github.com/Cleverse/go-ethereum@v0.0.0-20220927095127-45113064e7f2/accounts/abi/type.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"reflect"
    23  	"regexp"
    24  	"strconv"
    25  	"strings"
    26  	"unicode"
    27  	"unicode/utf8"
    28  
    29  	"github.com/ethereum/go-ethereum/common"
    30  )
    31  
    32  // Type enumerator
    33  const (
    34  	IntTy byte = iota
    35  	UintTy
    36  	BoolTy
    37  	StringTy
    38  	SliceTy
    39  	ArrayTy
    40  	TupleTy
    41  	AddressTy
    42  	FixedBytesTy
    43  	BytesTy
    44  	HashTy
    45  	FixedPointTy
    46  	FunctionTy
    47  )
    48  
    49  // Type is the reflection of the supported argument type.
    50  type Type struct {
    51  	Elem *Type
    52  	Size int
    53  	T    byte // Our own type checking
    54  
    55  	stringKind string // holds the unparsed string for deriving signatures
    56  
    57  	// Tuple relative fields
    58  	TupleRawName  string       // Raw struct name defined in source code, may be empty.
    59  	TupleElems    []*Type      // Type information of all tuple fields
    60  	TupleRawNames []string     // Raw field name of all tuple fields
    61  	TupleType     reflect.Type // Underlying struct of the tuple
    62  }
    63  
    64  var (
    65  	// typeRegex parses the abi sub types
    66  	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
    67  )
    68  
    69  // NewType creates a new reflection type of abi type given in t.
    70  func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
    71  	// check that array brackets are equal if they exist
    72  	if strings.Count(t, "[") != strings.Count(t, "]") {
    73  		return Type{}, fmt.Errorf("invalid arg type in abi")
    74  	}
    75  	typ.stringKind = t
    76  
    77  	// if there are brackets, get ready to go into slice/array mode and
    78  	// recursively create the type
    79  	if strings.Count(t, "[") != 0 {
    80  		// Note internalType can be empty here.
    81  		subInternal := internalType
    82  		if i := strings.LastIndex(internalType, "["); i != -1 {
    83  			subInternal = subInternal[:i]
    84  		}
    85  		// recursively embed the type
    86  		i := strings.LastIndex(t, "[")
    87  		embeddedType, err := NewType(t[:i], subInternal, components)
    88  		if err != nil {
    89  			return Type{}, err
    90  		}
    91  		// grab the last cell and create a type from there
    92  		sliced := t[i:]
    93  		// grab the slice size with regexp
    94  		re := regexp.MustCompile("[0-9]+")
    95  		intz := re.FindAllString(sliced, -1)
    96  
    97  		if len(intz) == 0 {
    98  			// is a slice
    99  			typ.T = SliceTy
   100  			typ.Elem = &embeddedType
   101  			typ.stringKind = embeddedType.stringKind + sliced
   102  		} else if len(intz) == 1 {
   103  			// is an array
   104  			typ.T = ArrayTy
   105  			typ.Elem = &embeddedType
   106  			typ.Size, err = strconv.Atoi(intz[0])
   107  			if err != nil {
   108  				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   109  			}
   110  			typ.stringKind = embeddedType.stringKind + sliced
   111  		} else {
   112  			return Type{}, fmt.Errorf("invalid formatting of array type")
   113  		}
   114  		return typ, err
   115  	}
   116  	// parse the type and size of the abi-type.
   117  	matches := typeRegex.FindAllStringSubmatch(t, -1)
   118  	if len(matches) == 0 {
   119  		return Type{}, fmt.Errorf("invalid type '%v'", t)
   120  	}
   121  	parsedType := matches[0]
   122  
   123  	// varSize is the size of the variable
   124  	var varSize int
   125  	if len(parsedType[3]) > 0 {
   126  		var err error
   127  		varSize, err = strconv.Atoi(parsedType[2])
   128  		if err != nil {
   129  			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   130  		}
   131  	} else {
   132  		if parsedType[0] == "uint" || parsedType[0] == "int" {
   133  			// this should fail because it means that there's something wrong with
   134  			// the abi type (the compiler should always format it to the size...always)
   135  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   136  		}
   137  	}
   138  	// varType is the parsed abi type
   139  	switch varType := parsedType[1]; varType {
   140  	case "int":
   141  		typ.Size = varSize
   142  		typ.T = IntTy
   143  	case "uint":
   144  		typ.Size = varSize
   145  		typ.T = UintTy
   146  	case "bool":
   147  		typ.T = BoolTy
   148  	case "address":
   149  		typ.Size = 20
   150  		typ.T = AddressTy
   151  	case "string":
   152  		typ.T = StringTy
   153  	case "bytes":
   154  		if varSize == 0 {
   155  			typ.T = BytesTy
   156  		} else {
   157  			typ.T = FixedBytesTy
   158  			typ.Size = varSize
   159  		}
   160  	case "tuple":
   161  		var (
   162  			fields     []reflect.StructField
   163  			elems      []*Type
   164  			names      []string
   165  			expression string // canonical parameter expression
   166  			used       = make(map[string]bool)
   167  		)
   168  		expression += "("
   169  		for idx, c := range components {
   170  			cType, err := NewType(c.Type, c.InternalType, c.Components)
   171  			if err != nil {
   172  				return Type{}, err
   173  			}
   174  			name := ToCamelCase(c.Name)
   175  			if name == "" {
   176  				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
   177  			}
   178  			fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] })
   179  			if err != nil {
   180  				return Type{}, err
   181  			}
   182  			used[fieldName] = true
   183  			if !isValidFieldName(fieldName) {
   184  				return Type{}, fmt.Errorf("field %d has invalid name", idx)
   185  			}
   186  			fields = append(fields, reflect.StructField{
   187  				Name: fieldName, // reflect.StructOf will panic for any exported field.
   188  				Type: cType.GetType(),
   189  				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
   190  			})
   191  			elems = append(elems, &cType)
   192  			names = append(names, c.Name)
   193  			expression += cType.stringKind
   194  			if idx != len(components)-1 {
   195  				expression += ","
   196  			}
   197  		}
   198  		expression += ")"
   199  
   200  		typ.TupleType = reflect.StructOf(fields)
   201  		typ.TupleElems = elems
   202  		typ.TupleRawNames = names
   203  		typ.T = TupleTy
   204  		typ.stringKind = expression
   205  
   206  		const structPrefix = "struct "
   207  		// After solidity 0.5.10, a new field of abi "internalType"
   208  		// is introduced. From that we can obtain the struct name
   209  		// user defined in the source code.
   210  		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
   211  			// Foo.Bar type definition is not allowed in golang,
   212  			// convert the format to FooBar
   213  			typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "")
   214  		}
   215  
   216  	case "function":
   217  		typ.T = FunctionTy
   218  		typ.Size = 24
   219  	default:
   220  		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   221  	}
   222  
   223  	return
   224  }
   225  
   226  // GetType returns the reflection type of the ABI type.
   227  func (t Type) GetType() reflect.Type {
   228  	switch t.T {
   229  	case IntTy:
   230  		return reflectIntType(false, t.Size)
   231  	case UintTy:
   232  		return reflectIntType(true, t.Size)
   233  	case BoolTy:
   234  		return reflect.TypeOf(false)
   235  	case StringTy:
   236  		return reflect.TypeOf("")
   237  	case SliceTy:
   238  		return reflect.SliceOf(t.Elem.GetType())
   239  	case ArrayTy:
   240  		return reflect.ArrayOf(t.Size, t.Elem.GetType())
   241  	case TupleTy:
   242  		return t.TupleType
   243  	case AddressTy:
   244  		return reflect.TypeOf(common.Address{})
   245  	case FixedBytesTy:
   246  		return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0)))
   247  	case BytesTy:
   248  		return reflect.SliceOf(reflect.TypeOf(byte(0)))
   249  	case HashTy:
   250  		// hashtype currently not used
   251  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   252  	case FixedPointTy:
   253  		// fixedpoint type currently not used
   254  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   255  	case FunctionTy:
   256  		return reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
   257  	default:
   258  		panic("Invalid type")
   259  	}
   260  }
   261  
   262  // String implements Stringer.
   263  func (t Type) String() (out string) {
   264  	return t.stringKind
   265  }
   266  
   267  func (t Type) pack(v reflect.Value) ([]byte, error) {
   268  	// dereference pointer first if it's a pointer
   269  	v = indirect(v)
   270  	if err := typeCheck(t, v); err != nil {
   271  		return nil, err
   272  	}
   273  
   274  	switch t.T {
   275  	case SliceTy, ArrayTy:
   276  		var ret []byte
   277  
   278  		if t.requiresLengthPrefix() {
   279  			// append length
   280  			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
   281  		}
   282  
   283  		// calculate offset if any
   284  		offset := 0
   285  		offsetReq := isDynamicType(*t.Elem)
   286  		if offsetReq {
   287  			offset = getTypeSize(*t.Elem) * v.Len()
   288  		}
   289  		var tail []byte
   290  		for i := 0; i < v.Len(); i++ {
   291  			val, err := t.Elem.pack(v.Index(i))
   292  			if err != nil {
   293  				return nil, err
   294  			}
   295  			if !offsetReq {
   296  				ret = append(ret, val...)
   297  				continue
   298  			}
   299  			ret = append(ret, packNum(reflect.ValueOf(offset))...)
   300  			offset += len(val)
   301  			tail = append(tail, val...)
   302  		}
   303  		return append(ret, tail...), nil
   304  	case TupleTy:
   305  		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
   306  		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
   307  		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
   308  		// type as
   309  		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
   310  		// and as
   311  		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
   312  		//     tail(X(i)) = enc(X(i))
   313  		// otherwise, i.e. if Ti is a dynamic type.
   314  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
   315  		if err != nil {
   316  			return nil, err
   317  		}
   318  		// Calculate prefix occupied size.
   319  		offset := 0
   320  		for _, elem := range t.TupleElems {
   321  			offset += getTypeSize(*elem)
   322  		}
   323  		var ret, tail []byte
   324  		for i, elem := range t.TupleElems {
   325  			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
   326  			if !field.IsValid() {
   327  				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
   328  			}
   329  			val, err := elem.pack(field)
   330  			if err != nil {
   331  				return nil, err
   332  			}
   333  			if isDynamicType(*elem) {
   334  				ret = append(ret, packNum(reflect.ValueOf(offset))...)
   335  				tail = append(tail, val...)
   336  				offset += len(val)
   337  			} else {
   338  				ret = append(ret, val...)
   339  			}
   340  		}
   341  		return append(ret, tail...), nil
   342  
   343  	default:
   344  		return packElement(t, v)
   345  	}
   346  }
   347  
   348  // requireLengthPrefix returns whether the type requires any sort of length
   349  // prefixing.
   350  func (t Type) requiresLengthPrefix() bool {
   351  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
   352  }
   353  
   354  // isDynamicType returns true if the type is dynamic.
   355  // The following types are called “dynamic”:
   356  // * bytes
   357  // * string
   358  // * T[] for any T
   359  // * T[k] for any dynamic T and any k >= 0
   360  // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
   361  func isDynamicType(t Type) bool {
   362  	if t.T == TupleTy {
   363  		for _, elem := range t.TupleElems {
   364  			if isDynamicType(*elem) {
   365  				return true
   366  			}
   367  		}
   368  		return false
   369  	}
   370  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
   371  }
   372  
   373  // getTypeSize returns the size that this type needs to occupy.
   374  // We distinguish static and dynamic types. Static types are encoded in-place
   375  // and dynamic types are encoded at a separately allocated location after the
   376  // current block.
   377  // So for a static variable, the size returned represents the size that the
   378  // variable actually occupies.
   379  // For a dynamic variable, the returned size is fixed 32 bytes, which is used
   380  // to store the location reference for actual value storage.
   381  func getTypeSize(t Type) int {
   382  	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
   383  		// Recursively calculate type size if it is a nested array
   384  		if t.Elem.T == ArrayTy || t.Elem.T == TupleTy {
   385  			return t.Size * getTypeSize(*t.Elem)
   386  		}
   387  		return t.Size * 32
   388  	} else if t.T == TupleTy && !isDynamicType(t) {
   389  		total := 0
   390  		for _, elem := range t.TupleElems {
   391  			total += getTypeSize(*elem)
   392  		}
   393  		return total
   394  	}
   395  	return 32
   396  }
   397  
   398  // isLetter reports whether a given 'rune' is classified as a Letter.
   399  // This method is copied from reflect/type.go
   400  func isLetter(ch rune) bool {
   401  	return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch)
   402  }
   403  
   404  // isValidFieldName checks if a string is a valid (struct) field name or not.
   405  //
   406  // According to the language spec, a field name should be an identifier.
   407  //
   408  // identifier = letter { letter | unicode_digit } .
   409  // letter = unicode_letter | "_" .
   410  // This method is copied from reflect/type.go
   411  func isValidFieldName(fieldName string) bool {
   412  	for i, c := range fieldName {
   413  		if i == 0 && !isLetter(c) {
   414  			return false
   415  		}
   416  
   417  		if !(isLetter(c) || unicode.IsDigit(c)) {
   418  			return false
   419  		}
   420  	}
   421  
   422  	return len(fieldName) > 0
   423  }