github.com/Cleverse/go-ethereum@v0.0.0-20220927095127-45113064e7f2/core/tx_list.go (about)

     1  // Copyright 2016 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"container/heap"
    21  	"math"
    22  	"math/big"
    23  	"sort"
    24  	"sync"
    25  	"sync/atomic"
    26  	"time"
    27  
    28  	"github.com/ethereum/go-ethereum/common"
    29  	"github.com/ethereum/go-ethereum/core/types"
    30  )
    31  
    32  // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
    33  // retrieving sorted transactions from the possibly gapped future queue.
    34  type nonceHeap []uint64
    35  
    36  func (h nonceHeap) Len() int           { return len(h) }
    37  func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
    38  func (h nonceHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
    39  
    40  func (h *nonceHeap) Push(x interface{}) {
    41  	*h = append(*h, x.(uint64))
    42  }
    43  
    44  func (h *nonceHeap) Pop() interface{} {
    45  	old := *h
    46  	n := len(old)
    47  	x := old[n-1]
    48  	*h = old[0 : n-1]
    49  	return x
    50  }
    51  
    52  // txSortedMap is a nonce->transaction hash map with a heap based index to allow
    53  // iterating over the contents in a nonce-incrementing way.
    54  type txSortedMap struct {
    55  	items map[uint64]*types.Transaction // Hash map storing the transaction data
    56  	index *nonceHeap                    // Heap of nonces of all the stored transactions (non-strict mode)
    57  	cache types.Transactions            // Cache of the transactions already sorted
    58  }
    59  
    60  // newTxSortedMap creates a new nonce-sorted transaction map.
    61  func newTxSortedMap() *txSortedMap {
    62  	return &txSortedMap{
    63  		items: make(map[uint64]*types.Transaction),
    64  		index: new(nonceHeap),
    65  	}
    66  }
    67  
    68  // Get retrieves the current transactions associated with the given nonce.
    69  func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
    70  	return m.items[nonce]
    71  }
    72  
    73  // Put inserts a new transaction into the map, also updating the map's nonce
    74  // index. If a transaction already exists with the same nonce, it's overwritten.
    75  func (m *txSortedMap) Put(tx *types.Transaction) {
    76  	nonce := tx.Nonce()
    77  	if m.items[nonce] == nil {
    78  		heap.Push(m.index, nonce)
    79  	}
    80  	m.items[nonce], m.cache = tx, nil
    81  }
    82  
    83  // Forward removes all transactions from the map with a nonce lower than the
    84  // provided threshold. Every removed transaction is returned for any post-removal
    85  // maintenance.
    86  func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
    87  	var removed types.Transactions
    88  
    89  	// Pop off heap items until the threshold is reached
    90  	for m.index.Len() > 0 && (*m.index)[0] < threshold {
    91  		nonce := heap.Pop(m.index).(uint64)
    92  		removed = append(removed, m.items[nonce])
    93  		delete(m.items, nonce)
    94  	}
    95  	// If we had a cached order, shift the front
    96  	if m.cache != nil {
    97  		m.cache = m.cache[len(removed):]
    98  	}
    99  	return removed
   100  }
   101  
   102  // Filter iterates over the list of transactions and removes all of them for which
   103  // the specified function evaluates to true.
   104  // Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
   105  // If you want to do several consecutive filterings, it's therefore better to first
   106  // do a .filter(func1) followed by .Filter(func2) or reheap()
   107  func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
   108  	removed := m.filter(filter)
   109  	// If transactions were removed, the heap and cache are ruined
   110  	if len(removed) > 0 {
   111  		m.reheap()
   112  	}
   113  	return removed
   114  }
   115  
   116  func (m *txSortedMap) reheap() {
   117  	*m.index = make([]uint64, 0, len(m.items))
   118  	for nonce := range m.items {
   119  		*m.index = append(*m.index, nonce)
   120  	}
   121  	heap.Init(m.index)
   122  	m.cache = nil
   123  }
   124  
   125  // filter is identical to Filter, but **does not** regenerate the heap. This method
   126  // should only be used if followed immediately by a call to Filter or reheap()
   127  func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
   128  	var removed types.Transactions
   129  
   130  	// Collect all the transactions to filter out
   131  	for nonce, tx := range m.items {
   132  		if filter(tx) {
   133  			removed = append(removed, tx)
   134  			delete(m.items, nonce)
   135  		}
   136  	}
   137  	if len(removed) > 0 {
   138  		m.cache = nil
   139  	}
   140  	return removed
   141  }
   142  
   143  // Cap places a hard limit on the number of items, returning all transactions
   144  // exceeding that limit.
   145  func (m *txSortedMap) Cap(threshold int) types.Transactions {
   146  	// Short circuit if the number of items is under the limit
   147  	if len(m.items) <= threshold {
   148  		return nil
   149  	}
   150  	// Otherwise gather and drop the highest nonce'd transactions
   151  	var drops types.Transactions
   152  
   153  	sort.Sort(*m.index)
   154  	for size := len(m.items); size > threshold; size-- {
   155  		drops = append(drops, m.items[(*m.index)[size-1]])
   156  		delete(m.items, (*m.index)[size-1])
   157  	}
   158  	*m.index = (*m.index)[:threshold]
   159  	heap.Init(m.index)
   160  
   161  	// If we had a cache, shift the back
   162  	if m.cache != nil {
   163  		m.cache = m.cache[:len(m.cache)-len(drops)]
   164  	}
   165  	return drops
   166  }
   167  
   168  // Remove deletes a transaction from the maintained map, returning whether the
   169  // transaction was found.
   170  func (m *txSortedMap) Remove(nonce uint64) bool {
   171  	// Short circuit if no transaction is present
   172  	_, ok := m.items[nonce]
   173  	if !ok {
   174  		return false
   175  	}
   176  	// Otherwise delete the transaction and fix the heap index
   177  	for i := 0; i < m.index.Len(); i++ {
   178  		if (*m.index)[i] == nonce {
   179  			heap.Remove(m.index, i)
   180  			break
   181  		}
   182  	}
   183  	delete(m.items, nonce)
   184  	m.cache = nil
   185  
   186  	return true
   187  }
   188  
   189  // Ready retrieves a sequentially increasing list of transactions starting at the
   190  // provided nonce that is ready for processing. The returned transactions will be
   191  // removed from the list.
   192  //
   193  // Note, all transactions with nonces lower than start will also be returned to
   194  // prevent getting into and invalid state. This is not something that should ever
   195  // happen but better to be self correcting than failing!
   196  func (m *txSortedMap) Ready(start uint64) types.Transactions {
   197  	// Short circuit if no transactions are available
   198  	if m.index.Len() == 0 || (*m.index)[0] > start {
   199  		return nil
   200  	}
   201  	// Otherwise start accumulating incremental transactions
   202  	var ready types.Transactions
   203  	for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
   204  		ready = append(ready, m.items[next])
   205  		delete(m.items, next)
   206  		heap.Pop(m.index)
   207  	}
   208  	m.cache = nil
   209  
   210  	return ready
   211  }
   212  
   213  // Len returns the length of the transaction map.
   214  func (m *txSortedMap) Len() int {
   215  	return len(m.items)
   216  }
   217  
   218  func (m *txSortedMap) flatten() types.Transactions {
   219  	// If the sorting was not cached yet, create and cache it
   220  	if m.cache == nil {
   221  		m.cache = make(types.Transactions, 0, len(m.items))
   222  		for _, tx := range m.items {
   223  			m.cache = append(m.cache, tx)
   224  		}
   225  		sort.Sort(types.TxByNonce(m.cache))
   226  	}
   227  	return m.cache
   228  }
   229  
   230  // Flatten creates a nonce-sorted slice of transactions based on the loosely
   231  // sorted internal representation. The result of the sorting is cached in case
   232  // it's requested again before any modifications are made to the contents.
   233  func (m *txSortedMap) Flatten() types.Transactions {
   234  	// Copy the cache to prevent accidental modifications
   235  	cache := m.flatten()
   236  	txs := make(types.Transactions, len(cache))
   237  	copy(txs, cache)
   238  	return txs
   239  }
   240  
   241  // LastElement returns the last element of a flattened list, thus, the
   242  // transaction with the highest nonce
   243  func (m *txSortedMap) LastElement() *types.Transaction {
   244  	cache := m.flatten()
   245  	return cache[len(cache)-1]
   246  }
   247  
   248  // txList is a "list" of transactions belonging to an account, sorted by account
   249  // nonce. The same type can be used both for storing contiguous transactions for
   250  // the executable/pending queue; and for storing gapped transactions for the non-
   251  // executable/future queue, with minor behavioral changes.
   252  type txList struct {
   253  	strict bool         // Whether nonces are strictly continuous or not
   254  	txs    *txSortedMap // Heap indexed sorted hash map of the transactions
   255  
   256  	costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
   257  	gascap  uint64   // Gas limit of the highest spending transaction (reset only if exceeds block limit)
   258  }
   259  
   260  // newTxList create a new transaction list for maintaining nonce-indexable fast,
   261  // gapped, sortable transaction lists.
   262  func newTxList(strict bool) *txList {
   263  	return &txList{
   264  		strict:  strict,
   265  		txs:     newTxSortedMap(),
   266  		costcap: new(big.Int),
   267  	}
   268  }
   269  
   270  // Overlaps returns whether the transaction specified has the same nonce as one
   271  // already contained within the list.
   272  func (l *txList) Overlaps(tx *types.Transaction) bool {
   273  	return l.txs.Get(tx.Nonce()) != nil
   274  }
   275  
   276  // Add tries to insert a new transaction into the list, returning whether the
   277  // transaction was accepted, and if yes, any previous transaction it replaced.
   278  //
   279  // If the new transaction is accepted into the list, the lists' cost and gas
   280  // thresholds are also potentially updated.
   281  func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
   282  	// If there's an older better transaction, abort
   283  	old := l.txs.Get(tx.Nonce())
   284  	if old != nil {
   285  		if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
   286  			return false, nil
   287  		}
   288  		// thresholdFeeCap = oldFC  * (100 + priceBump) / 100
   289  		a := big.NewInt(100 + int64(priceBump))
   290  		aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
   291  		aTip := a.Mul(a, old.GasTipCap())
   292  
   293  		// thresholdTip    = oldTip * (100 + priceBump) / 100
   294  		b := big.NewInt(100)
   295  		thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
   296  		thresholdTip := aTip.Div(aTip, b)
   297  
   298  		// We have to ensure that both the new fee cap and tip are higher than the
   299  		// old ones as well as checking the percentage threshold to ensure that
   300  		// this is accurate for low (Wei-level) gas price replacements.
   301  		if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
   302  			return false, nil
   303  		}
   304  	}
   305  	// Otherwise overwrite the old transaction with the current one
   306  	l.txs.Put(tx)
   307  	if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
   308  		l.costcap = cost
   309  	}
   310  	if gas := tx.Gas(); l.gascap < gas {
   311  		l.gascap = gas
   312  	}
   313  	return true, old
   314  }
   315  
   316  // Forward removes all transactions from the list with a nonce lower than the
   317  // provided threshold. Every removed transaction is returned for any post-removal
   318  // maintenance.
   319  func (l *txList) Forward(threshold uint64) types.Transactions {
   320  	return l.txs.Forward(threshold)
   321  }
   322  
   323  // Filter removes all transactions from the list with a cost or gas limit higher
   324  // than the provided thresholds. Every removed transaction is returned for any
   325  // post-removal maintenance. Strict-mode invalidated transactions are also
   326  // returned.
   327  //
   328  // This method uses the cached costcap and gascap to quickly decide if there's even
   329  // a point in calculating all the costs or if the balance covers all. If the threshold
   330  // is lower than the costgas cap, the caps will be reset to a new high after removing
   331  // the newly invalidated transactions.
   332  func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
   333  	// If all transactions are below the threshold, short circuit
   334  	if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
   335  		return nil, nil
   336  	}
   337  	l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
   338  	l.gascap = gasLimit
   339  
   340  	// Filter out all the transactions above the account's funds
   341  	removed := l.txs.Filter(func(tx *types.Transaction) bool {
   342  		return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
   343  	})
   344  
   345  	if len(removed) == 0 {
   346  		return nil, nil
   347  	}
   348  	var invalids types.Transactions
   349  	// If the list was strict, filter anything above the lowest nonce
   350  	if l.strict {
   351  		lowest := uint64(math.MaxUint64)
   352  		for _, tx := range removed {
   353  			if nonce := tx.Nonce(); lowest > nonce {
   354  				lowest = nonce
   355  			}
   356  		}
   357  		invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
   358  	}
   359  	l.txs.reheap()
   360  	return removed, invalids
   361  }
   362  
   363  // Cap places a hard limit on the number of items, returning all transactions
   364  // exceeding that limit.
   365  func (l *txList) Cap(threshold int) types.Transactions {
   366  	return l.txs.Cap(threshold)
   367  }
   368  
   369  // Remove deletes a transaction from the maintained list, returning whether the
   370  // transaction was found, and also returning any transaction invalidated due to
   371  // the deletion (strict mode only).
   372  func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
   373  	// Remove the transaction from the set
   374  	nonce := tx.Nonce()
   375  	if removed := l.txs.Remove(nonce); !removed {
   376  		return false, nil
   377  	}
   378  	// In strict mode, filter out non-executable transactions
   379  	if l.strict {
   380  		return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
   381  	}
   382  	return true, nil
   383  }
   384  
   385  // Ready retrieves a sequentially increasing list of transactions starting at the
   386  // provided nonce that is ready for processing. The returned transactions will be
   387  // removed from the list.
   388  //
   389  // Note, all transactions with nonces lower than start will also be returned to
   390  // prevent getting into and invalid state. This is not something that should ever
   391  // happen but better to be self correcting than failing!
   392  func (l *txList) Ready(start uint64) types.Transactions {
   393  	return l.txs.Ready(start)
   394  }
   395  
   396  // Len returns the length of the transaction list.
   397  func (l *txList) Len() int {
   398  	return l.txs.Len()
   399  }
   400  
   401  // Empty returns whether the list of transactions is empty or not.
   402  func (l *txList) Empty() bool {
   403  	return l.Len() == 0
   404  }
   405  
   406  // Flatten creates a nonce-sorted slice of transactions based on the loosely
   407  // sorted internal representation. The result of the sorting is cached in case
   408  // it's requested again before any modifications are made to the contents.
   409  func (l *txList) Flatten() types.Transactions {
   410  	return l.txs.Flatten()
   411  }
   412  
   413  // LastElement returns the last element of a flattened list, thus, the
   414  // transaction with the highest nonce
   415  func (l *txList) LastElement() *types.Transaction {
   416  	return l.txs.LastElement()
   417  }
   418  
   419  // priceHeap is a heap.Interface implementation over transactions for retrieving
   420  // price-sorted transactions to discard when the pool fills up. If baseFee is set
   421  // then the heap is sorted based on the effective tip based on the given base fee.
   422  // If baseFee is nil then the sorting is based on gasFeeCap.
   423  type priceHeap struct {
   424  	baseFee *big.Int // heap should always be re-sorted after baseFee is changed
   425  	list    []*types.Transaction
   426  }
   427  
   428  func (h *priceHeap) Len() int      { return len(h.list) }
   429  func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
   430  
   431  func (h *priceHeap) Less(i, j int) bool {
   432  	switch h.cmp(h.list[i], h.list[j]) {
   433  	case -1:
   434  		return true
   435  	case 1:
   436  		return false
   437  	default:
   438  		return h.list[i].Nonce() > h.list[j].Nonce()
   439  	}
   440  }
   441  
   442  func (h *priceHeap) cmp(a, b *types.Transaction) int {
   443  	if h.baseFee != nil {
   444  		// Compare effective tips if baseFee is specified
   445  		if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
   446  			return c
   447  		}
   448  	}
   449  	// Compare fee caps if baseFee is not specified or effective tips are equal
   450  	if c := a.GasFeeCapCmp(b); c != 0 {
   451  		return c
   452  	}
   453  	// Compare tips if effective tips and fee caps are equal
   454  	return a.GasTipCapCmp(b)
   455  }
   456  
   457  func (h *priceHeap) Push(x interface{}) {
   458  	tx := x.(*types.Transaction)
   459  	h.list = append(h.list, tx)
   460  }
   461  
   462  func (h *priceHeap) Pop() interface{} {
   463  	old := h.list
   464  	n := len(old)
   465  	x := old[n-1]
   466  	old[n-1] = nil
   467  	h.list = old[0 : n-1]
   468  	return x
   469  }
   470  
   471  // txPricedList is a price-sorted heap to allow operating on transactions pool
   472  // contents in a price-incrementing way. It's built opon the all transactions
   473  // in txpool but only interested in the remote part. It means only remote transactions
   474  // will be considered for tracking, sorting, eviction, etc.
   475  //
   476  // Two heaps are used for sorting: the urgent heap (based on effective tip in the next
   477  // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
   478  // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
   479  // In some cases (during a congestion, when blocks are full) the urgent heap can provide
   480  // better candidates for inclusion while in other cases (at the top of the baseFee peak)
   481  // the floating heap is better. When baseFee is decreasing they behave similarly.
   482  type txPricedList struct {
   483  	// Number of stale price points to (re-heap trigger).
   484  	// This field is accessed atomically, and must be the first field
   485  	// to ensure it has correct alignment for atomic.AddInt64.
   486  	// See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
   487  	stales int64
   488  
   489  	all              *txLookup  // Pointer to the map of all transactions
   490  	urgent, floating priceHeap  // Heaps of prices of all the stored **remote** transactions
   491  	reheapMu         sync.Mutex // Mutex asserts that only one routine is reheaping the list
   492  }
   493  
   494  const (
   495  	// urgentRatio : floatingRatio is the capacity ratio of the two queues
   496  	urgentRatio   = 4
   497  	floatingRatio = 1
   498  )
   499  
   500  // newTxPricedList creates a new price-sorted transaction heap.
   501  func newTxPricedList(all *txLookup) *txPricedList {
   502  	return &txPricedList{
   503  		all: all,
   504  	}
   505  }
   506  
   507  // Put inserts a new transaction into the heap.
   508  func (l *txPricedList) Put(tx *types.Transaction, local bool) {
   509  	if local {
   510  		return
   511  	}
   512  	// Insert every new transaction to the urgent heap first; Discard will balance the heaps
   513  	heap.Push(&l.urgent, tx)
   514  }
   515  
   516  // Removed notifies the prices transaction list that an old transaction dropped
   517  // from the pool. The list will just keep a counter of stale objects and update
   518  // the heap if a large enough ratio of transactions go stale.
   519  func (l *txPricedList) Removed(count int) {
   520  	// Bump the stale counter, but exit if still too low (< 25%)
   521  	stales := atomic.AddInt64(&l.stales, int64(count))
   522  	if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 {
   523  		return
   524  	}
   525  	// Seems we've reached a critical number of stale transactions, reheap
   526  	l.Reheap()
   527  }
   528  
   529  // Underpriced checks whether a transaction is cheaper than (or as cheap as) the
   530  // lowest priced (remote) transaction currently being tracked.
   531  func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
   532  	// Note: with two queues, being underpriced is defined as being worse than the worst item
   533  	// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
   534  	return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
   535  		(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
   536  		(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
   537  }
   538  
   539  // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
   540  // lowest priced (remote) transaction in the given heap.
   541  func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
   542  	// Discard stale price points if found at the heap start
   543  	for len(h.list) > 0 {
   544  		head := h.list[0]
   545  		if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
   546  			atomic.AddInt64(&l.stales, -1)
   547  			heap.Pop(h)
   548  			continue
   549  		}
   550  		break
   551  	}
   552  	// Check if the transaction is underpriced or not
   553  	if len(h.list) == 0 {
   554  		return false // There is no remote transaction at all.
   555  	}
   556  	// If the remote transaction is even cheaper than the
   557  	// cheapest one tracked locally, reject it.
   558  	return h.cmp(h.list[0], tx) >= 0
   559  }
   560  
   561  // Discard finds a number of most underpriced transactions, removes them from the
   562  // priced list and returns them for further removal from the entire pool.
   563  //
   564  // Note local transaction won't be considered for eviction.
   565  func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
   566  	drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
   567  	for slots > 0 {
   568  		if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
   569  			// Discard stale transactions if found during cleanup
   570  			tx := heap.Pop(&l.urgent).(*types.Transaction)
   571  			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
   572  				atomic.AddInt64(&l.stales, -1)
   573  				continue
   574  			}
   575  			// Non stale transaction found, move to floating heap
   576  			heap.Push(&l.floating, tx)
   577  		} else {
   578  			if len(l.floating.list) == 0 {
   579  				// Stop if both heaps are empty
   580  				break
   581  			}
   582  			// Discard stale transactions if found during cleanup
   583  			tx := heap.Pop(&l.floating).(*types.Transaction)
   584  			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
   585  				atomic.AddInt64(&l.stales, -1)
   586  				continue
   587  			}
   588  			// Non stale transaction found, discard it
   589  			drop = append(drop, tx)
   590  			slots -= numSlots(tx)
   591  		}
   592  	}
   593  	// If we still can't make enough room for the new transaction
   594  	if slots > 0 && !force {
   595  		for _, tx := range drop {
   596  			heap.Push(&l.urgent, tx)
   597  		}
   598  		return nil, false
   599  	}
   600  	return drop, true
   601  }
   602  
   603  // Reheap forcibly rebuilds the heap based on the current remote transaction set.
   604  func (l *txPricedList) Reheap() {
   605  	l.reheapMu.Lock()
   606  	defer l.reheapMu.Unlock()
   607  	start := time.Now()
   608  	atomic.StoreInt64(&l.stales, 0)
   609  	l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
   610  	l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
   611  		l.urgent.list = append(l.urgent.list, tx)
   612  		return true
   613  	}, false, true) // Only iterate remotes
   614  	heap.Init(&l.urgent)
   615  
   616  	// balance out the two heaps by moving the worse half of transactions into the
   617  	// floating heap
   618  	// Note: Discard would also do this before the first eviction but Reheap can do
   619  	// is more efficiently. Also, Underpriced would work suboptimally the first time
   620  	// if the floating queue was empty.
   621  	floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
   622  	l.floating.list = make([]*types.Transaction, floatingCount)
   623  	for i := 0; i < floatingCount; i++ {
   624  		l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
   625  	}
   626  	heap.Init(&l.floating)
   627  	reheapTimer.Update(time.Since(start))
   628  }
   629  
   630  // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
   631  // necessary to call right before SetBaseFee when processing a new block.
   632  func (l *txPricedList) SetBaseFee(baseFee *big.Int) {
   633  	l.urgent.baseFee = baseFee
   634  	l.Reheap()
   635  }