 if signature.R.Cmp(curve.Params().N) >= 0 { 199 return nil, errors.New("signature R is >= curve.N") 200 } 201 if signature.S.Cmp(curve.Params().N) >= 0 { 202 return nil, errors.New("signature S is >= curve.N") 203 } 204 205 return signature, nil 206 } 207 208 // ParseSignature parses a signature in BER format for the curve type `curve' 209 // into a Signature type, perfoming some basic sanity checks. If parsing 210 // according to the more strict DER format is needed, use ParseDERSignature. 211 func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { 212 return parseSig(sigStr, curve, false) 213 } 214 215 // ParseDERSignature parses a signature in DER format for the curve type 216 // `curve` into a Signature type. If parsing according to the less strict 217 // BER format is needed, use ParseSignature. 218 func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) { 219 return parseSig(sigStr, curve, true) 220 } 221 222 // canonicalizeInt returns the bytes for the passed big integer adjusted as 223 // necessary to ensure that a big-endian encoded integer can't possibly be 224 // misinterpreted as a negative number. This can happen when the most 225 // significant bit is set, so it is padded by a leading zero byte in this case. 226 // Also, the returned bytes will have at least a single byte when the passed 227 // value is 0. This is required for DER encoding. 228 func canonicalizeInt(val *big.Int) []byte { 229 b := val.Bytes() 230 if len(b) == 0 { 231 b = []byte{0x00} 232 } 233 if b[0]&0x80 != 0 { 234 paddedBytes := make([]byte, len(b)+1) 235 copy(paddedBytes[1:], b) 236 b = paddedBytes 237 } 238 return b 239 } 240 241 // canonicalPadding checks whether a big-endian encoded integer could 242 // possibly be misinterpreted as a negative number (even though OpenSSL 243 // treats all numbers as unsigned), or if there is any unnecessary 244 // leading zero padding. 245 func canonicalPadding(b []byte) error { 246 switch { 247 case b[0]&0x80 == 0x80: 248 return errNegativeValue 249 case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80: 250 return errExcessivelyPaddedValue 251 default: 252 return nil 253 } 254 } 255 256 // hashToInt converts a hash value to an integer. There is some disagreement 257 // about how this is done. [NSA] suggests that this is done in the obvious 258 // manner, but [SECG] truncates the hash to the bit-length of the curve order 259 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 260 // OpenSSL right shifts excess bits from the number if the hash is too large 261 // and we mirror that too. 262 // This is borrowed from crypto/ecdsa. 263 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 264 orderBits := c.Params().N.BitLen() 265 orderBytes := (orderBits + 7) / 8 266 if len(hash) > orderBytes { 267 hash = hash[:orderBytes] 268 } 269 270 ret := new(big.Int).SetBytes(hash) 271 excess := len(hash)*8 - orderBits 272 if excess > 0 { 273 ret.Rsh(ret, uint(excess)) 274 } 275 return ret 276 } 277 278 // recoverKeyFromSignature recoves a public key from the signature "sig" on the 279 // given message hash "msg". Based on the algorithm found in section 5.1.5 of 280 // SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details 281 // in the inner loop in Step 1. The counter provided is actually the j parameter 282 // of the loop * 2 - on the first iteration of j we do the R case, else the -R 283 // case in step 1.6. This counter is used in the bitcoin compressed signature 284 // format and thus we match bitcoind's behaviour here. 285 func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte, 286 iter int, doChecks bool) (*PublicKey, error) { 287 // 1.1 x = (n * i) + r 288 Rx := new(big.Int).Mul(curve.Params().N, 289 new(big.Int).SetInt64(int64(iter/2))) 290 Rx.Add(Rx, sig.R) 291 if Rx.Cmp(curve.Params().P) != -1 { 292 return nil, errors.New("calculated Rx is larger than curve P") 293 } 294 295 // convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd 296 // iteration then 1.6 will be done with -R, so we calculate the other 297 // term when uncompressing the point. 298 Ry, err := decompressPoint(curve, Rx, iter%2 == 1) 299 if err != nil { 300 return nil, err 301 } 302 303 // 1.4 Check n*R is point at infinity 304 if doChecks { 305 nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes()) 306 if nRx.Sign() != 0 || nRy.Sign() != 0 { 307 return nil, errors.New("n*R does not equal the point at infinity") 308 } 309 } 310 311 // 1.5 calculate e from message using the same algorithm as ecdsa 312 // signature calculation. 313 e := hashToInt(msg, curve) 314 315 // Step 1.6.1: 316 // We calculate the two terms sR and eG separately multiplied by the 317 // inverse of r (from the signature). We then add them to calculate 318 // Q = r^-1(sR-eG) 319 invr := new(big.Int).ModInverse(sig.R, curve.Params().N) 320 321 // first term. 322 invrS := new(big.Int).Mul(invr, sig.S) 323 invrS.Mod(invrS, curve.Params().N) 324 sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes()) 325 326 // second term. 327 e.Neg(e) 328 e.Mod(e, curve.Params().N) 329 e.Mul(e, invr) 330 e.Mod(e, curve.Params().N) 331 minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes()) 332 333 // TODO(oga) this would be faster if we did a mult and add in one 334 // step to prevent the jacobian conversion back and forth. 335 Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy) 336 337 return &PublicKey{ 338 Curve: curve, 339 X: Qx, 340 Y: Qy, 341 }, nil 342 } 343 344 // SignCompact produces a compact signature of the data in hash with the given 345 // private key on the given koblitz curve. The isCompressed parameter should 346 // be used to detail if the given signature should reference a compressed 347 // public key or not. If successful the bytes of the compact signature will be 348 // returned in the format: 349 // <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S> 350 // where the R and S parameters are padde up to the bitlengh of the curve. 351 func SignCompact(curve *KoblitzCurve, key *PrivateKey, 352 hash []byte, isCompressedKey bool) ([]byte, error) { 353 sig, err := key.Sign(hash) 354 if err != nil { 355 return nil, err 356 } 357 358 // bitcoind checks the bit length of R and S here. The ecdsa signature 359 // algorithm returns R and S mod N therefore they will be the bitsize of 360 // the curve, and thus correctly sized. 361 for i := 0; i < (curve.H+1)*2; i++ { 362 pk, err := recoverKeyFromSignature(curve, sig, hash, i, true) 363 if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 { 364 result := make([]byte, 1, 2*curve.byteSize+1) 365 result[0] = 27 + byte(i) 366 if isCompressedKey { 367 result[0] += 4 368 } 369 // Not sure this needs rounding but safer to do so. 370 curvelen := (curve.BitSize + 7) / 8 371 372 // Pad R and S to curvelen if needed. 373 bytelen := (sig.R.BitLen() + 7) / 8 374 if bytelen < curvelen { 375 result = append(result, 376 make([]byte, curvelen-bytelen)...) 377 } 378 result = append(result, sig.R.Bytes()...) 379 380 bytelen = (sig.S.BitLen() + 7) / 8 381 if bytelen < curvelen { 382 result = append(result, 383 make([]byte, curvelen-bytelen)...) 384 } 385 result = append(result, sig.S.Bytes()...) 386 387 return result, nil 388 } 389 } 390 391 return nil, errors.New("no valid solution for pubkey found") 392 } 393 394 // RecoverCompact verifies the compact signature "signature" of "hash" for the 395 // Koblitz curve in "curve". If the signature matches then the recovered public 396 // key will be returned as well as a boolen if the original key was compressed 397 // or not, else an error will be returned. 398 func RecoverCompact(curve *KoblitzCurve, signature, 399 hash []byte) (*PublicKey, bool, error) { 400 bitlen := (curve.BitSize + 7) / 8 401 if len(signature) != 1+bitlen*2 { 402 return nil, false, errors.New("invalid compact signature size") 403 } 404 405 iteration := int((signature[0] - 27) & ^byte(4)) 406 407 // format is <header byte><bitlen R><bitlen S> 408 sig := &Signature{ 409 R: new(big.Int).SetBytes(signature[1 : bitlen+1]), 410 S: new(big.Int).SetBytes(signature[bitlen+1:]), 411 } 412 // The iteration used here was encoded 413 key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false) 414 if err != nil { 415 return nil, false, err 416 } 417 418 return key, ((signature[0] - 27) & 4) == 4, nil 419 } 420 421 // signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62. 422 func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) { 423 424 privkey := privateKey.ToECDSA() 425 N := order 426 k := nonceRFC6979(privkey.D, hash) 427 inv := new(big.Int).ModInverse(k, N) 428 r, _ := privkey.Curve.ScalarBaseMult(k.Bytes()) 429 if r.Cmp(N) == 1 { 430 r.Sub(r, N) 431 } 432 433 if r.Sign() == 0 { 434 return nil, errors.New("calculated R is zero") 435 } 436 437 e := hashToInt(hash, privkey.Curve) 438 s := new(big.Int).Mul(privkey.D, r) 439 s.Add(s, e) 440 s.Mul(s, inv) 441 s.Mod(s, N) 442 443 if s.Cmp(halforder) == 1 { 444 s.Sub(N, s) 445 } 446 if s.Sign() == 0 { 447 return nil, errors.New("calculated S is zero") 448 } 449 return &Signature{R: r, S: s}, nil 450 } 451 452 // nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979. 453 // It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm. 454 func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int { 455 456 curve := S256() 457 q := curve.Params().N 458 x := privkey 459 alg := fastsha256.New 460 461 qlen := q.BitLen() 462 holen := alg().Size() 463 rolen := (qlen + 7) >> 3 464 bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...) 465 466 // Step B 467 v := bytes.Repeat(oneInitializer, holen) 468 469 // Step C (Go zeroes the all allocated memory) 470 k := make([]byte, holen) 471 472 // Step D 473 k = mac(alg, k, append(append(v, 0x00), bx...)) 474 475 // Step E 476 v = mac(alg, k, v) 477 478 // Step F 479 k = mac(alg, k, append(append(v, 0x01), bx...)) 480 481 // Step G 482 v = mac(alg, k, v) 483 484 // Step H 485 for { 486 // Step H1 487 var t []byte 488 489 // Step H2 490 for len(t)*8 < qlen { 491 v = mac(alg, k, v) 492 t = append(t, v...) 493 } 494 495 // Step H3 496 secret := hashToInt(t, curve) 497 if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 { 498 return secret 499 } 500 k = mac(alg, k, append(v, 0x00)) 501 v = mac(alg, k, v) 502 } 503 } 504 505 // mac returns an HMAC of the given key and message. 506 func mac(alg func() hash.Hash, k, m []byte) []byte { 507 h := hmac.New(alg, k) 508 h.Write(m) 509 return h.Sum(nil) 510 } 511 512 // https://tools.ietf.org/html/rfc6979#section-2.3.3 513 func int2octets(v *big.Int, rolen int) []byte { 514 out := v.Bytes() 515 516 // left pad with zeros if it's too short 517 if len(out) < rolen { 518 out2 := make([]byte, rolen) 519 copy(out2[rolen-len(out):], out) 520 return out2 521 } 522 523 // drop most significant bytes if it's too long 524 if len(out) > rolen { 525 out2 := make([]byte, rolen) 526 copy(out2, out[len(out)-rolen:]) 527 return out2 528 } 529 530 return out 531 } 532 533 // https://tools.ietf.org/html/rfc6979#section-2.3.4 534 func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte { 535 z1 := hashToInt(in, curve) 536 z2 := new(big.Int).Sub(z1, curve.Params().N) 537 if z2.Sign() < 0 { 538 return int2octets(z1, rolen) 539 } 540 return int2octets(z2, rolen) 541 }