github.com/Cleverse/go-ethereum@v0.0.0-20220927095127-45113064e7f2/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  	"sync"
    25  
    26  	"github.com/ethereum/go-ethereum/common"
    27  	"github.com/ethereum/go-ethereum/core/rawdb"
    28  	"github.com/ethereum/go-ethereum/core/types"
    29  	"github.com/ethereum/go-ethereum/crypto"
    30  	"github.com/ethereum/go-ethereum/log"
    31  	"github.com/ethereum/go-ethereum/rlp"
    32  )
    33  
    34  var (
    35  	// emptyRoot is the known root hash of an empty trie.
    36  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    37  
    38  	// emptyState is the known hash of an empty state trie entry.
    39  	emptyState = crypto.Keccak256Hash(nil)
    40  )
    41  
    42  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    43  // node.
    44  //
    45  // The keys is a path tuple identifying a particular trie node either in a single
    46  // trie (account) or a layered trie (account -> storage). Each key in the tuple
    47  // is in the raw format(32 bytes).
    48  //
    49  // The path is a composite hexary path identifying the trie node. All the key
    50  // bytes are converted to the hexary nibbles and composited with the parent path
    51  // if the trie node is in a layered trie.
    52  //
    53  // It's used by state sync and commit to allow handling external references
    54  // between account and storage tries. And also it's used in the state healing
    55  // for extracting the raw states(leaf nodes) with corresponding paths.
    56  type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error
    57  
    58  // Trie is a Merkle Patricia Trie.
    59  // The zero value is an empty trie with no database.
    60  // Use New to create a trie that sits on top of a database.
    61  //
    62  // Trie is not safe for concurrent use.
    63  type Trie struct {
    64  	db    *Database
    65  	root  node
    66  	owner common.Hash
    67  
    68  	// Keep track of the number leaves which have been inserted since the last
    69  	// hashing operation. This number will not directly map to the number of
    70  	// actually unhashed nodes
    71  	unhashed int
    72  
    73  	// tracer is the state diff tracer can be used to track newly added/deleted
    74  	// trie node. It will be reset after each commit operation.
    75  	tracer *tracer
    76  }
    77  
    78  // newFlag returns the cache flag value for a newly created node.
    79  func (t *Trie) newFlag() nodeFlag {
    80  	return nodeFlag{dirty: true}
    81  }
    82  
    83  // Copy returns a copy of Trie.
    84  func (t *Trie) Copy() *Trie {
    85  	return &Trie{
    86  		db:       t.db,
    87  		root:     t.root,
    88  		owner:    t.owner,
    89  		unhashed: t.unhashed,
    90  		tracer:   t.tracer.copy(),
    91  	}
    92  }
    93  
    94  // New creates a trie with an existing root node from db and an assigned
    95  // owner for storage proximity.
    96  //
    97  // If root is the zero hash or the sha3 hash of an empty string, the
    98  // trie is initially empty and does not require a database. Otherwise,
    99  // New will panic if db is nil and returns a MissingNodeError if root does
   100  // not exist in the database. Accessing the trie loads nodes from db on demand.
   101  func New(owner common.Hash, root common.Hash, db *Database) (*Trie, error) {
   102  	return newTrie(owner, root, db)
   103  }
   104  
   105  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   106  func NewEmpty(db *Database) *Trie {
   107  	tr, _ := newTrie(common.Hash{}, common.Hash{}, db)
   108  	return tr
   109  }
   110  
   111  // newWithRootNode initializes the trie with the given root node.
   112  // It's only used by range prover.
   113  func newWithRootNode(root node) *Trie {
   114  	return &Trie{
   115  		root: root,
   116  		//tracer: newTracer(),
   117  		db: NewDatabase(rawdb.NewMemoryDatabase()),
   118  	}
   119  }
   120  
   121  // newTrie is the internal function used to construct the trie with given parameters.
   122  func newTrie(owner common.Hash, root common.Hash, db *Database) (*Trie, error) {
   123  	if db == nil {
   124  		panic("trie.New called without a database")
   125  	}
   126  	trie := &Trie{
   127  		db:    db,
   128  		owner: owner,
   129  		//tracer: newTracer(),
   130  	}
   131  	if root != (common.Hash{}) && root != emptyRoot {
   132  		rootnode, err := trie.resolveHash(root[:], nil)
   133  		if err != nil {
   134  			return nil, err
   135  		}
   136  		trie.root = rootnode
   137  	}
   138  	return trie, nil
   139  }
   140  
   141  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   142  // the key after the given start key.
   143  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   144  	return newNodeIterator(t, start)
   145  }
   146  
   147  // Get returns the value for key stored in the trie.
   148  // The value bytes must not be modified by the caller.
   149  func (t *Trie) Get(key []byte) []byte {
   150  	res, err := t.TryGet(key)
   151  	if err != nil {
   152  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   153  	}
   154  	return res
   155  }
   156  
   157  // TryGet returns the value for key stored in the trie.
   158  // The value bytes must not be modified by the caller.
   159  // If a node was not found in the database, a MissingNodeError is returned.
   160  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   161  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   162  	if err == nil && didResolve {
   163  		t.root = newroot
   164  	}
   165  	return value, err
   166  }
   167  
   168  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   169  	switch n := (origNode).(type) {
   170  	case nil:
   171  		return nil, nil, false, nil
   172  	case valueNode:
   173  		return n, n, false, nil
   174  	case *shortNode:
   175  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   176  			// key not found in trie
   177  			return nil, n, false, nil
   178  		}
   179  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   180  		if err == nil && didResolve {
   181  			n = n.copy()
   182  			n.Val = newnode
   183  		}
   184  		return value, n, didResolve, err
   185  	case *fullNode:
   186  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   187  		if err == nil && didResolve {
   188  			n = n.copy()
   189  			n.Children[key[pos]] = newnode
   190  		}
   191  		return value, n, didResolve, err
   192  	case hashNode:
   193  		child, err := t.resolveHash(n, key[:pos])
   194  		if err != nil {
   195  			return nil, n, true, err
   196  		}
   197  		value, newnode, _, err := t.tryGet(child, key, pos)
   198  		return value, newnode, true, err
   199  	default:
   200  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   201  	}
   202  }
   203  
   204  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   205  // possible to use keybyte-encoding as the path might contain odd nibbles.
   206  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   207  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   208  	if err != nil {
   209  		return nil, resolved, err
   210  	}
   211  	if resolved > 0 {
   212  		t.root = newroot
   213  	}
   214  	if item == nil {
   215  		return nil, resolved, nil
   216  	}
   217  	return item, resolved, err
   218  }
   219  
   220  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   221  	// If non-existent path requested, abort
   222  	if origNode == nil {
   223  		return nil, nil, 0, nil
   224  	}
   225  	// If we reached the requested path, return the current node
   226  	if pos >= len(path) {
   227  		// Although we most probably have the original node expanded, encoding
   228  		// that into consensus form can be nasty (needs to cascade down) and
   229  		// time consuming. Instead, just pull the hash up from disk directly.
   230  		var hash hashNode
   231  		if node, ok := origNode.(hashNode); ok {
   232  			hash = node
   233  		} else {
   234  			hash, _ = origNode.cache()
   235  		}
   236  		if hash == nil {
   237  			return nil, origNode, 0, errors.New("non-consensus node")
   238  		}
   239  		blob, err := t.db.Node(common.BytesToHash(hash))
   240  		return blob, origNode, 1, err
   241  	}
   242  	// Path still needs to be traversed, descend into children
   243  	switch n := (origNode).(type) {
   244  	case valueNode:
   245  		// Path prematurely ended, abort
   246  		return nil, nil, 0, nil
   247  
   248  	case *shortNode:
   249  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   250  			// Path branches off from short node
   251  			return nil, n, 0, nil
   252  		}
   253  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   254  		if err == nil && resolved > 0 {
   255  			n = n.copy()
   256  			n.Val = newnode
   257  		}
   258  		return item, n, resolved, err
   259  
   260  	case *fullNode:
   261  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   262  		if err == nil && resolved > 0 {
   263  			n = n.copy()
   264  			n.Children[path[pos]] = newnode
   265  		}
   266  		return item, n, resolved, err
   267  
   268  	case hashNode:
   269  		child, err := t.resolveHash(n, path[:pos])
   270  		if err != nil {
   271  			return nil, n, 1, err
   272  		}
   273  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   274  		return item, newnode, resolved + 1, err
   275  
   276  	default:
   277  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   278  	}
   279  }
   280  
   281  // Update associates key with value in the trie. Subsequent calls to
   282  // Get will return value. If value has length zero, any existing value
   283  // is deleted from the trie and calls to Get will return nil.
   284  //
   285  // The value bytes must not be modified by the caller while they are
   286  // stored in the trie.
   287  func (t *Trie) Update(key, value []byte) {
   288  	if err := t.TryUpdate(key, value); err != nil {
   289  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   290  	}
   291  }
   292  
   293  func (t *Trie) TryUpdateAccount(key []byte, acc *types.StateAccount) error {
   294  	data, err := rlp.EncodeToBytes(acc)
   295  	if err != nil {
   296  		return fmt.Errorf("can't encode object at %x: %w", key[:], err)
   297  	}
   298  	return t.TryUpdate(key, data)
   299  }
   300  
   301  // TryUpdate associates key with value in the trie. Subsequent calls to
   302  // Get will return value. If value has length zero, any existing value
   303  // is deleted from the trie and calls to Get will return nil.
   304  //
   305  // The value bytes must not be modified by the caller while they are
   306  // stored in the trie.
   307  //
   308  // If a node was not found in the database, a MissingNodeError is returned.
   309  func (t *Trie) TryUpdate(key, value []byte) error {
   310  	t.unhashed++
   311  	k := keybytesToHex(key)
   312  	if len(value) != 0 {
   313  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   314  		if err != nil {
   315  			return err
   316  		}
   317  		t.root = n
   318  	} else {
   319  		_, n, err := t.delete(t.root, nil, k)
   320  		if err != nil {
   321  			return err
   322  		}
   323  		t.root = n
   324  	}
   325  	return nil
   326  }
   327  
   328  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   329  	if len(key) == 0 {
   330  		if v, ok := n.(valueNode); ok {
   331  			return !bytes.Equal(v, value.(valueNode)), value, nil
   332  		}
   333  		return true, value, nil
   334  	}
   335  	switch n := n.(type) {
   336  	case *shortNode:
   337  		matchlen := prefixLen(key, n.Key)
   338  		// If the whole key matches, keep this short node as is
   339  		// and only update the value.
   340  		if matchlen == len(n.Key) {
   341  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   342  			if !dirty || err != nil {
   343  				return false, n, err
   344  			}
   345  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   346  		}
   347  		// Otherwise branch out at the index where they differ.
   348  		branch := &fullNode{flags: t.newFlag()}
   349  		var err error
   350  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   351  		if err != nil {
   352  			return false, nil, err
   353  		}
   354  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   355  		if err != nil {
   356  			return false, nil, err
   357  		}
   358  		// Replace this shortNode with the branch if it occurs at index 0.
   359  		if matchlen == 0 {
   360  			return true, branch, nil
   361  		}
   362  		// New branch node is created as a child of the original short node.
   363  		// Track the newly inserted node in the tracer. The node identifier
   364  		// passed is the path from the root node.
   365  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   366  
   367  		// Replace it with a short node leading up to the branch.
   368  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   369  
   370  	case *fullNode:
   371  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   372  		if !dirty || err != nil {
   373  			return false, n, err
   374  		}
   375  		n = n.copy()
   376  		n.flags = t.newFlag()
   377  		n.Children[key[0]] = nn
   378  		return true, n, nil
   379  
   380  	case nil:
   381  		// New short node is created and track it in the tracer. The node identifier
   382  		// passed is the path from the root node. Note the valueNode won't be tracked
   383  		// since it's always embedded in its parent.
   384  		t.tracer.onInsert(prefix)
   385  
   386  		return true, &shortNode{key, value, t.newFlag()}, nil
   387  
   388  	case hashNode:
   389  		// We've hit a part of the trie that isn't loaded yet. Load
   390  		// the node and insert into it. This leaves all child nodes on
   391  		// the path to the value in the trie.
   392  		rn, err := t.resolveHash(n, prefix)
   393  		if err != nil {
   394  			return false, nil, err
   395  		}
   396  		dirty, nn, err := t.insert(rn, prefix, key, value)
   397  		if !dirty || err != nil {
   398  			return false, rn, err
   399  		}
   400  		return true, nn, nil
   401  
   402  	default:
   403  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   404  	}
   405  }
   406  
   407  // Delete removes any existing value for key from the trie.
   408  func (t *Trie) Delete(key []byte) {
   409  	if err := t.TryDelete(key); err != nil {
   410  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   411  	}
   412  }
   413  
   414  // TryDelete removes any existing value for key from the trie.
   415  // If a node was not found in the database, a MissingNodeError is returned.
   416  func (t *Trie) TryDelete(key []byte) error {
   417  	t.unhashed++
   418  	k := keybytesToHex(key)
   419  	_, n, err := t.delete(t.root, nil, k)
   420  	if err != nil {
   421  		return err
   422  	}
   423  	t.root = n
   424  	return nil
   425  }
   426  
   427  // delete returns the new root of the trie with key deleted.
   428  // It reduces the trie to minimal form by simplifying
   429  // nodes on the way up after deleting recursively.
   430  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   431  	switch n := n.(type) {
   432  	case *shortNode:
   433  		matchlen := prefixLen(key, n.Key)
   434  		if matchlen < len(n.Key) {
   435  			return false, n, nil // don't replace n on mismatch
   436  		}
   437  		if matchlen == len(key) {
   438  			// The matched short node is deleted entirely and track
   439  			// it in the deletion set. The same the valueNode doesn't
   440  			// need to be tracked at all since it's always embedded.
   441  			t.tracer.onDelete(prefix)
   442  
   443  			return true, nil, nil // remove n entirely for whole matches
   444  		}
   445  		// The key is longer than n.Key. Remove the remaining suffix
   446  		// from the subtrie. Child can never be nil here since the
   447  		// subtrie must contain at least two other values with keys
   448  		// longer than n.Key.
   449  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   450  		if !dirty || err != nil {
   451  			return false, n, err
   452  		}
   453  		switch child := child.(type) {
   454  		case *shortNode:
   455  			// The child shortNode is merged into its parent, track
   456  			// is deleted as well.
   457  			t.tracer.onDelete(append(prefix, n.Key...))
   458  
   459  			// Deleting from the subtrie reduced it to another
   460  			// short node. Merge the nodes to avoid creating a
   461  			// shortNode{..., shortNode{...}}. Use concat (which
   462  			// always creates a new slice) instead of append to
   463  			// avoid modifying n.Key since it might be shared with
   464  			// other nodes.
   465  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   466  		default:
   467  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   468  		}
   469  
   470  	case *fullNode:
   471  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   472  		if !dirty || err != nil {
   473  			return false, n, err
   474  		}
   475  		n = n.copy()
   476  		n.flags = t.newFlag()
   477  		n.Children[key[0]] = nn
   478  
   479  		// Because n is a full node, it must've contained at least two children
   480  		// before the delete operation. If the new child value is non-nil, n still
   481  		// has at least two children after the deletion, and cannot be reduced to
   482  		// a short node.
   483  		if nn != nil {
   484  			return true, n, nil
   485  		}
   486  		// Reduction:
   487  		// Check how many non-nil entries are left after deleting and
   488  		// reduce the full node to a short node if only one entry is
   489  		// left. Since n must've contained at least two children
   490  		// before deletion (otherwise it would not be a full node) n
   491  		// can never be reduced to nil.
   492  		//
   493  		// When the loop is done, pos contains the index of the single
   494  		// value that is left in n or -2 if n contains at least two
   495  		// values.
   496  		pos := -1
   497  		for i, cld := range &n.Children {
   498  			if cld != nil {
   499  				if pos == -1 {
   500  					pos = i
   501  				} else {
   502  					pos = -2
   503  					break
   504  				}
   505  			}
   506  		}
   507  		if pos >= 0 {
   508  			if pos != 16 {
   509  				// If the remaining entry is a short node, it replaces
   510  				// n and its key gets the missing nibble tacked to the
   511  				// front. This avoids creating an invalid
   512  				// shortNode{..., shortNode{...}}.  Since the entry
   513  				// might not be loaded yet, resolve it just for this
   514  				// check.
   515  				cnode, err := t.resolve(n.Children[pos], prefix)
   516  				if err != nil {
   517  					return false, nil, err
   518  				}
   519  				if cnode, ok := cnode.(*shortNode); ok {
   520  					// Replace the entire full node with the short node.
   521  					// Mark the original short node as deleted since the
   522  					// value is embedded into the parent now.
   523  					t.tracer.onDelete(append(prefix, byte(pos)))
   524  
   525  					k := append([]byte{byte(pos)}, cnode.Key...)
   526  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   527  				}
   528  			}
   529  			// Otherwise, n is replaced by a one-nibble short node
   530  			// containing the child.
   531  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   532  		}
   533  		// n still contains at least two values and cannot be reduced.
   534  		return true, n, nil
   535  
   536  	case valueNode:
   537  		return true, nil, nil
   538  
   539  	case nil:
   540  		return false, nil, nil
   541  
   542  	case hashNode:
   543  		// We've hit a part of the trie that isn't loaded yet. Load
   544  		// the node and delete from it. This leaves all child nodes on
   545  		// the path to the value in the trie.
   546  		rn, err := t.resolveHash(n, prefix)
   547  		if err != nil {
   548  			return false, nil, err
   549  		}
   550  		dirty, nn, err := t.delete(rn, prefix, key)
   551  		if !dirty || err != nil {
   552  			return false, rn, err
   553  		}
   554  		return true, nn, nil
   555  
   556  	default:
   557  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   558  	}
   559  }
   560  
   561  func concat(s1 []byte, s2 ...byte) []byte {
   562  	r := make([]byte, len(s1)+len(s2))
   563  	copy(r, s1)
   564  	copy(r[len(s1):], s2)
   565  	return r
   566  }
   567  
   568  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   569  	if n, ok := n.(hashNode); ok {
   570  		return t.resolveHash(n, prefix)
   571  	}
   572  	return n, nil
   573  }
   574  
   575  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   576  	hash := common.BytesToHash(n)
   577  	if node := t.db.node(hash); node != nil {
   578  		return node, nil
   579  	}
   580  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   581  }
   582  
   583  func (t *Trie) resolveBlob(n hashNode, prefix []byte) ([]byte, error) {
   584  	hash := common.BytesToHash(n)
   585  	blob, _ := t.db.Node(hash)
   586  	if len(blob) != 0 {
   587  		return blob, nil
   588  	}
   589  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   590  }
   591  
   592  // Hash returns the root hash of the trie. It does not write to the
   593  // database and can be used even if the trie doesn't have one.
   594  func (t *Trie) Hash() common.Hash {
   595  	hash, cached, _ := t.hashRoot()
   596  	t.root = cached
   597  	return common.BytesToHash(hash.(hashNode))
   598  }
   599  
   600  // Commit writes all nodes to the trie's memory database, tracking the internal
   601  // and external (for account tries) references.
   602  func (t *Trie) Commit(onleaf LeafCallback) (common.Hash, int, error) {
   603  	if t.db == nil {
   604  		panic("commit called on trie with nil database")
   605  	}
   606  	defer t.tracer.reset()
   607  
   608  	if t.root == nil {
   609  		return emptyRoot, 0, nil
   610  	}
   611  	// Derive the hash for all dirty nodes first. We hold the assumption
   612  	// in the following procedure that all nodes are hashed.
   613  	rootHash := t.Hash()
   614  	h := newCommitter()
   615  	defer returnCommitterToPool(h)
   616  
   617  	// Do a quick check if we really need to commit, before we spin
   618  	// up goroutines. This can happen e.g. if we load a trie for reading storage
   619  	// values, but don't write to it.
   620  	if hashedNode, dirty := t.root.cache(); !dirty {
   621  		// Replace the root node with the origin hash in order to
   622  		// ensure all resolved nodes are dropped after the commit.
   623  		t.root = hashedNode
   624  		return rootHash, 0, nil
   625  	}
   626  	var wg sync.WaitGroup
   627  	if onleaf != nil {
   628  		h.onleaf = onleaf
   629  		h.leafCh = make(chan *leaf, leafChanSize)
   630  		wg.Add(1)
   631  		go func() {
   632  			defer wg.Done()
   633  			h.commitLoop(t.db)
   634  		}()
   635  	}
   636  	newRoot, committed, err := h.Commit(t.root, t.db)
   637  	if onleaf != nil {
   638  		// The leafch is created in newCommitter if there was an onleaf callback
   639  		// provided. The commitLoop only _reads_ from it, and the commit
   640  		// operation was the sole writer. Therefore, it's safe to close this
   641  		// channel here.
   642  		close(h.leafCh)
   643  		wg.Wait()
   644  	}
   645  	if err != nil {
   646  		return common.Hash{}, 0, err
   647  	}
   648  	t.root = newRoot
   649  	return rootHash, committed, nil
   650  }
   651  
   652  // hashRoot calculates the root hash of the given trie
   653  func (t *Trie) hashRoot() (node, node, error) {
   654  	if t.root == nil {
   655  		return hashNode(emptyRoot.Bytes()), nil, nil
   656  	}
   657  	// If the number of changes is below 100, we let one thread handle it
   658  	h := newHasher(t.unhashed >= 100)
   659  	defer returnHasherToPool(h)
   660  	hashed, cached := h.hash(t.root, true)
   661  	t.unhashed = 0
   662  	return hashed, cached, nil
   663  }
   664  
   665  // Reset drops the referenced root node and cleans all internal state.
   666  func (t *Trie) Reset() {
   667  	t.root = nil
   668  	t.owner = common.Hash{}
   669  	t.unhashed = 0
   670  	t.tracer.reset()
   671  }
   672  
   673  // Owner returns the associated trie owner.
   674  func (t *Trie) Owner() common.Hash {
   675  	return t.owner
   676  }