github.com/Cleverse/go-ethereum@v0.0.0-20220927095127-45113064e7f2/core/blockchain.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package core implements the Ethereum consensus protocol.
    18  package core
    19  
    20  import (
    21  	"errors"
    22  	"fmt"
    23  	"io"
    24  	"math"
    25  	"math/big"
    26  	"sort"
    27  	"sync"
    28  	"sync/atomic"
    29  	"time"
    30  
    31  	"github.com/ethereum/go-ethereum/common"
    32  	"github.com/ethereum/go-ethereum/common/mclock"
    33  	"github.com/ethereum/go-ethereum/common/prque"
    34  	"github.com/ethereum/go-ethereum/consensus"
    35  	"github.com/ethereum/go-ethereum/core/rawdb"
    36  	"github.com/ethereum/go-ethereum/core/state"
    37  	"github.com/ethereum/go-ethereum/core/state/snapshot"
    38  	"github.com/ethereum/go-ethereum/core/types"
    39  	"github.com/ethereum/go-ethereum/core/vm"
    40  	"github.com/ethereum/go-ethereum/ethdb"
    41  	"github.com/ethereum/go-ethereum/event"
    42  	"github.com/ethereum/go-ethereum/internal/syncx"
    43  	"github.com/ethereum/go-ethereum/log"
    44  	"github.com/ethereum/go-ethereum/metrics"
    45  	"github.com/ethereum/go-ethereum/params"
    46  	"github.com/ethereum/go-ethereum/trie"
    47  	lru "github.com/hashicorp/golang-lru"
    48  )
    49  
    50  var (
    51  	headBlockGauge          = metrics.NewRegisteredGauge("chain/head/block", nil)
    52  	headHeaderGauge         = metrics.NewRegisteredGauge("chain/head/header", nil)
    53  	headFastBlockGauge      = metrics.NewRegisteredGauge("chain/head/receipt", nil)
    54  	headFinalizedBlockGauge = metrics.NewRegisteredGauge("chain/head/finalized", nil)
    55  	headSafeBlockGauge      = metrics.NewRegisteredGauge("chain/head/safe", nil)
    56  
    57  	accountReadTimer   = metrics.NewRegisteredTimer("chain/account/reads", nil)
    58  	accountHashTimer   = metrics.NewRegisteredTimer("chain/account/hashes", nil)
    59  	accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil)
    60  	accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil)
    61  
    62  	storageReadTimer   = metrics.NewRegisteredTimer("chain/storage/reads", nil)
    63  	storageHashTimer   = metrics.NewRegisteredTimer("chain/storage/hashes", nil)
    64  	storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
    65  	storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
    66  
    67  	snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/account/reads", nil)
    68  	snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storage/reads", nil)
    69  	snapshotCommitTimer      = metrics.NewRegisteredTimer("chain/snapshot/commits", nil)
    70  
    71  	blockInsertTimer     = metrics.NewRegisteredTimer("chain/inserts", nil)
    72  	blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
    73  	blockExecutionTimer  = metrics.NewRegisteredTimer("chain/execution", nil)
    74  	blockWriteTimer      = metrics.NewRegisteredTimer("chain/write", nil)
    75  
    76  	blockReorgMeter         = metrics.NewRegisteredMeter("chain/reorg/executes", nil)
    77  	blockReorgAddMeter      = metrics.NewRegisteredMeter("chain/reorg/add", nil)
    78  	blockReorgDropMeter     = metrics.NewRegisteredMeter("chain/reorg/drop", nil)
    79  	blockReorgInvalidatedTx = metrics.NewRegisteredMeter("chain/reorg/invalidTx", nil)
    80  
    81  	blockPrefetchExecuteTimer   = metrics.NewRegisteredTimer("chain/prefetch/executes", nil)
    82  	blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil)
    83  
    84  	errInsertionInterrupted = errors.New("insertion is interrupted")
    85  	errChainStopped         = errors.New("blockchain is stopped")
    86  )
    87  
    88  const (
    89  	bodyCacheLimit      = 256
    90  	blockCacheLimit     = 256
    91  	receiptsCacheLimit  = 32
    92  	txLookupCacheLimit  = 1024
    93  	maxFutureBlocks     = 256
    94  	maxTimeFutureBlocks = 30
    95  
    96  	// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
    97  	//
    98  	// Changelog:
    99  	//
   100  	// - Version 4
   101  	//   The following incompatible database changes were added:
   102  	//   * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted
   103  	//   * the `Bloom` field of receipt is deleted
   104  	//   * the `BlockIndex` and `TxIndex` fields of txlookup are deleted
   105  	// - Version 5
   106  	//  The following incompatible database changes were added:
   107  	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt
   108  	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the
   109  	//      receipts' corresponding block
   110  	// - Version 6
   111  	//  The following incompatible database changes were added:
   112  	//    * Transaction lookup information stores the corresponding block number instead of block hash
   113  	// - Version 7
   114  	//  The following incompatible database changes were added:
   115  	//    * Use freezer as the ancient database to maintain all ancient data
   116  	// - Version 8
   117  	//  The following incompatible database changes were added:
   118  	//    * New scheme for contract code in order to separate the codes and trie nodes
   119  	BlockChainVersion uint64 = 8
   120  )
   121  
   122  // CacheConfig contains the configuration values for the trie caching/pruning
   123  // that's resident in a blockchain.
   124  type CacheConfig struct {
   125  	TrieCleanLimit      int           // Memory allowance (MB) to use for caching trie nodes in memory
   126  	TrieCleanJournal    string        // Disk journal for saving clean cache entries.
   127  	TrieCleanRejournal  time.Duration // Time interval to dump clean cache to disk periodically
   128  	TrieCleanNoPrefetch bool          // Whether to disable heuristic state prefetching for followup blocks
   129  	TrieDirtyLimit      int           // Memory limit (MB) at which to start flushing dirty trie nodes to disk
   130  	TrieDirtyDisabled   bool          // Whether to disable trie write caching and GC altogether (archive node)
   131  	TrieTimeLimit       time.Duration // Time limit after which to flush the current in-memory trie to disk
   132  	SnapshotLimit       int           // Memory allowance (MB) to use for caching snapshot entries in memory
   133  	Preimages           bool          // Whether to store preimage of trie key to the disk
   134  
   135  	// Arbitrum: configure GC window
   136  	TriesInMemory uint64        // Height difference before which a trie may not be garbage-collected
   137  	TrieRetention time.Duration // Time limit before which a trie may not be garbage-collected
   138  
   139  	SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
   140  }
   141  
   142  // defaultCacheConfig are the default caching values if none are specified by the
   143  // user (also used during testing).
   144  var defaultCacheConfig = &CacheConfig{
   145  
   146  	// Arbitrum Config Options
   147  	TriesInMemory: 128,
   148  	TrieRetention: 30 * time.Minute,
   149  
   150  	TrieCleanLimit: 256,
   151  	TrieDirtyLimit: 256,
   152  	TrieTimeLimit:  5 * time.Minute,
   153  	SnapshotLimit:  256,
   154  	SnapshotWait:   true,
   155  }
   156  
   157  // BlockChain represents the canonical chain given a database with a genesis
   158  // block. The Blockchain manages chain imports, reverts, chain reorganisations.
   159  //
   160  // Importing blocks in to the block chain happens according to the set of rules
   161  // defined by the two stage Validator. Processing of blocks is done using the
   162  // Processor which processes the included transaction. The validation of the state
   163  // is done in the second part of the Validator. Failing results in aborting of
   164  // the import.
   165  //
   166  // The BlockChain also helps in returning blocks from **any** chain included
   167  // in the database as well as blocks that represents the canonical chain. It's
   168  // important to note that GetBlock can return any block and does not need to be
   169  // included in the canonical one where as GetBlockByNumber always represents the
   170  // canonical chain.
   171  type BlockChain struct {
   172  	chainConfig *params.ChainConfig // Chain & network configuration
   173  	cacheConfig *CacheConfig        // Cache configuration for pruning
   174  
   175  	db     ethdb.Database // Low level persistent database to store final content in
   176  	snaps  *snapshot.Tree // Snapshot tree for fast trie leaf access
   177  	triegc *prque.Prque   // Priority queue mapping block numbers to tries to gc
   178  	gcproc time.Duration  // Accumulates canonical block processing for trie dumping
   179  
   180  	// txLookupLimit is the maximum number of blocks from head whose tx indices
   181  	// are reserved:
   182  	//  * 0:   means no limit and regenerate any missing indexes
   183  	//  * N:   means N block limit [HEAD-N+1, HEAD] and delete extra indexes
   184  	//  * nil: disable tx reindexer/deleter, but still index new blocks
   185  	txLookupLimit uint64
   186  
   187  	hc            *HeaderChain
   188  	rmLogsFeed    event.Feed
   189  	chainFeed     event.Feed
   190  	chainSideFeed event.Feed
   191  	chainHeadFeed event.Feed
   192  	logsFeed      event.Feed
   193  	blockProcFeed event.Feed
   194  	scope         event.SubscriptionScope
   195  	genesisBlock  *types.Block
   196  
   197  	// This mutex synchronizes chain write operations.
   198  	// Readers don't need to take it, they can just read the database.
   199  	chainmu *syncx.ClosableMutex
   200  
   201  	currentBlock          atomic.Value // Current head of the block chain
   202  	currentFastBlock      atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
   203  	currentFinalizedBlock atomic.Value // Current finalized head
   204  	currentSafeBlock      atomic.Value // Current safe head
   205  
   206  	stateCache    state.Database // State database to reuse between imports (contains state cache)
   207  	bodyCache     *lru.Cache     // Cache for the most recent block bodies
   208  	bodyRLPCache  *lru.Cache     // Cache for the most recent block bodies in RLP encoded format
   209  	receiptsCache *lru.Cache     // Cache for the most recent receipts per block
   210  	blockCache    *lru.Cache     // Cache for the most recent entire blocks
   211  	txLookupCache *lru.Cache     // Cache for the most recent transaction lookup data.
   212  	futureBlocks  *lru.Cache     // future blocks are blocks added for later processing
   213  
   214  	wg            sync.WaitGroup //
   215  	quit          chan struct{}  // shutdown signal, closed in Stop.
   216  	running       int32          // 0 if chain is running, 1 when stopped
   217  	procInterrupt int32          // interrupt signaler for block processing
   218  
   219  	engine     consensus.Engine
   220  	validator  Validator // Block and state validator interface
   221  	prefetcher Prefetcher
   222  	processor  Processor // Block transaction processor interface
   223  	forker     *ForkChoice
   224  	vmConfig   vm.Config
   225  }
   226  
   227  type trieGcEntry struct {
   228  	Root      common.Hash
   229  	Timestamp uint64
   230  }
   231  
   232  // NewBlockChain returns a fully initialised block chain using information
   233  // available in the database. It initialises the default Ethereum Validator
   234  // and Processor.
   235  func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(header *types.Header) bool, txLookupLimit *uint64) (*BlockChain, error) {
   236  	if cacheConfig == nil {
   237  		cacheConfig = defaultCacheConfig
   238  	}
   239  	bodyCache, _ := lru.New(bodyCacheLimit)
   240  	bodyRLPCache, _ := lru.New(bodyCacheLimit)
   241  	receiptsCache, _ := lru.New(receiptsCacheLimit)
   242  	blockCache, _ := lru.New(blockCacheLimit)
   243  	txLookupCache, _ := lru.New(txLookupCacheLimit)
   244  	futureBlocks, _ := lru.New(maxFutureBlocks)
   245  
   246  	bc := &BlockChain{
   247  		chainConfig: chainConfig,
   248  		cacheConfig: cacheConfig,
   249  		db:          db,
   250  		triegc:      prque.New(nil),
   251  		stateCache: state.NewDatabaseWithConfig(db, &trie.Config{
   252  			Cache:     cacheConfig.TrieCleanLimit,
   253  			Journal:   cacheConfig.TrieCleanJournal,
   254  			Preimages: cacheConfig.Preimages,
   255  		}),
   256  		quit:          make(chan struct{}),
   257  		chainmu:       syncx.NewClosableMutex(),
   258  		bodyCache:     bodyCache,
   259  		bodyRLPCache:  bodyRLPCache,
   260  		receiptsCache: receiptsCache,
   261  		blockCache:    blockCache,
   262  		txLookupCache: txLookupCache,
   263  		futureBlocks:  futureBlocks,
   264  		engine:        engine,
   265  		vmConfig:      vmConfig,
   266  	}
   267  	bc.forker = NewForkChoice(bc, shouldPreserve)
   268  	bc.validator = NewBlockValidator(chainConfig, bc, engine)
   269  	bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine)
   270  	bc.processor = NewStateProcessor(chainConfig, bc, engine)
   271  
   272  	var err error
   273  	bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.insertStopped)
   274  	if err != nil {
   275  		return nil, err
   276  	}
   277  	if chainConfig.IsArbitrum() {
   278  		bc.genesisBlock = bc.GetBlockByNumber(chainConfig.ArbitrumChainParams.GenesisBlockNum)
   279  	} else {
   280  		bc.genesisBlock = bc.GetBlockByNumber(0)
   281  	}
   282  	if bc.genesisBlock == nil {
   283  		return nil, ErrNoGenesis
   284  	}
   285  
   286  	var nilBlock *types.Block
   287  	bc.currentBlock.Store(nilBlock)
   288  	bc.currentFastBlock.Store(nilBlock)
   289  	bc.currentFinalizedBlock.Store(nilBlock)
   290  	bc.currentSafeBlock.Store(nilBlock)
   291  
   292  	// Initialize the chain with ancient data if it isn't empty.
   293  	var txIndexBlock uint64
   294  
   295  	if bc.empty() {
   296  		rawdb.InitDatabaseFromFreezer(bc.db)
   297  		// If ancient database is not empty, reconstruct all missing
   298  		// indices in the background.
   299  		frozen, _ := bc.db.Ancients()
   300  		if frozen > 0 {
   301  			txIndexBlock = frozen
   302  		}
   303  	}
   304  	if err := bc.loadLastState(); err != nil {
   305  		return nil, err
   306  	}
   307  
   308  	// Make sure the state associated with the block is available
   309  	head := bc.CurrentBlock()
   310  	if _, err := state.New(head.Root(), bc.stateCache, bc.snaps); err != nil {
   311  		// Head state is missing, before the state recovery, find out the
   312  		// disk layer point of snapshot(if it's enabled). Make sure the
   313  		// rewound point is lower than disk layer.
   314  		var diskRoot common.Hash
   315  		if bc.cacheConfig.SnapshotLimit > 0 {
   316  			diskRoot = rawdb.ReadSnapshotRoot(bc.db)
   317  		}
   318  		if diskRoot != (common.Hash{}) {
   319  			log.Warn("Head state missing, repairing", "number", head.Number(), "hash", head.Hash(), "snaproot", diskRoot)
   320  
   321  			snapDisk, err := bc.setHeadBeyondRoot(head.NumberU64(), diskRoot, true)
   322  			if err != nil {
   323  				return nil, err
   324  			}
   325  			// Chain rewound, persist old snapshot number to indicate recovery procedure
   326  			if snapDisk != 0 {
   327  				rawdb.WriteSnapshotRecoveryNumber(bc.db, snapDisk)
   328  			}
   329  		} else {
   330  			log.Warn("Head state missing, repairing", "number", head.Number(), "hash", head.Hash())
   331  			if _, err := bc.setHeadBeyondRoot(head.NumberU64(), common.Hash{}, true); err != nil {
   332  				return nil, err
   333  			}
   334  		}
   335  	}
   336  
   337  	// Ensure that a previous crash in SetHead doesn't leave extra ancients
   338  	if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 {
   339  		var (
   340  			needRewind bool
   341  			low        uint64
   342  		)
   343  		// The head full block may be rolled back to a very low height due to
   344  		// blockchain repair. If the head full block is even lower than the ancient
   345  		// chain, truncate the ancient store.
   346  		fullBlock := bc.CurrentBlock()
   347  		if fullBlock != nil && fullBlock.Hash() != bc.genesisBlock.Hash() && fullBlock.NumberU64() < frozen-1 {
   348  			needRewind = true
   349  			low = fullBlock.NumberU64()
   350  		}
   351  		// In fast sync, it may happen that ancient data has been written to the
   352  		// ancient store, but the LastFastBlock has not been updated, truncate the
   353  		// extra data here.
   354  		fastBlock := bc.CurrentFastBlock()
   355  		if fastBlock != nil && fastBlock.NumberU64() < frozen-1 {
   356  			needRewind = true
   357  			if fastBlock.NumberU64() < low || low == 0 {
   358  				low = fastBlock.NumberU64()
   359  			}
   360  		}
   361  		if needRewind {
   362  			log.Error("Truncating ancient chain", "from", bc.CurrentHeader().Number.Uint64(), "to", low)
   363  			if err := bc.SetHead(low); err != nil {
   364  				return nil, err
   365  			}
   366  		}
   367  	}
   368  	// The first thing the node will do is reconstruct the verification data for
   369  	// the head block (ethash cache or clique voting snapshot). Might as well do
   370  	// it in advance.
   371  	bc.engine.VerifyHeader(bc, bc.CurrentHeader(), true)
   372  
   373  	// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
   374  	for hash := range BadHashes {
   375  		if header := bc.GetHeaderByHash(hash); header != nil {
   376  			// get the canonical block corresponding to the offending header's number
   377  			headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64())
   378  			// make sure the headerByNumber (if present) is in our current canonical chain
   379  			if headerByNumber != nil && headerByNumber.Hash() == header.Hash() {
   380  				log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash)
   381  				if err := bc.SetHead(header.Number.Uint64() - 1); err != nil {
   382  					return nil, err
   383  				}
   384  				log.Error("Chain rewind was successful, resuming normal operation")
   385  			}
   386  		}
   387  	}
   388  
   389  	// Load any existing snapshot, regenerating it if loading failed
   390  	if bc.cacheConfig.SnapshotLimit > 0 {
   391  		// If the chain was rewound past the snapshot persistent layer (causing
   392  		// a recovery block number to be persisted to disk), check if we're still
   393  		// in recovery mode and in that case, don't invalidate the snapshot on a
   394  		// head mismatch.
   395  		var recover bool
   396  
   397  		head := bc.CurrentBlock()
   398  		if layer := rawdb.ReadSnapshotRecoveryNumber(bc.db); layer != nil && *layer > head.NumberU64() {
   399  			log.Warn("Enabling snapshot recovery", "chainhead", head.NumberU64(), "diskbase", *layer)
   400  			recover = true
   401  		}
   402  		bc.snaps, _ = snapshot.New(bc.db, bc.stateCache.TrieDB(), bc.cacheConfig.SnapshotLimit, head.Root(), !bc.cacheConfig.SnapshotWait, true, recover)
   403  	}
   404  
   405  	// Start future block processor.
   406  	bc.wg.Add(1)
   407  	go bc.updateFutureBlocks()
   408  
   409  	// Start tx indexer/unindexer.
   410  	if txLookupLimit != nil {
   411  		bc.txLookupLimit = *txLookupLimit
   412  
   413  		bc.wg.Add(1)
   414  		go bc.maintainTxIndex(txIndexBlock)
   415  	}
   416  
   417  	// If periodic cache journal is required, spin it up.
   418  	if bc.cacheConfig.TrieCleanRejournal > 0 {
   419  		if bc.cacheConfig.TrieCleanRejournal < time.Minute {
   420  			log.Warn("Sanitizing invalid trie cache journal time", "provided", bc.cacheConfig.TrieCleanRejournal, "updated", time.Minute)
   421  			bc.cacheConfig.TrieCleanRejournal = time.Minute
   422  		}
   423  		triedb := bc.stateCache.TrieDB()
   424  		bc.wg.Add(1)
   425  		go func() {
   426  			defer bc.wg.Done()
   427  			triedb.SaveCachePeriodically(bc.cacheConfig.TrieCleanJournal, bc.cacheConfig.TrieCleanRejournal, bc.quit)
   428  		}()
   429  	}
   430  	return bc, nil
   431  }
   432  
   433  // empty returns an indicator whether the blockchain is empty.
   434  // Note, it's a special case that we connect a non-empty ancient
   435  // database with an empty node, so that we can plugin the ancient
   436  // into node seamlessly.
   437  func (bc *BlockChain) empty() bool {
   438  	genesis := bc.genesisBlock.Hash()
   439  	for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} {
   440  		if hash != genesis {
   441  			return false
   442  		}
   443  	}
   444  	return true
   445  }
   446  
   447  // loadLastState loads the last known chain state from the database. This method
   448  // assumes that the chain manager mutex is held.
   449  func (bc *BlockChain) loadLastState() error {
   450  	// Restore the last known head block
   451  	head := rawdb.ReadHeadBlockHash(bc.db)
   452  	if head == (common.Hash{}) {
   453  		// Corrupt or empty database, init from scratch
   454  		log.Warn("Empty database, resetting chain")
   455  		return bc.Reset()
   456  	}
   457  	// Make sure the entire head block is available
   458  	currentBlock := bc.GetBlockByHash(head)
   459  	if currentBlock == nil {
   460  		// Corrupt or empty database, init from scratch
   461  		log.Warn("Head block missing, resetting chain", "hash", head)
   462  		return bc.Reset()
   463  	}
   464  	// Everything seems to be fine, set as the head block
   465  	bc.currentBlock.Store(currentBlock)
   466  	headBlockGauge.Update(int64(currentBlock.NumberU64()))
   467  
   468  	// Restore the last known head header
   469  	currentHeader := currentBlock.Header()
   470  	if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
   471  		if header := bc.GetHeaderByHash(head); header != nil {
   472  			currentHeader = header
   473  		}
   474  	}
   475  	bc.hc.SetCurrentHeader(currentHeader)
   476  
   477  	// Restore the last known head fast block
   478  	bc.currentFastBlock.Store(currentBlock)
   479  	headFastBlockGauge.Update(int64(currentBlock.NumberU64()))
   480  
   481  	if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
   482  		if block := bc.GetBlockByHash(head); block != nil {
   483  			bc.currentFastBlock.Store(block)
   484  			headFastBlockGauge.Update(int64(block.NumberU64()))
   485  		}
   486  	}
   487  
   488  	// Restore the last known finalized block and safe block
   489  	// Note: the safe block is not stored on disk and it is set to the last
   490  	// known finalized block on startup
   491  	if head := rawdb.ReadFinalizedBlockHash(bc.db); head != (common.Hash{}) {
   492  		if block := bc.GetBlockByHash(head); block != nil {
   493  			bc.currentFinalizedBlock.Store(block)
   494  			headFinalizedBlockGauge.Update(int64(block.NumberU64()))
   495  			bc.currentSafeBlock.Store(block)
   496  			headSafeBlockGauge.Update(int64(block.NumberU64()))
   497  		}
   498  	}
   499  	// Issue a status log for the user
   500  	currentFastBlock := bc.CurrentFastBlock()
   501  	currentFinalizedBlock := bc.CurrentFinalizedBlock()
   502  
   503  	headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64())
   504  	blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
   505  	fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
   506  
   507  	log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0)))
   508  	log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0)))
   509  	log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0)))
   510  
   511  	if currentFinalizedBlock != nil {
   512  		finalTd := bc.GetTd(currentFinalizedBlock.Hash(), currentFinalizedBlock.NumberU64())
   513  		log.Info("Loaded most recent local finalized block", "number", currentFinalizedBlock.Number(), "hash", currentFinalizedBlock.Hash(), "td", finalTd, "age", common.PrettyAge(time.Unix(int64(currentFinalizedBlock.Time()), 0)))
   514  	}
   515  	if pivot := rawdb.ReadLastPivotNumber(bc.db); pivot != nil {
   516  		log.Info("Loaded last fast-sync pivot marker", "number", *pivot)
   517  	}
   518  	return nil
   519  }
   520  
   521  // SetHead rewinds the local chain to a new head. Depending on whether the node
   522  // was fast synced or full synced and in which state, the method will try to
   523  // delete minimal data from disk whilst retaining chain consistency.
   524  func (bc *BlockChain) SetHead(head uint64) error {
   525  	_, err := bc.setHeadBeyondRoot(head, common.Hash{}, false)
   526  	return err
   527  }
   528  
   529  // SetFinalized sets the finalized block.
   530  func (bc *BlockChain) SetFinalized(block *types.Block) {
   531  	bc.currentFinalizedBlock.Store(block)
   532  	if block != nil {
   533  		rawdb.WriteFinalizedBlockHash(bc.db, block.Hash())
   534  		headFinalizedBlockGauge.Update(int64(block.NumberU64()))
   535  	} else {
   536  		rawdb.WriteFinalizedBlockHash(bc.db, common.Hash{})
   537  		headFinalizedBlockGauge.Update(0)
   538  	}
   539  }
   540  
   541  // SetSafe sets the safe block.
   542  func (bc *BlockChain) SetSafe(block *types.Block) {
   543  	bc.currentSafeBlock.Store(block)
   544  	if block != nil {
   545  		headSafeBlockGauge.Update(int64(block.NumberU64()))
   546  	} else {
   547  		headSafeBlockGauge.Update(0)
   548  	}
   549  }
   550  
   551  // setHeadBeyondRoot rewinds the local chain to a new head with the extra condition
   552  // that the rewind must pass the specified state root. This method is meant to be
   553  // used when rewinding with snapshots enabled to ensure that we go back further than
   554  // persistent disk layer. Depending on whether the node was fast synced or full, and
   555  // in which state, the method will try to delete minimal data from disk whilst
   556  // retaining chain consistency.
   557  //
   558  // The method returns the block number where the requested root cap was found.
   559  func (bc *BlockChain) setHeadBeyondRoot(head uint64, root common.Hash, repair bool) (uint64, error) {
   560  	if !bc.chainmu.TryLock() {
   561  		return 0, errChainStopped
   562  	}
   563  	defer bc.chainmu.Unlock()
   564  
   565  	// Track the block number of the requested root hash
   566  	var rootNumber uint64 // (no root == always 0)
   567  
   568  	// Retrieve the last pivot block to short circuit rollbacks beyond it and the
   569  	// current freezer limit to start nuking id underflown
   570  	pivot := rawdb.ReadLastPivotNumber(bc.db)
   571  	frozen, _ := bc.db.Ancients()
   572  
   573  	updateFn := func(db ethdb.KeyValueWriter, header *types.Header) (uint64, bool) {
   574  		// Rewind the blockchain, ensuring we don't end up with a stateless head
   575  		// block. Note, depth equality is permitted to allow using SetHead as a
   576  		// chain reparation mechanism without deleting any data!
   577  		if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() <= currentBlock.NumberU64() {
   578  			newHeadBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
   579  			if newHeadBlock == nil {
   580  				log.Error("Gap in the chain, rewinding to genesis", "number", header.Number, "hash", header.Hash())
   581  				newHeadBlock = bc.genesisBlock
   582  			} else {
   583  				// Block exists, keep rewinding until we find one with state,
   584  				// keeping rewinding until we exceed the optional threshold
   585  				// root hash
   586  				beyondRoot := (root == common.Hash{}) // Flag whether we're beyond the requested root (no root, always true)
   587  
   588  				for {
   589  					// If a root threshold was requested but not yet crossed, check
   590  					if root != (common.Hash{}) && !beyondRoot && newHeadBlock.Root() == root {
   591  						beyondRoot, rootNumber = true, newHeadBlock.NumberU64()
   592  					}
   593  					if _, err := state.New(newHeadBlock.Root(), bc.stateCache, bc.snaps); err != nil {
   594  						log.Trace("Block state missing, rewinding further", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash())
   595  						if pivot == nil || newHeadBlock.NumberU64() > *pivot {
   596  							parent := bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1)
   597  							if parent != nil {
   598  								newHeadBlock = parent
   599  								continue
   600  							}
   601  							log.Error("Missing block in the middle, aiming genesis", "number", newHeadBlock.NumberU64()-1, "hash", newHeadBlock.ParentHash())
   602  							newHeadBlock = bc.genesisBlock
   603  						} else {
   604  							log.Trace("Rewind passed pivot, aiming genesis", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "pivot", *pivot)
   605  							newHeadBlock = bc.genesisBlock
   606  						}
   607  					}
   608  					if beyondRoot || newHeadBlock.NumberU64() <= bc.genesisBlock.NumberU64() {
   609  						if newHeadBlock.NumberU64() <= bc.genesisBlock.NumberU64() {
   610  							// Recommit the genesis state into disk in case the rewinding destination
   611  							// is genesis block and the relevant state is gone. In the future this
   612  							// rewinding destination can be the earliest block stored in the chain
   613  							// if the historical chain pruning is enabled. In that case the logic
   614  							// needs to be improved here.
   615  							if !bc.HasState(bc.genesisBlock.Root()) {
   616  								if err := CommitGenesisState(bc.db, bc.genesisBlock.Hash()); err != nil {
   617  									log.Crit("Failed to commit genesis state", "err", err)
   618  								}
   619  								log.Debug("Recommitted genesis state to disk")
   620  							}
   621  							newHeadBlock = bc.genesisBlock
   622  						}
   623  						log.Debug("Rewound to block with state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash())
   624  						break
   625  					}
   626  					log.Debug("Skipping block with threshold state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "root", newHeadBlock.Root())
   627  					newHeadBlock = bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1) // Keep rewinding
   628  				}
   629  			}
   630  			rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash())
   631  
   632  			// Degrade the chain markers if they are explicitly reverted.
   633  			// In theory we should update all in-memory markers in the
   634  			// last step, however the direction of SetHead is from high
   635  			// to low, so it's safe to update in-memory markers directly.
   636  			bc.currentBlock.Store(newHeadBlock)
   637  			headBlockGauge.Update(int64(newHeadBlock.NumberU64()))
   638  		}
   639  		// Rewind the fast block in a simpleton way to the target head
   640  		if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && header.Number.Uint64() < currentFastBlock.NumberU64() {
   641  			newHeadFastBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
   642  			// If either blocks reached nil, reset to the genesis state
   643  			if newHeadFastBlock == nil {
   644  				newHeadFastBlock = bc.genesisBlock
   645  			}
   646  			rawdb.WriteHeadFastBlockHash(db, newHeadFastBlock.Hash())
   647  
   648  			// Degrade the chain markers if they are explicitly reverted.
   649  			// In theory we should update all in-memory markers in the
   650  			// last step, however the direction of SetHead is from high
   651  			// to low, so it's safe the update in-memory markers directly.
   652  			bc.currentFastBlock.Store(newHeadFastBlock)
   653  			headFastBlockGauge.Update(int64(newHeadFastBlock.NumberU64()))
   654  		}
   655  		head := bc.CurrentBlock().NumberU64()
   656  
   657  		// If setHead underflown the freezer threshold and the block processing
   658  		// intent afterwards is full block importing, delete the chain segment
   659  		// between the stateful-block and the sethead target.
   660  		var wipe bool
   661  		if head+1 < frozen {
   662  			wipe = pivot == nil || head >= *pivot
   663  		}
   664  		return head, wipe // Only force wipe if full synced
   665  	}
   666  	// Rewind the header chain, deleting all block bodies until then
   667  	delFn := func(db ethdb.KeyValueWriter, hash common.Hash, num uint64) {
   668  		// Ignore the error here since light client won't hit this path
   669  		frozen, _ := bc.db.Ancients()
   670  		if num+1 <= frozen {
   671  			// Truncate all relative data(header, total difficulty, body, receipt
   672  			// and canonical hash) from ancient store.
   673  			if err := bc.db.TruncateHead(num); err != nil {
   674  				log.Crit("Failed to truncate ancient data", "number", num, "err", err)
   675  			}
   676  			// Remove the hash <-> number mapping from the active store.
   677  			rawdb.DeleteHeaderNumber(db, hash)
   678  		} else {
   679  			// Remove relative body and receipts from the active store.
   680  			// The header, total difficulty and canonical hash will be
   681  			// removed in the hc.SetHead function.
   682  			rawdb.DeleteBody(db, hash, num)
   683  			rawdb.DeleteReceipts(db, hash, num)
   684  		}
   685  		// Todo(rjl493456442) txlookup, bloombits, etc
   686  	}
   687  	// If SetHead was only called as a chain reparation method, try to skip
   688  	// touching the header chain altogether, unless the freezer is broken
   689  	if repair {
   690  		if target, force := updateFn(bc.db, bc.CurrentBlock().Header()); force {
   691  			bc.hc.SetHead(target, updateFn, delFn)
   692  		}
   693  	} else {
   694  		// Rewind the chain to the requested head and keep going backwards until a
   695  		// block with a state is found or fast sync pivot is passed
   696  		log.Warn("Rewinding blockchain", "target", head)
   697  		bc.hc.SetHead(head, updateFn, delFn)
   698  	}
   699  	// Clear out any stale content from the caches
   700  	bc.bodyCache.Purge()
   701  	bc.bodyRLPCache.Purge()
   702  	bc.receiptsCache.Purge()
   703  	bc.blockCache.Purge()
   704  	bc.txLookupCache.Purge()
   705  	bc.futureBlocks.Purge()
   706  
   707  	// Clear safe block, finalized block if needed
   708  	if safe := bc.CurrentSafeBlock(); safe != nil && head < safe.NumberU64() {
   709  		log.Warn("SetHead invalidated safe block")
   710  		bc.SetSafe(nil)
   711  	}
   712  	if finalized := bc.CurrentFinalizedBlock(); finalized != nil && head < finalized.NumberU64() {
   713  		log.Error("SetHead invalidated finalized block")
   714  		bc.SetFinalized(nil)
   715  	}
   716  
   717  	return rootNumber, bc.loadLastState()
   718  }
   719  
   720  // SnapSyncCommitHead sets the current head block to the one defined by the hash
   721  // irrelevant what the chain contents were prior.
   722  func (bc *BlockChain) SnapSyncCommitHead(hash common.Hash) error {
   723  	// Make sure that both the block as well at its state trie exists
   724  	block := bc.GetBlockByHash(hash)
   725  	if block == nil {
   726  		return fmt.Errorf("non existent block [%x..]", hash[:4])
   727  	}
   728  	if _, err := trie.NewSecure(common.Hash{}, block.Root(), bc.stateCache.TrieDB()); err != nil {
   729  		return err
   730  	}
   731  
   732  	// If all checks out, manually set the head block.
   733  	if !bc.chainmu.TryLock() {
   734  		return errChainStopped
   735  	}
   736  	bc.currentBlock.Store(block)
   737  	headBlockGauge.Update(int64(block.NumberU64()))
   738  	bc.chainmu.Unlock()
   739  
   740  	// Destroy any existing state snapshot and regenerate it in the background,
   741  	// also resuming the normal maintenance of any previously paused snapshot.
   742  	if bc.snaps != nil {
   743  		bc.snaps.Rebuild(block.Root())
   744  	}
   745  	log.Info("Committed new head block", "number", block.Number(), "hash", hash)
   746  	return nil
   747  }
   748  
   749  // Reset purges the entire blockchain, restoring it to its genesis state.
   750  func (bc *BlockChain) Reset() error {
   751  	return bc.ResetWithGenesisBlock(bc.genesisBlock)
   752  }
   753  
   754  // ResetWithGenesisBlock purges the entire blockchain, restoring it to the
   755  // specified genesis state.
   756  func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
   757  	// Dump the entire block chain and purge the caches
   758  	if err := bc.SetHead(0); err != nil {
   759  		return err
   760  	}
   761  	if !bc.chainmu.TryLock() {
   762  		return errChainStopped
   763  	}
   764  	defer bc.chainmu.Unlock()
   765  
   766  	// Prepare the genesis block and reinitialise the chain
   767  	batch := bc.db.NewBatch()
   768  	rawdb.WriteTd(batch, genesis.Hash(), genesis.NumberU64(), genesis.Difficulty())
   769  	rawdb.WriteBlock(batch, genesis)
   770  	if err := batch.Write(); err != nil {
   771  		log.Crit("Failed to write genesis block", "err", err)
   772  	}
   773  	bc.writeHeadBlock(genesis)
   774  
   775  	// Last update all in-memory chain markers
   776  	bc.genesisBlock = genesis
   777  	bc.currentBlock.Store(bc.genesisBlock)
   778  	headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
   779  	bc.hc.SetGenesis(bc.genesisBlock.Header())
   780  	bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
   781  	bc.currentFastBlock.Store(bc.genesisBlock)
   782  	headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
   783  	return nil
   784  }
   785  
   786  // Export writes the active chain to the given writer.
   787  func (bc *BlockChain) Export(w io.Writer) error {
   788  	return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
   789  }
   790  
   791  // ExportN writes a subset of the active chain to the given writer.
   792  func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
   793  	if first > last {
   794  		return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
   795  	}
   796  	log.Info("Exporting batch of blocks", "count", last-first+1)
   797  
   798  	var (
   799  		parentHash common.Hash
   800  		start      = time.Now()
   801  		reported   = time.Now()
   802  	)
   803  	for nr := first; nr <= last; nr++ {
   804  		block := bc.GetBlockByNumber(nr)
   805  		if block == nil {
   806  			return fmt.Errorf("export failed on #%d: not found", nr)
   807  		}
   808  		if nr > first && block.ParentHash() != parentHash {
   809  			return fmt.Errorf("export failed: chain reorg during export")
   810  		}
   811  		parentHash = block.Hash()
   812  		if err := block.EncodeRLP(w); err != nil {
   813  			return err
   814  		}
   815  		if time.Since(reported) >= statsReportLimit {
   816  			log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start)))
   817  			reported = time.Now()
   818  		}
   819  	}
   820  	return nil
   821  }
   822  
   823  // writeHeadBlock injects a new head block into the current block chain. This method
   824  // assumes that the block is indeed a true head. It will also reset the head
   825  // header and the head fast sync block to this very same block if they are older
   826  // or if they are on a different side chain.
   827  //
   828  // Note, this function assumes that the `mu` mutex is held!
   829  func (bc *BlockChain) writeHeadBlock(block *types.Block) {
   830  	// Add the block to the canonical chain number scheme and mark as the head
   831  	batch := bc.db.NewBatch()
   832  	rawdb.WriteHeadHeaderHash(batch, block.Hash())
   833  	rawdb.WriteHeadFastBlockHash(batch, block.Hash())
   834  	rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64())
   835  	rawdb.WriteTxLookupEntriesByBlock(batch, block)
   836  	rawdb.WriteHeadBlockHash(batch, block.Hash())
   837  
   838  	// Flush the whole batch into the disk, exit the node if failed
   839  	if err := batch.Write(); err != nil {
   840  		log.Crit("Failed to update chain indexes and markers", "err", err)
   841  	}
   842  	// Update all in-memory chain markers in the last step
   843  	bc.hc.SetCurrentHeader(block.Header())
   844  
   845  	bc.currentFastBlock.Store(block)
   846  	headFastBlockGauge.Update(int64(block.NumberU64()))
   847  
   848  	bc.currentBlock.Store(block)
   849  	headBlockGauge.Update(int64(block.NumberU64()))
   850  }
   851  
   852  // Stop stops the blockchain service. If any imports are currently in progress
   853  // it will abort them using the procInterrupt.
   854  func (bc *BlockChain) Stop() {
   855  	if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
   856  		return
   857  	}
   858  
   859  	// Unsubscribe all subscriptions registered from blockchain.
   860  	bc.scope.Close()
   861  
   862  	// Signal shutdown to all goroutines.
   863  	close(bc.quit)
   864  	bc.StopInsert()
   865  
   866  	// Now wait for all chain modifications to end and persistent goroutines to exit.
   867  	//
   868  	// Note: Close waits for the mutex to become available, i.e. any running chain
   869  	// modification will have exited when Close returns. Since we also called StopInsert,
   870  	// the mutex should become available quickly. It cannot be taken again after Close has
   871  	// returned.
   872  	bc.chainmu.Close()
   873  	bc.wg.Wait()
   874  
   875  	// Ensure that the entirety of the state snapshot is journalled to disk.
   876  	var snapBase common.Hash
   877  	if bc.snaps != nil {
   878  		var err error
   879  		if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Root()); err != nil {
   880  			log.Error("Failed to journal state snapshot", "err", err)
   881  		}
   882  	}
   883  
   884  	// Ensure the state of a recent block is also stored to disk before exiting.
   885  	// We're writing three different states to catch different restart scenarios:
   886  	//  - HEAD:     So we don't need to reprocess any blocks in the general case
   887  	//  - HEAD-1:   So we don't do large reorgs if our HEAD becomes an uncle
   888  	//  - HEAD-127: So we have a hard limit on the number of blocks reexecuted
   889  	if !bc.cacheConfig.TrieDirtyDisabled {
   890  		triedb := bc.stateCache.TrieDB()
   891  
   892  		for _, offset := range []uint64{0, 1, bc.cacheConfig.TriesInMemory - 1, math.MaxUint64} {
   893  			if number := bc.CurrentBlock().NumberU64(); number > offset {
   894  				var recent *types.Block
   895  				if offset == math.MaxUint {
   896  					_, latest := bc.triegc.Peek()
   897  					recent = bc.GetBlockByNumber(uint64(-latest))
   898  				} else {
   899  					recent = bc.GetBlockByNumber(number - offset)
   900  				}
   901  				if recent.Root() == (common.Hash{}) {
   902  					continue
   903  				}
   904  
   905  				log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root())
   906  				if err := triedb.Commit(recent.Root(), true, nil); err != nil {
   907  					log.Error("Failed to commit recent state trie", "err", err)
   908  				}
   909  			}
   910  		}
   911  		if snapBase != (common.Hash{}) {
   912  			log.Info("Writing snapshot state to disk", "root", snapBase)
   913  			if err := triedb.Commit(snapBase, true, nil); err != nil {
   914  				log.Error("Failed to commit recent state trie", "err", err)
   915  			}
   916  		}
   917  		for !bc.triegc.Empty() {
   918  			triedb.Dereference(bc.triegc.PopItem().(trieGcEntry).Root)
   919  		}
   920  		if size, _ := triedb.Size(); size != 0 {
   921  			log.Error("Dangling trie nodes after full cleanup")
   922  		}
   923  	}
   924  	// Ensure all live cached entries be saved into disk, so that we can skip
   925  	// cache warmup when node restarts.
   926  	if bc.cacheConfig.TrieCleanJournal != "" {
   927  		triedb := bc.stateCache.TrieDB()
   928  		triedb.SaveCache(bc.cacheConfig.TrieCleanJournal)
   929  	}
   930  	log.Info("Blockchain stopped")
   931  }
   932  
   933  // StopInsert interrupts all insertion methods, causing them to return
   934  // errInsertionInterrupted as soon as possible. Insertion is permanently disabled after
   935  // calling this method.
   936  func (bc *BlockChain) StopInsert() {
   937  	atomic.StoreInt32(&bc.procInterrupt, 1)
   938  }
   939  
   940  // insertStopped returns true after StopInsert has been called.
   941  func (bc *BlockChain) insertStopped() bool {
   942  	return atomic.LoadInt32(&bc.procInterrupt) == 1
   943  }
   944  
   945  func (bc *BlockChain) procFutureBlocks() {
   946  	blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
   947  	for _, hash := range bc.futureBlocks.Keys() {
   948  		if block, exist := bc.futureBlocks.Peek(hash); exist {
   949  			blocks = append(blocks, block.(*types.Block))
   950  		}
   951  	}
   952  	if len(blocks) > 0 {
   953  		sort.Slice(blocks, func(i, j int) bool {
   954  			return blocks[i].NumberU64() < blocks[j].NumberU64()
   955  		})
   956  		// Insert one by one as chain insertion needs contiguous ancestry between blocks
   957  		for i := range blocks {
   958  			bc.InsertChain(blocks[i : i+1])
   959  		}
   960  	}
   961  }
   962  
   963  // WriteStatus status of write
   964  type WriteStatus byte
   965  
   966  const (
   967  	NonStatTy WriteStatus = iota
   968  	CanonStatTy
   969  	SideStatTy
   970  )
   971  
   972  // InsertReceiptChain attempts to complete an already existing header chain with
   973  // transaction and receipt data.
   974  func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) {
   975  	// We don't require the chainMu here since we want to maximize the
   976  	// concurrency of header insertion and receipt insertion.
   977  	bc.wg.Add(1)
   978  	defer bc.wg.Done()
   979  
   980  	var (
   981  		ancientBlocks, liveBlocks     types.Blocks
   982  		ancientReceipts, liveReceipts []types.Receipts
   983  	)
   984  	// Do a sanity check that the provided chain is actually ordered and linked
   985  	for i := 0; i < len(blockChain); i++ {
   986  		if i != 0 {
   987  			if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
   988  				log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(),
   989  					"prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash())
   990  				return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, blockChain[i-1].NumberU64(),
   991  					blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
   992  			}
   993  		}
   994  		if blockChain[i].NumberU64() <= ancientLimit {
   995  			ancientBlocks, ancientReceipts = append(ancientBlocks, blockChain[i]), append(ancientReceipts, receiptChain[i])
   996  		} else {
   997  			liveBlocks, liveReceipts = append(liveBlocks, blockChain[i]), append(liveReceipts, receiptChain[i])
   998  		}
   999  	}
  1000  
  1001  	var (
  1002  		stats = struct{ processed, ignored int32 }{}
  1003  		start = time.Now()
  1004  		size  = int64(0)
  1005  	)
  1006  
  1007  	// updateHead updates the head fast sync block if the inserted blocks are better
  1008  	// and returns an indicator whether the inserted blocks are canonical.
  1009  	updateHead := func(head *types.Block) bool {
  1010  		if !bc.chainmu.TryLock() {
  1011  			return false
  1012  		}
  1013  		defer bc.chainmu.Unlock()
  1014  
  1015  		// Rewind may have occurred, skip in that case.
  1016  		if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 {
  1017  			reorg, err := bc.forker.ReorgNeeded(bc.CurrentFastBlock().Header(), head.Header())
  1018  			if err != nil {
  1019  				log.Warn("Reorg failed", "err", err)
  1020  				return false
  1021  			} else if !reorg {
  1022  				return false
  1023  			}
  1024  			rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
  1025  			bc.currentFastBlock.Store(head)
  1026  			headFastBlockGauge.Update(int64(head.NumberU64()))
  1027  			return true
  1028  		}
  1029  		return false
  1030  	}
  1031  
  1032  	// writeAncient writes blockchain and corresponding receipt chain into ancient store.
  1033  	//
  1034  	// this function only accepts canonical chain data. All side chain will be reverted
  1035  	// eventually.
  1036  	writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
  1037  		first := blockChain[0]
  1038  		last := blockChain[len(blockChain)-1]
  1039  
  1040  		// Ensure genesis is in ancients.
  1041  		if first.NumberU64() == 1 {
  1042  			if frozen, _ := bc.db.Ancients(); frozen == 0 {
  1043  				b := bc.genesisBlock
  1044  				td := bc.genesisBlock.Difficulty()
  1045  				writeSize, err := rawdb.WriteAncientBlocks(bc.db, []*types.Block{b}, []types.Receipts{nil}, td)
  1046  				size += writeSize
  1047  				if err != nil {
  1048  					log.Error("Error writing genesis to ancients", "err", err)
  1049  					return 0, err
  1050  				}
  1051  				log.Info("Wrote genesis to ancients")
  1052  			}
  1053  		}
  1054  		// Before writing the blocks to the ancients, we need to ensure that
  1055  		// they correspond to the what the headerchain 'expects'.
  1056  		// We only check the last block/header, since it's a contiguous chain.
  1057  		if !bc.HasHeader(last.Hash(), last.NumberU64()) {
  1058  			return 0, fmt.Errorf("containing header #%d [%x..] unknown", last.Number(), last.Hash().Bytes()[:4])
  1059  		}
  1060  
  1061  		// Write all chain data to ancients.
  1062  		td := bc.GetTd(first.Hash(), first.NumberU64())
  1063  		writeSize, err := rawdb.WriteAncientBlocks(bc.db, blockChain, receiptChain, td)
  1064  		size += writeSize
  1065  		if err != nil {
  1066  			log.Error("Error importing chain data to ancients", "err", err)
  1067  			return 0, err
  1068  		}
  1069  
  1070  		// Write tx indices if any condition is satisfied:
  1071  		// * If user requires to reserve all tx indices(txlookuplimit=0)
  1072  		// * If all ancient tx indices are required to be reserved(txlookuplimit is even higher than ancientlimit)
  1073  		// * If block number is large enough to be regarded as a recent block
  1074  		// It means blocks below the ancientLimit-txlookupLimit won't be indexed.
  1075  		//
  1076  		// But if the `TxIndexTail` is not nil, e.g. Geth is initialized with
  1077  		// an external ancient database, during the setup, blockchain will start
  1078  		// a background routine to re-indexed all indices in [ancients - txlookupLimit, ancients)
  1079  		// range. In this case, all tx indices of newly imported blocks should be
  1080  		// generated.
  1081  		var batch = bc.db.NewBatch()
  1082  		for i, block := range blockChain {
  1083  			if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit || block.NumberU64() >= ancientLimit-bc.txLookupLimit {
  1084  				rawdb.WriteTxLookupEntriesByBlock(batch, block)
  1085  			} else if rawdb.ReadTxIndexTail(bc.db) != nil {
  1086  				rawdb.WriteTxLookupEntriesByBlock(batch, block)
  1087  			}
  1088  			stats.processed++
  1089  
  1090  			if batch.ValueSize() > ethdb.IdealBatchSize || i == len(blockChain)-1 {
  1091  				size += int64(batch.ValueSize())
  1092  				if err = batch.Write(); err != nil {
  1093  					fastBlock := bc.CurrentFastBlock().NumberU64()
  1094  					if err := bc.db.TruncateHead(fastBlock + 1); err != nil {
  1095  						log.Error("Can't truncate ancient store after failed insert", "err", err)
  1096  					}
  1097  					return 0, err
  1098  				}
  1099  				batch.Reset()
  1100  			}
  1101  		}
  1102  
  1103  		// Sync the ancient store explicitly to ensure all data has been flushed to disk.
  1104  		if err := bc.db.Sync(); err != nil {
  1105  			return 0, err
  1106  		}
  1107  		// Update the current fast block because all block data is now present in DB.
  1108  		previousFastBlock := bc.CurrentFastBlock().NumberU64()
  1109  		if !updateHead(blockChain[len(blockChain)-1]) {
  1110  			// We end up here if the header chain has reorg'ed, and the blocks/receipts
  1111  			// don't match the canonical chain.
  1112  			if err := bc.db.TruncateHead(previousFastBlock + 1); err != nil {
  1113  				log.Error("Can't truncate ancient store after failed insert", "err", err)
  1114  			}
  1115  			return 0, errSideChainReceipts
  1116  		}
  1117  
  1118  		// Delete block data from the main database.
  1119  		batch.Reset()
  1120  		canonHashes := make(map[common.Hash]struct{})
  1121  		for _, block := range blockChain {
  1122  			canonHashes[block.Hash()] = struct{}{}
  1123  			if block.NumberU64() == 0 {
  1124  				continue
  1125  			}
  1126  			rawdb.DeleteCanonicalHash(batch, block.NumberU64())
  1127  			rawdb.DeleteBlockWithoutNumber(batch, block.Hash(), block.NumberU64())
  1128  		}
  1129  		// Delete side chain hash-to-number mappings.
  1130  		for _, nh := range rawdb.ReadAllHashesInRange(bc.db, first.NumberU64(), last.NumberU64()) {
  1131  			if _, canon := canonHashes[nh.Hash]; !canon {
  1132  				rawdb.DeleteHeader(batch, nh.Hash, nh.Number)
  1133  			}
  1134  		}
  1135  		if err := batch.Write(); err != nil {
  1136  			return 0, err
  1137  		}
  1138  		return 0, nil
  1139  	}
  1140  
  1141  	// writeLive writes blockchain and corresponding receipt chain into active store.
  1142  	writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
  1143  		skipPresenceCheck := false
  1144  		batch := bc.db.NewBatch()
  1145  		for i, block := range blockChain {
  1146  			// Short circuit insertion if shutting down or processing failed
  1147  			if bc.insertStopped() {
  1148  				return 0, errInsertionInterrupted
  1149  			}
  1150  			// Short circuit if the owner header is unknown
  1151  			if !bc.HasHeader(block.Hash(), block.NumberU64()) {
  1152  				return i, fmt.Errorf("containing header #%d [%x..] unknown", block.Number(), block.Hash().Bytes()[:4])
  1153  			}
  1154  			if !skipPresenceCheck {
  1155  				// Ignore if the entire data is already known
  1156  				if bc.HasBlock(block.Hash(), block.NumberU64()) {
  1157  					stats.ignored++
  1158  					continue
  1159  				} else {
  1160  					// If block N is not present, neither are the later blocks.
  1161  					// This should be true, but if we are mistaken, the shortcut
  1162  					// here will only cause overwriting of some existing data
  1163  					skipPresenceCheck = true
  1164  				}
  1165  			}
  1166  			// Write all the data out into the database
  1167  			rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
  1168  			rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i])
  1169  			rawdb.WriteTxLookupEntriesByBlock(batch, block) // Always write tx indices for live blocks, we assume they are needed
  1170  
  1171  			// Write everything belongs to the blocks into the database. So that
  1172  			// we can ensure all components of body is completed(body, receipts,
  1173  			// tx indexes)
  1174  			if batch.ValueSize() >= ethdb.IdealBatchSize {
  1175  				if err := batch.Write(); err != nil {
  1176  					return 0, err
  1177  				}
  1178  				size += int64(batch.ValueSize())
  1179  				batch.Reset()
  1180  			}
  1181  			stats.processed++
  1182  		}
  1183  		// Write everything belongs to the blocks into the database. So that
  1184  		// we can ensure all components of body is completed(body, receipts,
  1185  		// tx indexes)
  1186  		if batch.ValueSize() > 0 {
  1187  			size += int64(batch.ValueSize())
  1188  			if err := batch.Write(); err != nil {
  1189  				return 0, err
  1190  			}
  1191  		}
  1192  		updateHead(blockChain[len(blockChain)-1])
  1193  		return 0, nil
  1194  	}
  1195  
  1196  	// Write downloaded chain data and corresponding receipt chain data
  1197  	if len(ancientBlocks) > 0 {
  1198  		if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil {
  1199  			if err == errInsertionInterrupted {
  1200  				return 0, nil
  1201  			}
  1202  			return n, err
  1203  		}
  1204  	}
  1205  	// Write the tx index tail (block number from where we index) before write any live blocks
  1206  	if len(liveBlocks) > 0 && liveBlocks[0].NumberU64() == ancientLimit+1 {
  1207  		// The tx index tail can only be one of the following two options:
  1208  		// * 0: all ancient blocks have been indexed
  1209  		// * ancient-limit: the indices of blocks before ancient-limit are ignored
  1210  		if tail := rawdb.ReadTxIndexTail(bc.db); tail == nil {
  1211  			if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit {
  1212  				rawdb.WriteTxIndexTail(bc.db, 0)
  1213  			} else {
  1214  				rawdb.WriteTxIndexTail(bc.db, ancientLimit-bc.txLookupLimit)
  1215  			}
  1216  		}
  1217  	}
  1218  	if len(liveBlocks) > 0 {
  1219  		if n, err := writeLive(liveBlocks, liveReceipts); err != nil {
  1220  			if err == errInsertionInterrupted {
  1221  				return 0, nil
  1222  			}
  1223  			return n, err
  1224  		}
  1225  	}
  1226  
  1227  	head := blockChain[len(blockChain)-1]
  1228  	context := []interface{}{
  1229  		"count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)),
  1230  		"number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)),
  1231  		"size", common.StorageSize(size),
  1232  	}
  1233  	if stats.ignored > 0 {
  1234  		context = append(context, []interface{}{"ignored", stats.ignored}...)
  1235  	}
  1236  	log.Info("Imported new block receipts", context...)
  1237  
  1238  	return 0, nil
  1239  }
  1240  
  1241  // writeBlockWithoutState writes only the block and its metadata to the database,
  1242  // but does not write any state. This is used to construct competing side forks
  1243  // up to the point where they exceed the canonical total difficulty.
  1244  func (bc *BlockChain) writeBlockWithoutState(block *types.Block, td *big.Int) (err error) {
  1245  	if bc.insertStopped() {
  1246  		return errInsertionInterrupted
  1247  	}
  1248  
  1249  	batch := bc.db.NewBatch()
  1250  	rawdb.WriteTd(batch, block.Hash(), block.NumberU64(), td)
  1251  	rawdb.WriteBlock(batch, block)
  1252  	if err := batch.Write(); err != nil {
  1253  		log.Crit("Failed to write block into disk", "err", err)
  1254  	}
  1255  	return nil
  1256  }
  1257  
  1258  // writeKnownBlock updates the head block flag with a known block
  1259  // and introduces chain reorg if necessary.
  1260  func (bc *BlockChain) writeKnownBlock(block *types.Block) error {
  1261  	current := bc.CurrentBlock()
  1262  	if block.ParentHash() != current.Hash() {
  1263  		if err := bc.reorg(current, block); err != nil {
  1264  			return err
  1265  		}
  1266  	}
  1267  	bc.writeHeadBlock(block)
  1268  	return nil
  1269  }
  1270  
  1271  // writeBlockWithState writes block, metadata and corresponding state data to the
  1272  // database.
  1273  func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB) error {
  1274  	// Calculate the total difficulty of the block
  1275  	ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
  1276  	if ptd == nil {
  1277  		return consensus.ErrUnknownAncestor
  1278  	}
  1279  	// Make sure no inconsistent state is leaked during insertion
  1280  	externTd := new(big.Int).Add(block.Difficulty(), ptd)
  1281  
  1282  	// Irrelevant of the canonical status, write the block itself to the database.
  1283  	//
  1284  	// Note all the components of block(td, hash->number map, header, body, receipts)
  1285  	// should be written atomically. BlockBatch is used for containing all components.
  1286  	blockBatch := bc.db.NewBatch()
  1287  	rawdb.WriteTd(blockBatch, block.Hash(), block.NumberU64(), externTd)
  1288  	rawdb.WriteBlock(blockBatch, block)
  1289  	rawdb.WriteReceipts(blockBatch, block.Hash(), block.NumberU64(), receipts)
  1290  	rawdb.WritePreimages(blockBatch, state.Preimages())
  1291  	if err := blockBatch.Write(); err != nil {
  1292  		log.Crit("Failed to write block into disk", "err", err)
  1293  	}
  1294  	// Commit all cached state changes into underlying memory database.
  1295  	root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number()))
  1296  	if err != nil {
  1297  		return err
  1298  	}
  1299  	triedb := bc.stateCache.TrieDB()
  1300  
  1301  	// If we're running an archive node, always flush
  1302  	if bc.cacheConfig.TrieDirtyDisabled {
  1303  		return triedb.Commit(root, false, nil)
  1304  	} else {
  1305  		// Full but not archive node, do proper garbage collection
  1306  		triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
  1307  		bc.triegc.Push(trieGcEntry{root, block.Header().Time}, -int64(block.NumberU64()))
  1308  
  1309  		blockLimit := int64(block.NumberU64()) - int64(bc.cacheConfig.TriesInMemory)   // only cleared if below that
  1310  		timeLimit := time.Now().Unix() - int64(bc.cacheConfig.TrieRetention.Seconds()) // only cleared if less than that
  1311  
  1312  		if blockLimit > 0 && timeLimit > 0 {
  1313  			// If we exceeded our memory allowance, flush matured singleton nodes to disk
  1314  			var (
  1315  				nodes, imgs = triedb.Size()
  1316  				limit       = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
  1317  			)
  1318  			if nodes > limit || imgs > 4*1024*1024 {
  1319  				triedb.Cap(limit - ethdb.IdealBatchSize)
  1320  			}
  1321  			var prevEntry *trieGcEntry
  1322  			var prevNum uint64
  1323  			// Garbage collect anything below our required write retention
  1324  			for !bc.triegc.Empty() {
  1325  				tmp, number := bc.triegc.Pop()
  1326  				triegcEntry := tmp.(trieGcEntry)
  1327  				if uint64(-number) > uint64(blockLimit) || triegcEntry.Timestamp > uint64(timeLimit) {
  1328  					bc.triegc.Push(triegcEntry, number)
  1329  					break
  1330  				}
  1331  				if prevEntry != nil {
  1332  					triedb.Dereference(prevEntry.Root)
  1333  				}
  1334  				prevEntry = &triegcEntry
  1335  				prevNum = uint64(-number)
  1336  			}
  1337  			// If we exceeded out time allowance, flush an entire trie to disk
  1338  			if bc.gcproc > bc.cacheConfig.TrieTimeLimit && prevEntry != nil {
  1339  				// If the header is missing (canonical chain behind), we're reorging a low
  1340  				// diff sidechain. Suspend committing until this operation is completed.
  1341  				header := bc.GetHeaderByNumber(prevNum)
  1342  				if header == nil {
  1343  					log.Warn("Reorg in progress, trie commit postponed")
  1344  				} else {
  1345  					// If we're exceeding limits but haven't reached a large enough memory gap,
  1346  					// warn the user that the system is becoming unstable.
  1347  					// Flush an entire trie and restart the counters
  1348  					triedb.Commit(header.Root, true, nil)
  1349  					bc.gcproc = 0
  1350  				}
  1351  			}
  1352  			if prevEntry != nil {
  1353  				triedb.Dereference(prevEntry.Root)
  1354  			}
  1355  		}
  1356  	}
  1357  	return nil
  1358  }
  1359  
  1360  // WriteBlockAndSetHead writes the given block and all associated state to the database,
  1361  // and applies the block as the new chain head.
  1362  func (bc *BlockChain) WriteBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) {
  1363  	if !bc.chainmu.TryLock() {
  1364  		return NonStatTy, errChainStopped
  1365  	}
  1366  	defer bc.chainmu.Unlock()
  1367  
  1368  	return bc.writeBlockAndSetHead(block, receipts, logs, state, emitHeadEvent)
  1369  }
  1370  
  1371  // writeBlockAndSetHead is the internal implementation of WriteBlockAndSetHead.
  1372  // This function expects the chain mutex to be held.
  1373  func (bc *BlockChain) writeBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) {
  1374  	if err := bc.writeBlockWithState(block, receipts, logs, state); err != nil {
  1375  		return NonStatTy, err
  1376  	}
  1377  	currentBlock := bc.CurrentBlock()
  1378  	reorg, err := bc.forker.ReorgNeeded(currentBlock.Header(), block.Header())
  1379  	if err != nil {
  1380  		return NonStatTy, err
  1381  	}
  1382  	if reorg {
  1383  		// Reorganise the chain if the parent is not the head block
  1384  		if block.ParentHash() != currentBlock.Hash() {
  1385  			if err := bc.reorg(currentBlock, block); err != nil {
  1386  				return NonStatTy, err
  1387  			}
  1388  		}
  1389  		status = CanonStatTy
  1390  	} else {
  1391  		status = SideStatTy
  1392  	}
  1393  	// Set new head.
  1394  	if status == CanonStatTy {
  1395  		bc.writeHeadBlock(block)
  1396  	}
  1397  	bc.futureBlocks.Remove(block.Hash())
  1398  
  1399  	if status == CanonStatTy {
  1400  		bc.chainFeed.Send(ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
  1401  		if len(logs) > 0 {
  1402  			bc.logsFeed.Send(logs)
  1403  		}
  1404  		// In theory we should fire a ChainHeadEvent when we inject
  1405  		// a canonical block, but sometimes we can insert a batch of
  1406  		// canonicial blocks. Avoid firing too many ChainHeadEvents,
  1407  		// we will fire an accumulated ChainHeadEvent and disable fire
  1408  		// event here.
  1409  		if emitHeadEvent {
  1410  			bc.chainHeadFeed.Send(ChainHeadEvent{Block: block})
  1411  		}
  1412  	} else {
  1413  		bc.chainSideFeed.Send(ChainSideEvent{Block: block})
  1414  	}
  1415  	return status, nil
  1416  }
  1417  
  1418  // addFutureBlock checks if the block is within the max allowed window to get
  1419  // accepted for future processing, and returns an error if the block is too far
  1420  // ahead and was not added.
  1421  //
  1422  // TODO after the transition, the future block shouldn't be kept. Because
  1423  // it's not checked in the Geth side anymore.
  1424  func (bc *BlockChain) addFutureBlock(block *types.Block) error {
  1425  	max := uint64(time.Now().Unix() + maxTimeFutureBlocks)
  1426  	if block.Time() > max {
  1427  		return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max)
  1428  	}
  1429  	if block.Difficulty().Cmp(common.Big0) == 0 {
  1430  		// Never add PoS blocks into the future queue
  1431  		return nil
  1432  	}
  1433  	bc.futureBlocks.Add(block.Hash(), block)
  1434  	return nil
  1435  }
  1436  
  1437  // InsertChain attempts to insert the given batch of blocks in to the canonical
  1438  // chain or, otherwise, create a fork. If an error is returned it will return
  1439  // the index number of the failing block as well an error describing what went
  1440  // wrong. After insertion is done, all accumulated events will be fired.
  1441  func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) {
  1442  	// Sanity check that we have something meaningful to import
  1443  	if len(chain) == 0 {
  1444  		return 0, nil
  1445  	}
  1446  	bc.blockProcFeed.Send(true)
  1447  	defer bc.blockProcFeed.Send(false)
  1448  
  1449  	// Do a sanity check that the provided chain is actually ordered and linked.
  1450  	for i := 1; i < len(chain); i++ {
  1451  		block, prev := chain[i], chain[i-1]
  1452  		if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() {
  1453  			log.Error("Non contiguous block insert",
  1454  				"number", block.Number(),
  1455  				"hash", block.Hash(),
  1456  				"parent", block.ParentHash(),
  1457  				"prevnumber", prev.Number(),
  1458  				"prevhash", prev.Hash(),
  1459  			)
  1460  			return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, prev.NumberU64(),
  1461  				prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4])
  1462  		}
  1463  	}
  1464  	// Pre-checks passed, start the full block imports
  1465  	if !bc.chainmu.TryLock() {
  1466  		return 0, errChainStopped
  1467  	}
  1468  	defer bc.chainmu.Unlock()
  1469  	return bc.insertChain(chain, true, true)
  1470  }
  1471  
  1472  // insertChain is the internal implementation of InsertChain, which assumes that
  1473  // 1) chains are contiguous, and 2) The chain mutex is held.
  1474  //
  1475  // This method is split out so that import batches that require re-injecting
  1476  // historical blocks can do so without releasing the lock, which could lead to
  1477  // racey behaviour. If a sidechain import is in progress, and the historic state
  1478  // is imported, but then new canon-head is added before the actual sidechain
  1479  // completes, then the historic state could be pruned again
  1480  func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals, setHead bool) (int, error) {
  1481  	// If the chain is terminating, don't even bother starting up.
  1482  	if bc.insertStopped() {
  1483  		return 0, nil
  1484  	}
  1485  
  1486  	// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
  1487  	senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
  1488  
  1489  	var (
  1490  		stats     = insertStats{startTime: mclock.Now()}
  1491  		lastCanon *types.Block
  1492  	)
  1493  	// Fire a single chain head event if we've progressed the chain
  1494  	defer func() {
  1495  		if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
  1496  			bc.chainHeadFeed.Send(ChainHeadEvent{lastCanon})
  1497  		}
  1498  	}()
  1499  	// Start the parallel header verifier
  1500  	headers := make([]*types.Header, len(chain))
  1501  	seals := make([]bool, len(chain))
  1502  
  1503  	for i, block := range chain {
  1504  		headers[i] = block.Header()
  1505  		seals[i] = verifySeals
  1506  	}
  1507  	abort, results := bc.engine.VerifyHeaders(bc, headers, seals)
  1508  	defer close(abort)
  1509  
  1510  	// Peek the error for the first block to decide the directing import logic
  1511  	it := newInsertIterator(chain, results, bc.validator)
  1512  	block, err := it.next()
  1513  
  1514  	// Left-trim all the known blocks that don't need to build snapshot
  1515  	if bc.skipBlock(err, it) {
  1516  		// First block (and state) is known
  1517  		//   1. We did a roll-back, and should now do a re-import
  1518  		//   2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot
  1519  		//      from the canonical chain, which has not been verified.
  1520  		// Skip all known blocks that are behind us.
  1521  		var (
  1522  			reorg   bool
  1523  			current = bc.CurrentBlock()
  1524  		)
  1525  		for block != nil && bc.skipBlock(err, it) {
  1526  			reorg, err = bc.forker.ReorgNeeded(current.Header(), block.Header())
  1527  			if err != nil {
  1528  				return it.index, err
  1529  			}
  1530  			if reorg {
  1531  				// Switch to import mode if the forker says the reorg is necessary
  1532  				// and also the block is not on the canonical chain.
  1533  				// In eth2 the forker always returns true for reorg decision (blindly trusting
  1534  				// the external consensus engine), but in order to prevent the unnecessary
  1535  				// reorgs when importing known blocks, the special case is handled here.
  1536  				if block.NumberU64() > current.NumberU64() || bc.GetCanonicalHash(block.NumberU64()) != block.Hash() {
  1537  					break
  1538  				}
  1539  			}
  1540  			log.Debug("Ignoring already known block", "number", block.Number(), "hash", block.Hash())
  1541  			stats.ignored++
  1542  
  1543  			block, err = it.next()
  1544  		}
  1545  		// The remaining blocks are still known blocks, the only scenario here is:
  1546  		// During the fast sync, the pivot point is already submitted but rollback
  1547  		// happens. Then node resets the head full block to a lower height via `rollback`
  1548  		// and leaves a few known blocks in the database.
  1549  		//
  1550  		// When node runs a fast sync again, it can re-import a batch of known blocks via
  1551  		// `insertChain` while a part of them have higher total difficulty than current
  1552  		// head full block(new pivot point).
  1553  		for block != nil && bc.skipBlock(err, it) {
  1554  			log.Debug("Writing previously known block", "number", block.Number(), "hash", block.Hash())
  1555  			if err := bc.writeKnownBlock(block); err != nil {
  1556  				return it.index, err
  1557  			}
  1558  			lastCanon = block
  1559  
  1560  			block, err = it.next()
  1561  		}
  1562  		// Falls through to the block import
  1563  	}
  1564  	switch {
  1565  	// First block is pruned
  1566  	case errors.Is(err, consensus.ErrPrunedAncestor):
  1567  		if setHead {
  1568  			// First block is pruned, insert as sidechain and reorg only if TD grows enough
  1569  			log.Debug("Pruned ancestor, inserting as sidechain", "number", block.Number(), "hash", block.Hash())
  1570  			return bc.insertSideChain(block, it)
  1571  		} else {
  1572  			// We're post-merge and the parent is pruned, try to recover the parent state
  1573  			log.Debug("Pruned ancestor", "number", block.Number(), "hash", block.Hash())
  1574  			_, err := bc.recoverAncestors(block)
  1575  			return it.index, err
  1576  		}
  1577  	// First block is future, shove it (and all children) to the future queue (unknown ancestor)
  1578  	case errors.Is(err, consensus.ErrFutureBlock) || (errors.Is(err, consensus.ErrUnknownAncestor) && bc.futureBlocks.Contains(it.first().ParentHash())):
  1579  		for block != nil && (it.index == 0 || errors.Is(err, consensus.ErrUnknownAncestor)) {
  1580  			log.Debug("Future block, postponing import", "number", block.Number(), "hash", block.Hash())
  1581  			if err := bc.addFutureBlock(block); err != nil {
  1582  				return it.index, err
  1583  			}
  1584  			block, err = it.next()
  1585  		}
  1586  		stats.queued += it.processed()
  1587  		stats.ignored += it.remaining()
  1588  
  1589  		// If there are any still remaining, mark as ignored
  1590  		return it.index, err
  1591  
  1592  	// Some other error(except ErrKnownBlock) occurred, abort.
  1593  	// ErrKnownBlock is allowed here since some known blocks
  1594  	// still need re-execution to generate snapshots that are missing
  1595  	case err != nil && !errors.Is(err, ErrKnownBlock):
  1596  		bc.futureBlocks.Remove(block.Hash())
  1597  		stats.ignored += len(it.chain)
  1598  		bc.reportBlock(block, nil, err)
  1599  		return it.index, err
  1600  	}
  1601  	// No validation errors for the first block (or chain prefix skipped)
  1602  	var activeState *state.StateDB
  1603  	defer func() {
  1604  		// The chain importer is starting and stopping trie prefetchers. If a bad
  1605  		// block or other error is hit however, an early return may not properly
  1606  		// terminate the background threads. This defer ensures that we clean up
  1607  		// and dangling prefetcher, without defering each and holding on live refs.
  1608  		if activeState != nil {
  1609  			activeState.StopPrefetcher()
  1610  		}
  1611  	}()
  1612  
  1613  	for ; block != nil && err == nil || errors.Is(err, ErrKnownBlock); block, err = it.next() {
  1614  		// If the chain is terminating, stop processing blocks
  1615  		if bc.insertStopped() {
  1616  			log.Debug("Abort during block processing")
  1617  			break
  1618  		}
  1619  		// If the header is a banned one, straight out abort
  1620  		if BadHashes[block.Hash()] {
  1621  			bc.reportBlock(block, nil, ErrBannedHash)
  1622  			return it.index, ErrBannedHash
  1623  		}
  1624  		// If the block is known (in the middle of the chain), it's a special case for
  1625  		// Clique blocks where they can share state among each other, so importing an
  1626  		// older block might complete the state of the subsequent one. In this case,
  1627  		// just skip the block (we already validated it once fully (and crashed), since
  1628  		// its header and body was already in the database). But if the corresponding
  1629  		// snapshot layer is missing, forcibly rerun the execution to build it.
  1630  		if bc.skipBlock(err, it) {
  1631  			logger := log.Debug
  1632  			if bc.chainConfig.Clique == nil {
  1633  				logger = log.Warn
  1634  			}
  1635  			logger("Inserted known block", "number", block.Number(), "hash", block.Hash(),
  1636  				"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
  1637  				"root", block.Root())
  1638  
  1639  			// Special case. Commit the empty receipt slice if we meet the known
  1640  			// block in the middle. It can only happen in the clique chain. Whenever
  1641  			// we insert blocks via `insertSideChain`, we only commit `td`, `header`
  1642  			// and `body` if it's non-existent. Since we don't have receipts without
  1643  			// reexecution, so nothing to commit. But if the sidechain will be adpoted
  1644  			// as the canonical chain eventually, it needs to be reexecuted for missing
  1645  			// state, but if it's this special case here(skip reexecution) we will lose
  1646  			// the empty receipt entry.
  1647  			if len(block.Transactions()) == 0 {
  1648  				rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), nil)
  1649  			} else {
  1650  				log.Error("Please file an issue, skip known block execution without receipt",
  1651  					"hash", block.Hash(), "number", block.NumberU64())
  1652  			}
  1653  			if err := bc.writeKnownBlock(block); err != nil {
  1654  				return it.index, err
  1655  			}
  1656  			stats.processed++
  1657  
  1658  			// We can assume that logs are empty here, since the only way for consecutive
  1659  			// Clique blocks to have the same state is if there are no transactions.
  1660  			lastCanon = block
  1661  			continue
  1662  		}
  1663  
  1664  		// Retrieve the parent block and it's state to execute on top
  1665  		start := time.Now()
  1666  		parent := it.previous()
  1667  		if parent == nil {
  1668  			parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1)
  1669  		}
  1670  		statedb, err := state.New(parent.Root, bc.stateCache, bc.snaps)
  1671  		if err != nil {
  1672  			return it.index, err
  1673  		}
  1674  
  1675  		// Enable prefetching to pull in trie node paths while processing transactions
  1676  		statedb.StartPrefetcher("chain")
  1677  		activeState = statedb
  1678  
  1679  		// If we have a followup block, run that against the current state to pre-cache
  1680  		// transactions and probabilistically some of the account/storage trie nodes.
  1681  		var followupInterrupt uint32
  1682  		if !bc.cacheConfig.TrieCleanNoPrefetch {
  1683  			if followup, err := it.peek(); followup != nil && err == nil {
  1684  				throwaway, _ := state.New(parent.Root, bc.stateCache, bc.snaps)
  1685  
  1686  				go func(start time.Time, followup *types.Block, throwaway *state.StateDB, interrupt *uint32) {
  1687  					bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt)
  1688  
  1689  					blockPrefetchExecuteTimer.Update(time.Since(start))
  1690  					if atomic.LoadUint32(interrupt) == 1 {
  1691  						blockPrefetchInterruptMeter.Mark(1)
  1692  					}
  1693  				}(time.Now(), followup, throwaway, &followupInterrupt)
  1694  			}
  1695  		}
  1696  
  1697  		// Process block using the parent state as reference point
  1698  		substart := time.Now()
  1699  		receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig)
  1700  		if err != nil {
  1701  			bc.reportBlock(block, receipts, err)
  1702  			atomic.StoreUint32(&followupInterrupt, 1)
  1703  			return it.index, err
  1704  		}
  1705  
  1706  		// Update the metrics touched during block processing
  1707  		accountReadTimer.Update(statedb.AccountReads)                 // Account reads are complete, we can mark them
  1708  		storageReadTimer.Update(statedb.StorageReads)                 // Storage reads are complete, we can mark them
  1709  		accountUpdateTimer.Update(statedb.AccountUpdates)             // Account updates are complete, we can mark them
  1710  		storageUpdateTimer.Update(statedb.StorageUpdates)             // Storage updates are complete, we can mark them
  1711  		snapshotAccountReadTimer.Update(statedb.SnapshotAccountReads) // Account reads are complete, we can mark them
  1712  		snapshotStorageReadTimer.Update(statedb.SnapshotStorageReads) // Storage reads are complete, we can mark them
  1713  		triehash := statedb.AccountHashes + statedb.StorageHashes     // Save to not double count in validation
  1714  		trieproc := statedb.SnapshotAccountReads + statedb.AccountReads + statedb.AccountUpdates
  1715  		trieproc += statedb.SnapshotStorageReads + statedb.StorageReads + statedb.StorageUpdates
  1716  
  1717  		blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash)
  1718  
  1719  		// Validate the state using the default validator
  1720  		substart = time.Now()
  1721  		if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil {
  1722  			bc.reportBlock(block, receipts, err)
  1723  			atomic.StoreUint32(&followupInterrupt, 1)
  1724  			return it.index, err
  1725  		}
  1726  		proctime := time.Since(start)
  1727  
  1728  		// Update the metrics touched during block validation
  1729  		accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete, we can mark them
  1730  		storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete, we can mark them
  1731  		blockValidationTimer.Update(time.Since(substart) - (statedb.AccountHashes + statedb.StorageHashes - triehash))
  1732  
  1733  		// Write the block to the chain and get the status.
  1734  		substart = time.Now()
  1735  		var status WriteStatus
  1736  		if !setHead {
  1737  			// Don't set the head, only insert the block
  1738  			err = bc.writeBlockWithState(block, receipts, logs, statedb)
  1739  		} else {
  1740  			status, err = bc.writeBlockAndSetHead(block, receipts, logs, statedb, false)
  1741  		}
  1742  		atomic.StoreUint32(&followupInterrupt, 1)
  1743  		if err != nil {
  1744  			return it.index, err
  1745  		}
  1746  		// Update the metrics touched during block commit
  1747  		accountCommitTimer.Update(statedb.AccountCommits)   // Account commits are complete, we can mark them
  1748  		storageCommitTimer.Update(statedb.StorageCommits)   // Storage commits are complete, we can mark them
  1749  		snapshotCommitTimer.Update(statedb.SnapshotCommits) // Snapshot commits are complete, we can mark them
  1750  
  1751  		blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits - statedb.SnapshotCommits)
  1752  		blockInsertTimer.UpdateSince(start)
  1753  
  1754  		// Report the import stats before returning the various results
  1755  		stats.processed++
  1756  		stats.usedGas += usedGas
  1757  
  1758  		dirty, _ := bc.stateCache.TrieDB().Size()
  1759  		stats.report(chain, it.index, dirty, setHead)
  1760  
  1761  		if !setHead {
  1762  			return it.index, nil // Direct block insertion of a single block
  1763  		}
  1764  		switch status {
  1765  		case CanonStatTy:
  1766  			log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(),
  1767  				"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
  1768  				"elapsed", common.PrettyDuration(time.Since(start)),
  1769  				"root", block.Root())
  1770  
  1771  			lastCanon = block
  1772  
  1773  			// Only count canonical blocks for GC processing time
  1774  			bc.gcproc += proctime
  1775  
  1776  		case SideStatTy:
  1777  			log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(),
  1778  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1779  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1780  				"root", block.Root())
  1781  
  1782  		default:
  1783  			// This in theory is impossible, but lets be nice to our future selves and leave
  1784  			// a log, instead of trying to track down blocks imports that don't emit logs.
  1785  			log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(),
  1786  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1787  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1788  				"root", block.Root())
  1789  		}
  1790  	}
  1791  
  1792  	// Any blocks remaining here? The only ones we care about are the future ones
  1793  	if block != nil && errors.Is(err, consensus.ErrFutureBlock) {
  1794  		if err := bc.addFutureBlock(block); err != nil {
  1795  			return it.index, err
  1796  		}
  1797  		block, err = it.next()
  1798  
  1799  		for ; block != nil && errors.Is(err, consensus.ErrUnknownAncestor); block, err = it.next() {
  1800  			if err := bc.addFutureBlock(block); err != nil {
  1801  				return it.index, err
  1802  			}
  1803  			stats.queued++
  1804  		}
  1805  	}
  1806  	stats.ignored += it.remaining()
  1807  
  1808  	return it.index, err
  1809  }
  1810  
  1811  // insertSideChain is called when an import batch hits upon a pruned ancestor
  1812  // error, which happens when a sidechain with a sufficiently old fork-block is
  1813  // found.
  1814  //
  1815  // The method writes all (header-and-body-valid) blocks to disk, then tries to
  1816  // switch over to the new chain if the TD exceeded the current chain.
  1817  // insertSideChain is only used pre-merge.
  1818  func (bc *BlockChain) insertSideChain(block *types.Block, it *insertIterator) (int, error) {
  1819  	var (
  1820  		externTd  *big.Int
  1821  		lastBlock = block
  1822  		current   = bc.CurrentBlock()
  1823  	)
  1824  	// The first sidechain block error is already verified to be ErrPrunedAncestor.
  1825  	// Since we don't import them here, we expect ErrUnknownAncestor for the remaining
  1826  	// ones. Any other errors means that the block is invalid, and should not be written
  1827  	// to disk.
  1828  	err := consensus.ErrPrunedAncestor
  1829  	for ; block != nil && errors.Is(err, consensus.ErrPrunedAncestor); block, err = it.next() {
  1830  		// Check the canonical state root for that number
  1831  		if number := block.NumberU64(); current.NumberU64() >= number {
  1832  			canonical := bc.GetBlockByNumber(number)
  1833  			if canonical != nil && canonical.Hash() == block.Hash() {
  1834  				// Not a sidechain block, this is a re-import of a canon block which has it's state pruned
  1835  
  1836  				// Collect the TD of the block. Since we know it's a canon one,
  1837  				// we can get it directly, and not (like further below) use
  1838  				// the parent and then add the block on top
  1839  				externTd = bc.GetTd(block.Hash(), block.NumberU64())
  1840  				continue
  1841  			}
  1842  			if canonical != nil && canonical.Root() == block.Root() {
  1843  				// This is most likely a shadow-state attack. When a fork is imported into the
  1844  				// database, and it eventually reaches a block height which is not pruned, we
  1845  				// just found that the state already exist! This means that the sidechain block
  1846  				// refers to a state which already exists in our canon chain.
  1847  				//
  1848  				// If left unchecked, we would now proceed importing the blocks, without actually
  1849  				// having verified the state of the previous blocks.
  1850  				log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root())
  1851  
  1852  				// If someone legitimately side-mines blocks, they would still be imported as usual. However,
  1853  				// we cannot risk writing unverified blocks to disk when they obviously target the pruning
  1854  				// mechanism.
  1855  				return it.index, errors.New("sidechain ghost-state attack")
  1856  			}
  1857  		}
  1858  		if externTd == nil {
  1859  			externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1)
  1860  		}
  1861  		externTd = new(big.Int).Add(externTd, block.Difficulty())
  1862  
  1863  		if !bc.HasBlock(block.Hash(), block.NumberU64()) {
  1864  			start := time.Now()
  1865  			if err := bc.writeBlockWithoutState(block, externTd); err != nil {
  1866  				return it.index, err
  1867  			}
  1868  			log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(),
  1869  				"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
  1870  				"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
  1871  				"root", block.Root())
  1872  		}
  1873  		lastBlock = block
  1874  	}
  1875  	// At this point, we've written all sidechain blocks to database. Loop ended
  1876  	// either on some other error or all were processed. If there was some other
  1877  	// error, we can ignore the rest of those blocks.
  1878  	//
  1879  	// If the externTd was larger than our local TD, we now need to reimport the previous
  1880  	// blocks to regenerate the required state
  1881  	reorg, err := bc.forker.ReorgNeeded(current.Header(), lastBlock.Header())
  1882  	if err != nil {
  1883  		return it.index, err
  1884  	}
  1885  	if !reorg {
  1886  		localTd := bc.GetTd(current.Hash(), current.NumberU64())
  1887  		log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd)
  1888  		return it.index, err
  1889  	}
  1890  	// Gather all the sidechain hashes (full blocks may be memory heavy)
  1891  	var (
  1892  		hashes  []common.Hash
  1893  		numbers []uint64
  1894  	)
  1895  	parent := it.previous()
  1896  	for parent != nil && !bc.HasState(parent.Root) {
  1897  		hashes = append(hashes, parent.Hash())
  1898  		numbers = append(numbers, parent.Number.Uint64())
  1899  
  1900  		parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1)
  1901  	}
  1902  	if parent == nil {
  1903  		return it.index, errors.New("missing parent")
  1904  	}
  1905  	// Import all the pruned blocks to make the state available
  1906  	var (
  1907  		blocks []*types.Block
  1908  		memory common.StorageSize
  1909  	)
  1910  	for i := len(hashes) - 1; i >= 0; i-- {
  1911  		// Append the next block to our batch
  1912  		block := bc.GetBlock(hashes[i], numbers[i])
  1913  
  1914  		blocks = append(blocks, block)
  1915  		memory += block.Size()
  1916  
  1917  		// If memory use grew too large, import and continue. Sadly we need to discard
  1918  		// all raised events and logs from notifications since we're too heavy on the
  1919  		// memory here.
  1920  		if len(blocks) >= 2048 || memory > 64*1024*1024 {
  1921  			log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64())
  1922  			if _, err := bc.insertChain(blocks, false, true); err != nil {
  1923  				return 0, err
  1924  			}
  1925  			blocks, memory = blocks[:0], 0
  1926  
  1927  			// If the chain is terminating, stop processing blocks
  1928  			if bc.insertStopped() {
  1929  				log.Debug("Abort during blocks processing")
  1930  				return 0, nil
  1931  			}
  1932  		}
  1933  	}
  1934  	if len(blocks) > 0 {
  1935  		log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64())
  1936  		return bc.insertChain(blocks, false, true)
  1937  	}
  1938  	return 0, nil
  1939  }
  1940  
  1941  // recoverAncestors finds the closest ancestor with available state and re-execute
  1942  // all the ancestor blocks since that.
  1943  // recoverAncestors is only used post-merge.
  1944  // We return the hash of the latest block that we could correctly validate.
  1945  func (bc *BlockChain) recoverAncestors(block *types.Block) (common.Hash, error) {
  1946  	// Gather all the sidechain hashes (full blocks may be memory heavy)
  1947  	var (
  1948  		hashes  []common.Hash
  1949  		numbers []uint64
  1950  		parent  = block
  1951  	)
  1952  	for parent != nil && !bc.HasState(parent.Root()) {
  1953  		hashes = append(hashes, parent.Hash())
  1954  		numbers = append(numbers, parent.NumberU64())
  1955  		parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
  1956  
  1957  		// If the chain is terminating, stop iteration
  1958  		if bc.insertStopped() {
  1959  			log.Debug("Abort during blocks iteration")
  1960  			return common.Hash{}, errInsertionInterrupted
  1961  		}
  1962  	}
  1963  	if parent == nil {
  1964  		return common.Hash{}, errors.New("missing parent")
  1965  	}
  1966  	// Import all the pruned blocks to make the state available
  1967  	for i := len(hashes) - 1; i >= 0; i-- {
  1968  		// If the chain is terminating, stop processing blocks
  1969  		if bc.insertStopped() {
  1970  			log.Debug("Abort during blocks processing")
  1971  			return common.Hash{}, errInsertionInterrupted
  1972  		}
  1973  		var b *types.Block
  1974  		if i == 0 {
  1975  			b = block
  1976  		} else {
  1977  			b = bc.GetBlock(hashes[i], numbers[i])
  1978  		}
  1979  		if _, err := bc.insertChain(types.Blocks{b}, false, false); err != nil {
  1980  			return b.ParentHash(), err
  1981  		}
  1982  	}
  1983  	return block.Hash(), nil
  1984  }
  1985  
  1986  // collectLogs collects the logs that were generated or removed during
  1987  // the processing of the block that corresponds with the given hash.
  1988  // These logs are later announced as deleted or reborn.
  1989  func (bc *BlockChain) collectLogs(hash common.Hash, removed bool) []*types.Log {
  1990  	number := bc.hc.GetBlockNumber(hash)
  1991  	if number == nil {
  1992  		return nil
  1993  	}
  1994  	receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig)
  1995  
  1996  	var logs []*types.Log
  1997  	for _, receipt := range receipts {
  1998  		for _, log := range receipt.Logs {
  1999  			l := *log
  2000  			if removed {
  2001  				l.Removed = true
  2002  			}
  2003  			logs = append(logs, &l)
  2004  		}
  2005  	}
  2006  	return logs
  2007  }
  2008  
  2009  // mergeLogs returns a merged log slice with specified sort order.
  2010  func mergeLogs(logs [][]*types.Log, reverse bool) []*types.Log {
  2011  	var ret []*types.Log
  2012  	if reverse {
  2013  		for i := len(logs) - 1; i >= 0; i-- {
  2014  			ret = append(ret, logs[i]...)
  2015  		}
  2016  	} else {
  2017  		for i := 0; i < len(logs); i++ {
  2018  			ret = append(ret, logs[i]...)
  2019  		}
  2020  	}
  2021  	return ret
  2022  }
  2023  
  2024  // reorg takes two blocks, an old chain and a new chain and will reconstruct the
  2025  // blocks and inserts them to be part of the new canonical chain and accumulates
  2026  // potential missing transactions and post an event about them.
  2027  // Note the new head block won't be processed here, callers need to handle it
  2028  // externally.
  2029  func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
  2030  	var (
  2031  		newChain    types.Blocks
  2032  		oldChain    types.Blocks
  2033  		commonBlock *types.Block
  2034  
  2035  		deletedTxs []common.Hash
  2036  		addedTxs   []common.Hash
  2037  
  2038  		deletedLogs [][]*types.Log
  2039  		rebirthLogs [][]*types.Log
  2040  	)
  2041  	// Reduce the longer chain to the same number as the shorter one
  2042  	if oldBlock.NumberU64() > newBlock.NumberU64() {
  2043  		// Old chain is longer, gather all transactions and logs as deleted ones
  2044  		for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
  2045  			oldChain = append(oldChain, oldBlock)
  2046  			for _, tx := range oldBlock.Transactions() {
  2047  				deletedTxs = append(deletedTxs, tx.Hash())
  2048  			}
  2049  
  2050  			// Collect deleted logs for notification
  2051  			logs := bc.collectLogs(oldBlock.Hash(), true)
  2052  			if len(logs) > 0 {
  2053  				deletedLogs = append(deletedLogs, logs)
  2054  			}
  2055  		}
  2056  	} else {
  2057  		// New chain is longer, stash all blocks away for subsequent insertion
  2058  		for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
  2059  			newChain = append(newChain, newBlock)
  2060  		}
  2061  	}
  2062  	if oldBlock == nil {
  2063  		return fmt.Errorf("invalid old chain")
  2064  	}
  2065  	if newBlock == nil {
  2066  		return fmt.Errorf("invalid new chain")
  2067  	}
  2068  	// Both sides of the reorg are at the same number, reduce both until the common
  2069  	// ancestor is found
  2070  	for {
  2071  		// If the common ancestor was found, bail out
  2072  		if oldBlock.Hash() == newBlock.Hash() {
  2073  			commonBlock = oldBlock
  2074  			break
  2075  		}
  2076  		// Remove an old block as well as stash away a new block
  2077  		oldChain = append(oldChain, oldBlock)
  2078  		for _, tx := range oldBlock.Transactions() {
  2079  			deletedTxs = append(deletedTxs, tx.Hash())
  2080  		}
  2081  
  2082  		// Collect deleted logs for notification
  2083  		logs := bc.collectLogs(oldBlock.Hash(), true)
  2084  		if len(logs) > 0 {
  2085  			deletedLogs = append(deletedLogs, logs)
  2086  		}
  2087  		newChain = append(newChain, newBlock)
  2088  
  2089  		// Step back with both chains
  2090  		oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1)
  2091  		if oldBlock == nil {
  2092  			return fmt.Errorf("invalid old chain")
  2093  		}
  2094  		newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
  2095  		if newBlock == nil {
  2096  			return fmt.Errorf("invalid new chain")
  2097  		}
  2098  	}
  2099  
  2100  	// Ensure the user sees large reorgs
  2101  	if len(oldChain) > 0 {
  2102  		logFn := log.Info
  2103  		msg := "Chain reorg detected"
  2104  		if len(oldChain) > 63 {
  2105  			msg = "Large chain reorg detected"
  2106  			logFn = log.Warn
  2107  		}
  2108  		var addFromHash common.Hash
  2109  		if len(newChain) > 0 {
  2110  			addFromHash = newChain[0].Hash()
  2111  		}
  2112  		logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(),
  2113  			"drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", addFromHash)
  2114  		blockReorgAddMeter.Mark(int64(len(newChain)))
  2115  		blockReorgDropMeter.Mark(int64(len(oldChain)))
  2116  		blockReorgMeter.Mark(1)
  2117  	} else if len(newChain) > 0 {
  2118  		// Special case happens in the post merge stage that current head is
  2119  		// the ancestor of new head while these two blocks are not consecutive
  2120  		log.Info("Extend chain", "add", len(newChain), "number", newChain[0].Number(), "hash", newChain[0].Hash())
  2121  		blockReorgAddMeter.Mark(int64(len(newChain)))
  2122  	} else {
  2123  		// len(newChain) == 0 && len(oldChain) > 0
  2124  		// rewind the canonical chain to a lower point.
  2125  		log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "oldblocks", len(oldChain), "newnum", newBlock.Number(), "newhash", newBlock.Hash(), "newblocks", len(newChain))
  2126  	}
  2127  	// Insert the new chain(except the head block(reverse order)),
  2128  	// taking care of the proper incremental order.
  2129  	for i := len(newChain) - 1; i >= 1; i-- {
  2130  		// Insert the block in the canonical way, re-writing history
  2131  		bc.writeHeadBlock(newChain[i])
  2132  
  2133  		// Collect the new added transactions.
  2134  		for _, tx := range newChain[i].Transactions() {
  2135  			addedTxs = append(addedTxs, tx.Hash())
  2136  		}
  2137  	}
  2138  
  2139  	// Delete useless indexes right now which includes the non-canonical
  2140  	// transaction indexes, canonical chain indexes which above the head.
  2141  	indexesBatch := bc.db.NewBatch()
  2142  	for _, tx := range types.HashDifference(deletedTxs, addedTxs) {
  2143  		rawdb.DeleteTxLookupEntry(indexesBatch, tx)
  2144  	}
  2145  
  2146  	// Delete all hash markers that are not part of the new canonical chain.
  2147  	// Because the reorg function does not handle new chain head, all hash
  2148  	// markers greater than or equal to new chain head should be deleted.
  2149  	number := commonBlock.NumberU64()
  2150  	if len(newChain) > 1 {
  2151  		number = newChain[1].NumberU64()
  2152  	}
  2153  	for i := number + 1; ; i++ {
  2154  		hash := rawdb.ReadCanonicalHash(bc.db, i)
  2155  		if hash == (common.Hash{}) {
  2156  			break
  2157  		}
  2158  		rawdb.DeleteCanonicalHash(indexesBatch, i)
  2159  	}
  2160  	if err := indexesBatch.Write(); err != nil {
  2161  		log.Crit("Failed to delete useless indexes", "err", err)
  2162  	}
  2163  
  2164  	// Collect the logs
  2165  	for i := len(newChain) - 1; i >= 1; i-- {
  2166  		// Collect reborn logs due to chain reorg
  2167  		logs := bc.collectLogs(newChain[i].Hash(), false)
  2168  		if len(logs) > 0 {
  2169  			rebirthLogs = append(rebirthLogs, logs)
  2170  		}
  2171  	}
  2172  	// If any logs need to be fired, do it now. In theory we could avoid creating
  2173  	// this goroutine if there are no events to fire, but realistcally that only
  2174  	// ever happens if we're reorging empty blocks, which will only happen on idle
  2175  	// networks where performance is not an issue either way.
  2176  	if len(deletedLogs) > 0 {
  2177  		bc.rmLogsFeed.Send(RemovedLogsEvent{mergeLogs(deletedLogs, true)})
  2178  	}
  2179  	if len(rebirthLogs) > 0 {
  2180  		bc.logsFeed.Send(mergeLogs(rebirthLogs, false))
  2181  	}
  2182  	if len(oldChain) > 0 {
  2183  		for i := len(oldChain) - 1; i >= 0; i-- {
  2184  			bc.chainSideFeed.Send(ChainSideEvent{Block: oldChain[i]})
  2185  		}
  2186  	}
  2187  	return nil
  2188  }
  2189  
  2190  // InsertBlockWithoutSetHead executes the block, runs the necessary verification
  2191  // upon it and then persist the block and the associate state into the database.
  2192  // The key difference between the InsertChain is it won't do the canonical chain
  2193  // updating. It relies on the additional SetCanonical call to finalize the entire
  2194  // procedure.
  2195  func (bc *BlockChain) InsertBlockWithoutSetHead(block *types.Block) error {
  2196  	if !bc.chainmu.TryLock() {
  2197  		return errChainStopped
  2198  	}
  2199  	defer bc.chainmu.Unlock()
  2200  
  2201  	_, err := bc.insertChain(types.Blocks{block}, true, false)
  2202  	return err
  2203  }
  2204  
  2205  // SetCanonical rewinds the chain to set the new head block as the specified
  2206  // block. It's possible that the state of the new head is missing, and it will
  2207  // be recovered in this function as well.
  2208  func (bc *BlockChain) SetCanonical(head *types.Block) (common.Hash, error) {
  2209  	if !bc.chainmu.TryLock() {
  2210  		return common.Hash{}, errChainStopped
  2211  	}
  2212  	defer bc.chainmu.Unlock()
  2213  
  2214  	// Re-execute the reorged chain in case the head state is missing.
  2215  	if !bc.HasState(head.Root()) {
  2216  		if latestValidHash, err := bc.recoverAncestors(head); err != nil {
  2217  			return latestValidHash, err
  2218  		}
  2219  		log.Info("Recovered head state", "number", head.Number(), "hash", head.Hash())
  2220  	}
  2221  	// Run the reorg if necessary and set the given block as new head.
  2222  	start := time.Now()
  2223  	if head.ParentHash() != bc.CurrentBlock().Hash() {
  2224  		if err := bc.reorg(bc.CurrentBlock(), head); err != nil {
  2225  			return common.Hash{}, err
  2226  		}
  2227  	}
  2228  	bc.writeHeadBlock(head)
  2229  
  2230  	// Emit events
  2231  	logs := bc.collectLogs(head.Hash(), false)
  2232  	bc.chainFeed.Send(ChainEvent{Block: head, Hash: head.Hash(), Logs: logs})
  2233  	if len(logs) > 0 {
  2234  		bc.logsFeed.Send(logs)
  2235  	}
  2236  	bc.chainHeadFeed.Send(ChainHeadEvent{Block: head})
  2237  
  2238  	context := []interface{}{
  2239  		"number", head.Number(),
  2240  		"hash", head.Hash(),
  2241  		"root", head.Root(),
  2242  		"elapsed", time.Since(start),
  2243  	}
  2244  	if timestamp := time.Unix(int64(head.Time()), 0); time.Since(timestamp) > time.Minute {
  2245  		context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...)
  2246  	}
  2247  	log.Info("Chain head was updated", context...)
  2248  	return head.Hash(), nil
  2249  }
  2250  
  2251  func (bc *BlockChain) updateFutureBlocks() {
  2252  	futureTimer := time.NewTicker(5 * time.Second)
  2253  	defer futureTimer.Stop()
  2254  	defer bc.wg.Done()
  2255  	for {
  2256  		select {
  2257  		case <-futureTimer.C:
  2258  			bc.procFutureBlocks()
  2259  		case <-bc.quit:
  2260  			return
  2261  		}
  2262  	}
  2263  }
  2264  
  2265  // skipBlock returns 'true', if the block being imported can be skipped over, meaning
  2266  // that the block does not need to be processed but can be considered already fully 'done'.
  2267  func (bc *BlockChain) skipBlock(err error, it *insertIterator) bool {
  2268  	// We can only ever bypass processing if the only error returned by the validator
  2269  	// is ErrKnownBlock, which means all checks passed, but we already have the block
  2270  	// and state.
  2271  	if !errors.Is(err, ErrKnownBlock) {
  2272  		return false
  2273  	}
  2274  	// If we're not using snapshots, we can skip this, since we have both block
  2275  	// and (trie-) state
  2276  	if bc.snaps == nil {
  2277  		return true
  2278  	}
  2279  	var (
  2280  		header     = it.current() // header can't be nil
  2281  		parentRoot common.Hash
  2282  	)
  2283  	// If we also have the snapshot-state, we can skip the processing.
  2284  	if bc.snaps.Snapshot(header.Root) != nil {
  2285  		return true
  2286  	}
  2287  	// In this case, we have the trie-state but not snapshot-state. If the parent
  2288  	// snapshot-state exists, we need to process this in order to not get a gap
  2289  	// in the snapshot layers.
  2290  	// Resolve parent block
  2291  	if parent := it.previous(); parent != nil {
  2292  		parentRoot = parent.Root
  2293  	} else if parent = bc.GetHeaderByHash(header.ParentHash); parent != nil {
  2294  		parentRoot = parent.Root
  2295  	}
  2296  	if parentRoot == (common.Hash{}) {
  2297  		return false // Theoretically impossible case
  2298  	}
  2299  	// Parent is also missing snapshot: we can skip this. Otherwise process.
  2300  	if bc.snaps.Snapshot(parentRoot) == nil {
  2301  		return true
  2302  	}
  2303  	return false
  2304  }
  2305  
  2306  // maintainTxIndex is responsible for the construction and deletion of the
  2307  // transaction index.
  2308  //
  2309  // User can use flag `txlookuplimit` to specify a "recentness" block, below
  2310  // which ancient tx indices get deleted. If `txlookuplimit` is 0, it means
  2311  // all tx indices will be reserved.
  2312  //
  2313  // The user can adjust the txlookuplimit value for each launch after fast
  2314  // sync, Geth will automatically construct the missing indices and delete
  2315  // the extra indices.
  2316  func (bc *BlockChain) maintainTxIndex(ancients uint64) {
  2317  	defer bc.wg.Done()
  2318  
  2319  	// Before starting the actual maintenance, we need to handle a special case,
  2320  	// where user might init Geth with an external ancient database. If so, we
  2321  	// need to reindex all necessary transactions before starting to process any
  2322  	// pruning requests.
  2323  	if ancients > 0 {
  2324  		var from = uint64(0)
  2325  		if bc.txLookupLimit != 0 && ancients > bc.txLookupLimit {
  2326  			from = ancients - bc.txLookupLimit
  2327  		}
  2328  		rawdb.IndexTransactions(bc.db, from, ancients, bc.quit)
  2329  	}
  2330  
  2331  	// indexBlocks reindexes or unindexes transactions depending on user configuration
  2332  	indexBlocks := func(tail *uint64, head uint64, done chan struct{}) {
  2333  		defer func() { done <- struct{}{} }()
  2334  
  2335  		// If the user just upgraded Geth to a new version which supports transaction
  2336  		// index pruning, write the new tail and remove anything older.
  2337  		if tail == nil {
  2338  			if bc.txLookupLimit == 0 || head < bc.txLookupLimit {
  2339  				// Nothing to delete, write the tail and return
  2340  				rawdb.WriteTxIndexTail(bc.db, 0)
  2341  			} else {
  2342  				// Prune all stale tx indices and record the tx index tail
  2343  				rawdb.UnindexTransactions(bc.db, 0, head-bc.txLookupLimit+1, bc.quit)
  2344  			}
  2345  			return
  2346  		}
  2347  		// If a previous indexing existed, make sure that we fill in any missing entries
  2348  		if bc.txLookupLimit == 0 || head < bc.txLookupLimit {
  2349  			if *tail > 0 {
  2350  				// It can happen when chain is rewound to a historical point which
  2351  				// is even lower than the indexes tail, recap the indexing target
  2352  				// to new head to avoid reading non-existent block bodies.
  2353  				end := *tail
  2354  				if end > head+1 {
  2355  					end = head + 1
  2356  				}
  2357  				rawdb.IndexTransactions(bc.db, 0, end, bc.quit)
  2358  			}
  2359  			return
  2360  		}
  2361  		// Update the transaction index to the new chain state
  2362  		if head-bc.txLookupLimit+1 < *tail {
  2363  			// Reindex a part of missing indices and rewind index tail to HEAD-limit
  2364  			rawdb.IndexTransactions(bc.db, head-bc.txLookupLimit+1, *tail, bc.quit)
  2365  		} else {
  2366  			// Unindex a part of stale indices and forward index tail to HEAD-limit
  2367  			rawdb.UnindexTransactions(bc.db, *tail, head-bc.txLookupLimit+1, bc.quit)
  2368  		}
  2369  	}
  2370  
  2371  	// Any reindexing done, start listening to chain events and moving the index window
  2372  	var (
  2373  		done   chan struct{}                  // Non-nil if background unindexing or reindexing routine is active.
  2374  		headCh = make(chan ChainHeadEvent, 1) // Buffered to avoid locking up the event feed
  2375  	)
  2376  	sub := bc.SubscribeChainHeadEvent(headCh)
  2377  	if sub == nil {
  2378  		return
  2379  	}
  2380  	defer sub.Unsubscribe()
  2381  
  2382  	for {
  2383  		select {
  2384  		case head := <-headCh:
  2385  			if done == nil {
  2386  				done = make(chan struct{})
  2387  				go indexBlocks(rawdb.ReadTxIndexTail(bc.db), head.Block.NumberU64(), done)
  2388  			}
  2389  		case <-done:
  2390  			done = nil
  2391  		case <-bc.quit:
  2392  			if done != nil {
  2393  				log.Info("Waiting background transaction indexer to exit")
  2394  				<-done
  2395  			}
  2396  			return
  2397  		}
  2398  	}
  2399  }
  2400  
  2401  // reportBlock logs a bad block error.
  2402  func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
  2403  	rawdb.WriteBadBlock(bc.db, block)
  2404  
  2405  	var receiptString string
  2406  	for i, receipt := range receipts {
  2407  		receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n",
  2408  			i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(),
  2409  			receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState)
  2410  	}
  2411  	log.Error(fmt.Sprintf(`
  2412  ########## BAD BLOCK #########
  2413  Chain config: %v
  2414  
  2415  Number: %v
  2416  Hash: %#x
  2417  %v
  2418  
  2419  Error: %v
  2420  ##############################
  2421  `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err))
  2422  }
  2423  
  2424  // InsertHeaderChain attempts to insert the given header chain in to the local
  2425  // chain, possibly creating a reorg. If an error is returned, it will return the
  2426  // index number of the failing header as well an error describing what went wrong.
  2427  //
  2428  // The verify parameter can be used to fine tune whether nonce verification
  2429  // should be done or not. The reason behind the optional check is because some
  2430  // of the header retrieval mechanisms already need to verify nonces, as well as
  2431  // because nonces can be verified sparsely, not needing to check each.
  2432  func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
  2433  	if len(chain) == 0 {
  2434  		return 0, nil
  2435  	}
  2436  	start := time.Now()
  2437  	if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
  2438  		return i, err
  2439  	}
  2440  
  2441  	if !bc.chainmu.TryLock() {
  2442  		return 0, errChainStopped
  2443  	}
  2444  	defer bc.chainmu.Unlock()
  2445  	_, err := bc.hc.InsertHeaderChain(chain, start, bc.forker)
  2446  	return 0, err
  2447  }
  2448  
  2449  // SetBlockValidatorAndProcessorForTesting sets the current validator and processor.
  2450  // This method can be used to force an invalid blockchain to be verified for tests.
  2451  // This method is unsafe and should only be used before block import starts.
  2452  func (bc *BlockChain) SetBlockValidatorAndProcessorForTesting(v Validator, p Processor) {
  2453  	bc.validator = v
  2454  	bc.processor = p
  2455  }