github.com/CryptoKass/go-ethereum@v1.9.8-0.20191108085857-de2259d27c75/signer/core/signed_data.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  	"mime"
    26  	"reflect"
    27  	"regexp"
    28  	"sort"
    29  	"strconv"
    30  	"strings"
    31  	"unicode"
    32  
    33  	"github.com/ethereum/go-ethereum/accounts"
    34  	"github.com/ethereum/go-ethereum/accounts/abi"
    35  	"github.com/ethereum/go-ethereum/common"
    36  	"github.com/ethereum/go-ethereum/common/hexutil"
    37  	"github.com/ethereum/go-ethereum/common/math"
    38  	"github.com/ethereum/go-ethereum/consensus/clique"
    39  	"github.com/ethereum/go-ethereum/core/types"
    40  	"github.com/ethereum/go-ethereum/crypto"
    41  	"github.com/ethereum/go-ethereum/rlp"
    42  )
    43  
    44  type SigFormat struct {
    45  	Mime        string
    46  	ByteVersion byte
    47  }
    48  
    49  var (
    50  	IntendedValidator = SigFormat{
    51  		accounts.MimetypeDataWithValidator,
    52  		0x00,
    53  	}
    54  	DataTyped = SigFormat{
    55  		accounts.MimetypeTypedData,
    56  		0x01,
    57  	}
    58  	ApplicationClique = SigFormat{
    59  		accounts.MimetypeClique,
    60  		0x02,
    61  	}
    62  	TextPlain = SigFormat{
    63  		accounts.MimetypeTextPlain,
    64  		0x45,
    65  	}
    66  )
    67  
    68  type ValidatorData struct {
    69  	Address common.Address
    70  	Message hexutil.Bytes
    71  }
    72  
    73  type TypedData struct {
    74  	Types       Types            `json:"types"`
    75  	PrimaryType string           `json:"primaryType"`
    76  	Domain      TypedDataDomain  `json:"domain"`
    77  	Message     TypedDataMessage `json:"message"`
    78  }
    79  
    80  type Type struct {
    81  	Name string `json:"name"`
    82  	Type string `json:"type"`
    83  }
    84  
    85  func (t *Type) isArray() bool {
    86  	return strings.HasSuffix(t.Type, "[]")
    87  }
    88  
    89  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    90  // this method returns 'Person'
    91  func (t *Type) typeName() string {
    92  	if strings.HasSuffix(t.Type, "[]") {
    93  		return strings.TrimSuffix(t.Type, "[]")
    94  	}
    95  	return t.Type
    96  }
    97  
    98  func (t *Type) isReferenceType() bool {
    99  	if len(t.Type) == 0 {
   100  		return false
   101  	}
   102  	// Reference types must have a leading uppercase characer
   103  	return unicode.IsUpper([]rune(t.Type)[0])
   104  }
   105  
   106  type Types map[string][]Type
   107  
   108  type TypePriority struct {
   109  	Type  string
   110  	Value uint
   111  }
   112  
   113  type TypedDataMessage = map[string]interface{}
   114  
   115  type TypedDataDomain struct {
   116  	Name              string                `json:"name"`
   117  	Version           string                `json:"version"`
   118  	ChainId           *math.HexOrDecimal256 `json:"chainId"`
   119  	VerifyingContract string                `json:"verifyingContract"`
   120  	Salt              string                `json:"salt"`
   121  }
   122  
   123  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   124  
   125  // sign receives a request and produces a signature
   126  //
   127  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   128  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   129  func (api *SignerAPI) sign(addr common.MixedcaseAddress, req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   130  	// We make the request prior to looking up if we actually have the account, to prevent
   131  	// account-enumeration via the API
   132  	res, err := api.UI.ApproveSignData(req)
   133  	if err != nil {
   134  		return nil, err
   135  	}
   136  	if !res.Approved {
   137  		return nil, ErrRequestDenied
   138  	}
   139  	// Look up the wallet containing the requested signer
   140  	account := accounts.Account{Address: addr.Address()}
   141  	wallet, err := api.am.Find(account)
   142  	if err != nil {
   143  		return nil, err
   144  	}
   145  	pw, err := api.lookupOrQueryPassword(account.Address,
   146  		"Password for signing",
   147  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   148  	if err != nil {
   149  		return nil, err
   150  	}
   151  	// Sign the data with the wallet
   152  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   153  	if err != nil {
   154  		return nil, err
   155  	}
   156  	if legacyV {
   157  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   158  	}
   159  	return signature, nil
   160  }
   161  
   162  // SignData signs the hash of the provided data, but does so differently
   163  // depending on the content-type specified.
   164  //
   165  // Different types of validation occur.
   166  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   167  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   168  	if err != nil {
   169  		return nil, err
   170  	}
   171  	signature, err := api.sign(addr, req, transformV)
   172  	if err != nil {
   173  		api.UI.ShowError(err.Error())
   174  		return nil, err
   175  	}
   176  	return signature, nil
   177  }
   178  
   179  // determineSignatureFormat determines which signature method should be used based upon the mime type
   180  // In the cases where it matters ensure that the charset is handled. The charset
   181  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   182  // charset, ok := params["charset"]
   183  // As it is now, we accept any charset and just treat it as 'raw'.
   184  // This method returns the mimetype for signing along with the request
   185  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   186  	var (
   187  		req          *SignDataRequest
   188  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   189  	)
   190  	mediaType, _, err := mime.ParseMediaType(contentType)
   191  	if err != nil {
   192  		return nil, useEthereumV, err
   193  	}
   194  
   195  	switch mediaType {
   196  	case IntendedValidator.Mime:
   197  		// Data with an intended validator
   198  		validatorData, err := UnmarshalValidatorData(data)
   199  		if err != nil {
   200  			return nil, useEthereumV, err
   201  		}
   202  		sighash, msg := SignTextValidator(validatorData)
   203  		messages := []*NameValueType{
   204  			{
   205  				Name:  "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
   206  				Typ:   "description",
   207  				Value: "",
   208  			},
   209  			{
   210  				Name:  "Intended validator address",
   211  				Typ:   "address",
   212  				Value: validatorData.Address.String(),
   213  			},
   214  			{
   215  				Name:  "Application-specific data",
   216  				Typ:   "hexdata",
   217  				Value: validatorData.Message,
   218  			},
   219  			{
   220  				Name:  "Full message for signing",
   221  				Typ:   "hexdata",
   222  				Value: fmt.Sprintf("0x%x", msg),
   223  			},
   224  		}
   225  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   226  	case ApplicationClique.Mime:
   227  		// Clique is the Ethereum PoA standard
   228  		stringData, ok := data.(string)
   229  		if !ok {
   230  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   231  		}
   232  		cliqueData, err := hexutil.Decode(stringData)
   233  		if err != nil {
   234  			return nil, useEthereumV, err
   235  		}
   236  		header := &types.Header{}
   237  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   238  			return nil, useEthereumV, err
   239  		}
   240  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   241  		if len(header.Extra) < 65 {
   242  			// Need to add it back, to get a suitable length for hashing
   243  			newExtra := make([]byte, len(header.Extra)+65)
   244  			copy(newExtra, header.Extra)
   245  			header.Extra = newExtra
   246  		}
   247  		// Get back the rlp data, encoded by us
   248  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   249  		if err != nil {
   250  			return nil, useEthereumV, err
   251  		}
   252  		messages := []*NameValueType{
   253  			{
   254  				Name:  "Clique header",
   255  				Typ:   "clique",
   256  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   257  			},
   258  		}
   259  		// Clique uses V on the form 0 or 1
   260  		useEthereumV = false
   261  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
   262  	default: // also case TextPlain.Mime:
   263  		// Calculates an Ethereum ECDSA signature for:
   264  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   265  		// We expect it to be a string
   266  		if stringData, ok := data.(string); !ok {
   267  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   268  		} else {
   269  			if textData, err := hexutil.Decode(stringData); err != nil {
   270  				return nil, useEthereumV, err
   271  			} else {
   272  				sighash, msg := accounts.TextAndHash(textData)
   273  				messages := []*NameValueType{
   274  					{
   275  						Name:  "message",
   276  						Typ:   accounts.MimetypeTextPlain,
   277  						Value: msg,
   278  					},
   279  				}
   280  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   281  			}
   282  		}
   283  	}
   284  	req.Address = addr
   285  	req.Meta = MetadataFromContext(ctx)
   286  	return req, useEthereumV, nil
   287  }
   288  
   289  // SignTextWithValidator signs the given message which can be further recovered
   290  // with the given validator.
   291  // hash = keccak256("\x19\x00"${address}${data}).
   292  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   293  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   294  	return crypto.Keccak256([]byte(msg)), msg
   295  }
   296  
   297  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   298  // signing. It is the hash of the entire header apart from the 65 byte signature
   299  // contained at the end of the extra data.
   300  //
   301  // The method requires the extra data to be at least 65 bytes -- the original implementation
   302  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   303  // and simply return an error instead
   304  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   305  	if len(header.Extra) < 65 {
   306  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   307  		return
   308  	}
   309  	rlp = clique.CliqueRLP(header)
   310  	hash = clique.SealHash(header).Bytes()
   311  	return hash, rlp, err
   312  }
   313  
   314  // SignTypedData signs EIP-712 conformant typed data
   315  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   316  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   317  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   318  	if err != nil {
   319  		return nil, err
   320  	}
   321  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   322  	if err != nil {
   323  		return nil, err
   324  	}
   325  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   326  	sighash := crypto.Keccak256(rawData)
   327  	messages, err := typedData.Format()
   328  	if err != nil {
   329  		return nil, err
   330  	}
   331  	req := &SignDataRequest{ContentType: DataTyped.Mime, Rawdata: rawData, Messages: messages, Hash: sighash}
   332  	signature, err := api.sign(addr, req, true)
   333  	if err != nil {
   334  		api.UI.ShowError(err.Error())
   335  		return nil, err
   336  	}
   337  	return signature, nil
   338  }
   339  
   340  // HashStruct generates a keccak256 hash of the encoding of the provided data
   341  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   342  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   343  	if err != nil {
   344  		return nil, err
   345  	}
   346  	return crypto.Keccak256(encodedData), nil
   347  }
   348  
   349  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   350  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   351  	includes := func(arr []string, str string) bool {
   352  		for _, obj := range arr {
   353  			if obj == str {
   354  				return true
   355  			}
   356  		}
   357  		return false
   358  	}
   359  
   360  	if includes(found, primaryType) {
   361  		return found
   362  	}
   363  	if typedData.Types[primaryType] == nil {
   364  		return found
   365  	}
   366  	found = append(found, primaryType)
   367  	for _, field := range typedData.Types[primaryType] {
   368  		for _, dep := range typedData.Dependencies(field.Type, found) {
   369  			if !includes(found, dep) {
   370  				found = append(found, dep)
   371  			}
   372  		}
   373  	}
   374  	return found
   375  }
   376  
   377  // EncodeType generates the following encoding:
   378  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   379  //
   380  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   381  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   382  	// Get dependencies primary first, then alphabetical
   383  	deps := typedData.Dependencies(primaryType, []string{})
   384  	if len(deps) > 0 {
   385  		slicedDeps := deps[1:]
   386  		sort.Strings(slicedDeps)
   387  		deps = append([]string{primaryType}, slicedDeps...)
   388  	}
   389  
   390  	// Format as a string with fields
   391  	var buffer bytes.Buffer
   392  	for _, dep := range deps {
   393  		buffer.WriteString(dep)
   394  		buffer.WriteString("(")
   395  		for _, obj := range typedData.Types[dep] {
   396  			buffer.WriteString(obj.Type)
   397  			buffer.WriteString(" ")
   398  			buffer.WriteString(obj.Name)
   399  			buffer.WriteString(",")
   400  		}
   401  		buffer.Truncate(buffer.Len() - 1)
   402  		buffer.WriteString(")")
   403  	}
   404  	return buffer.Bytes()
   405  }
   406  
   407  // TypeHash creates the keccak256 hash  of the data
   408  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   409  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   410  }
   411  
   412  // EncodeData generates the following encoding:
   413  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   414  //
   415  // each encoded member is 32-byte long
   416  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   417  	if err := typedData.validate(); err != nil {
   418  		return nil, err
   419  	}
   420  
   421  	buffer := bytes.Buffer{}
   422  
   423  	// Verify extra data
   424  	if len(typedData.Types[primaryType]) < len(data) {
   425  		return nil, errors.New("there is extra data provided in the message")
   426  	}
   427  
   428  	// Add typehash
   429  	buffer.Write(typedData.TypeHash(primaryType))
   430  
   431  	// Add field contents. Structs and arrays have special handlers.
   432  	for _, field := range typedData.Types[primaryType] {
   433  		encType := field.Type
   434  		encValue := data[field.Name]
   435  		if encType[len(encType)-1:] == "]" {
   436  			arrayValue, ok := encValue.([]interface{})
   437  			if !ok {
   438  				return nil, dataMismatchError(encType, encValue)
   439  			}
   440  
   441  			arrayBuffer := bytes.Buffer{}
   442  			parsedType := strings.Split(encType, "[")[0]
   443  			for _, item := range arrayValue {
   444  				if typedData.Types[parsedType] != nil {
   445  					mapValue, ok := item.(map[string]interface{})
   446  					if !ok {
   447  						return nil, dataMismatchError(parsedType, item)
   448  					}
   449  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   450  					if err != nil {
   451  						return nil, err
   452  					}
   453  					arrayBuffer.Write(encodedData)
   454  				} else {
   455  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   456  					if err != nil {
   457  						return nil, err
   458  					}
   459  					arrayBuffer.Write(bytesValue)
   460  				}
   461  			}
   462  
   463  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   464  		} else if typedData.Types[field.Type] != nil {
   465  			mapValue, ok := encValue.(map[string]interface{})
   466  			if !ok {
   467  				return nil, dataMismatchError(encType, encValue)
   468  			}
   469  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   470  			if err != nil {
   471  				return nil, err
   472  			}
   473  			buffer.Write(crypto.Keccak256(encodedData))
   474  		} else {
   475  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   476  			if err != nil {
   477  				return nil, err
   478  			}
   479  			buffer.Write(byteValue)
   480  		}
   481  	}
   482  	return buffer.Bytes(), nil
   483  }
   484  
   485  func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
   486  	var (
   487  		length int
   488  		signed = strings.HasPrefix(encType, "int")
   489  		b      *big.Int
   490  	)
   491  	if encType == "int" || encType == "uint" {
   492  		length = 256
   493  	} else {
   494  		lengthStr := ""
   495  		if strings.HasPrefix(encType, "uint") {
   496  			lengthStr = strings.TrimPrefix(encType, "uint")
   497  		} else {
   498  			lengthStr = strings.TrimPrefix(encType, "int")
   499  		}
   500  		atoiSize, err := strconv.Atoi(lengthStr)
   501  		if err != nil {
   502  			return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   503  		}
   504  		length = atoiSize
   505  	}
   506  	switch v := encValue.(type) {
   507  	case *math.HexOrDecimal256:
   508  		b = (*big.Int)(v)
   509  	case string:
   510  		var hexIntValue math.HexOrDecimal256
   511  		if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
   512  			return nil, err
   513  		}
   514  		b = (*big.Int)(&hexIntValue)
   515  	case float64:
   516  		// JSON parses non-strings as float64. Fail if we cannot
   517  		// convert it losslessly
   518  		if float64(int64(v)) == v {
   519  			b = big.NewInt(int64(v))
   520  		} else {
   521  			return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
   522  		}
   523  	}
   524  	if b == nil {
   525  		return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
   526  	}
   527  	if b.BitLen() > length {
   528  		return nil, fmt.Errorf("integer larger than '%v'", encType)
   529  	}
   530  	if !signed && b.Sign() == -1 {
   531  		return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
   532  	}
   533  	return b, nil
   534  }
   535  
   536  // EncodePrimitiveValue deals with the primitive values found
   537  // while searching through the typed data
   538  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   539  	switch encType {
   540  	case "address":
   541  		stringValue, ok := encValue.(string)
   542  		if !ok || !common.IsHexAddress(stringValue) {
   543  			return nil, dataMismatchError(encType, encValue)
   544  		}
   545  		retval := make([]byte, 32)
   546  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   547  		return retval, nil
   548  	case "bool":
   549  		boolValue, ok := encValue.(bool)
   550  		if !ok {
   551  			return nil, dataMismatchError(encType, encValue)
   552  		}
   553  		if boolValue {
   554  			return math.PaddedBigBytes(common.Big1, 32), nil
   555  		}
   556  		return math.PaddedBigBytes(common.Big0, 32), nil
   557  	case "string":
   558  		strVal, ok := encValue.(string)
   559  		if !ok {
   560  			return nil, dataMismatchError(encType, encValue)
   561  		}
   562  		return crypto.Keccak256([]byte(strVal)), nil
   563  	case "bytes":
   564  		bytesValue, ok := encValue.([]byte)
   565  		if !ok {
   566  			return nil, dataMismatchError(encType, encValue)
   567  		}
   568  		return crypto.Keccak256(bytesValue), nil
   569  	}
   570  	if strings.HasPrefix(encType, "bytes") {
   571  		lengthStr := strings.TrimPrefix(encType, "bytes")
   572  		length, err := strconv.Atoi(lengthStr)
   573  		if err != nil {
   574  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   575  		}
   576  		if length < 0 || length > 32 {
   577  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   578  		}
   579  		if byteValue, ok := encValue.(hexutil.Bytes); !ok {
   580  			return nil, dataMismatchError(encType, encValue)
   581  		} else {
   582  			return math.PaddedBigBytes(new(big.Int).SetBytes(byteValue), 32), nil
   583  		}
   584  	}
   585  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   586  		b, err := parseInteger(encType, encValue)
   587  		if err != nil {
   588  			return nil, err
   589  		}
   590  		return abi.U256(b), nil
   591  	}
   592  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   593  
   594  }
   595  
   596  // dataMismatchError generates an error for a mismatch between
   597  // the provided type and data
   598  func dataMismatchError(encType string, encValue interface{}) error {
   599  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   600  }
   601  
   602  // EcRecover recovers the address associated with the given sig.
   603  // Only compatible with `text/plain`
   604  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   605  	// Returns the address for the Account that was used to create the signature.
   606  	//
   607  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   608  	// the address of:
   609  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   610  	// addr = ecrecover(hash, signature)
   611  	//
   612  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   613  	// the V value must be be 27 or 28 for legacy reasons.
   614  	//
   615  	// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
   616  	if len(sig) != 65 {
   617  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   618  	}
   619  	if sig[64] != 27 && sig[64] != 28 {
   620  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   621  	}
   622  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   623  	hash := accounts.TextHash(data)
   624  	rpk, err := crypto.SigToPub(hash, sig)
   625  	if err != nil {
   626  		return common.Address{}, err
   627  	}
   628  	return crypto.PubkeyToAddress(*rpk), nil
   629  }
   630  
   631  // UnmarshalValidatorData converts the bytes input to typed data
   632  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   633  	raw, ok := data.(map[string]interface{})
   634  	if !ok {
   635  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   636  	}
   637  	addr, ok := raw["address"].(string)
   638  	if !ok {
   639  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   640  	}
   641  	addrBytes, err := hexutil.Decode(addr)
   642  	if err != nil {
   643  		return ValidatorData{}, err
   644  	}
   645  	if !ok || len(addrBytes) == 0 {
   646  		return ValidatorData{}, errors.New("validator address is undefined")
   647  	}
   648  
   649  	message, ok := raw["message"].(string)
   650  	if !ok {
   651  		return ValidatorData{}, errors.New("message is not sent as a string")
   652  	}
   653  	messageBytes, err := hexutil.Decode(message)
   654  	if err != nil {
   655  		return ValidatorData{}, err
   656  	}
   657  	if !ok || len(messageBytes) == 0 {
   658  		return ValidatorData{}, errors.New("message is undefined")
   659  	}
   660  
   661  	return ValidatorData{
   662  		Address: common.BytesToAddress(addrBytes),
   663  		Message: messageBytes,
   664  	}, nil
   665  }
   666  
   667  // validate makes sure the types are sound
   668  func (typedData *TypedData) validate() error {
   669  	if err := typedData.Types.validate(); err != nil {
   670  		return err
   671  	}
   672  	if err := typedData.Domain.validate(); err != nil {
   673  		return err
   674  	}
   675  	return nil
   676  }
   677  
   678  // Map generates a map version of the typed data
   679  func (typedData *TypedData) Map() map[string]interface{} {
   680  	dataMap := map[string]interface{}{
   681  		"types":       typedData.Types,
   682  		"domain":      typedData.Domain.Map(),
   683  		"primaryType": typedData.PrimaryType,
   684  		"message":     typedData.Message,
   685  	}
   686  	return dataMap
   687  }
   688  
   689  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   690  // without in-depth knowledge about 712 rules
   691  func (typedData *TypedData) Format() ([]*NameValueType, error) {
   692  	domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
   693  	if err != nil {
   694  		return nil, err
   695  	}
   696  	ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
   697  	if err != nil {
   698  		return nil, err
   699  	}
   700  	var nvts []*NameValueType
   701  	nvts = append(nvts, &NameValueType{
   702  		Name:  "EIP712Domain",
   703  		Value: domain,
   704  		Typ:   "domain",
   705  	})
   706  	nvts = append(nvts, &NameValueType{
   707  		Name:  typedData.PrimaryType,
   708  		Value: ptype,
   709  		Typ:   "primary type",
   710  	})
   711  	return nvts, nil
   712  }
   713  
   714  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
   715  	var output []*NameValueType
   716  
   717  	// Add field contents. Structs and arrays have special handlers.
   718  	for _, field := range typedData.Types[primaryType] {
   719  		encName := field.Name
   720  		encValue := data[encName]
   721  		item := &NameValueType{
   722  			Name: encName,
   723  			Typ:  field.Type,
   724  		}
   725  		if field.isArray() {
   726  			arrayValue, _ := encValue.([]interface{})
   727  			parsedType := field.typeName()
   728  			for _, v := range arrayValue {
   729  				if typedData.Types[parsedType] != nil {
   730  					mapValue, _ := v.(map[string]interface{})
   731  					mapOutput, err := typedData.formatData(parsedType, mapValue)
   732  					if err != nil {
   733  						return nil, err
   734  					}
   735  					item.Value = mapOutput
   736  				} else {
   737  					primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   738  					if err != nil {
   739  						return nil, err
   740  					}
   741  					item.Value = primitiveOutput
   742  				}
   743  			}
   744  		} else if typedData.Types[field.Type] != nil {
   745  			if mapValue, ok := encValue.(map[string]interface{}); ok {
   746  				mapOutput, err := typedData.formatData(field.Type, mapValue)
   747  				if err != nil {
   748  					return nil, err
   749  				}
   750  				item.Value = mapOutput
   751  			} else {
   752  				item.Value = "<nil>"
   753  			}
   754  		} else {
   755  			primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   756  			if err != nil {
   757  				return nil, err
   758  			}
   759  			item.Value = primitiveOutput
   760  		}
   761  		output = append(output, item)
   762  	}
   763  	return output, nil
   764  }
   765  
   766  func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
   767  	switch encType {
   768  	case "address":
   769  		if stringValue, ok := encValue.(string); !ok {
   770  			return "", fmt.Errorf("could not format value %v as address", encValue)
   771  		} else {
   772  			return common.HexToAddress(stringValue).String(), nil
   773  		}
   774  	case "bool":
   775  		if boolValue, ok := encValue.(bool); !ok {
   776  			return "", fmt.Errorf("could not format value %v as bool", encValue)
   777  		} else {
   778  			return fmt.Sprintf("%t", boolValue), nil
   779  		}
   780  	case "bytes", "string":
   781  		return fmt.Sprintf("%s", encValue), nil
   782  	}
   783  	if strings.HasPrefix(encType, "bytes") {
   784  		return fmt.Sprintf("%s", encValue), nil
   785  
   786  	}
   787  	if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   788  		if b, err := parseInteger(encType, encValue); err != nil {
   789  			return "", err
   790  		} else {
   791  			return fmt.Sprintf("%d (0x%x)", b, b), nil
   792  		}
   793  	}
   794  	return "", fmt.Errorf("unhandled type %v", encType)
   795  }
   796  
   797  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   798  // json structures used to communicate signing-info about typed data with the UI
   799  type NameValueType struct {
   800  	Name  string      `json:"name"`
   801  	Value interface{} `json:"value"`
   802  	Typ   string      `json:"type"`
   803  }
   804  
   805  // Pprint returns a pretty-printed version of nvt
   806  func (nvt *NameValueType) Pprint(depth int) string {
   807  	output := bytes.Buffer{}
   808  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   809  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   810  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   811  		output.WriteString("\n")
   812  		for _, next := range nvts {
   813  			sublevel := next.Pprint(depth + 1)
   814  			output.WriteString(sublevel)
   815  		}
   816  	} else {
   817  		output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   818  	}
   819  	return output.String()
   820  }
   821  
   822  // Validate checks if the types object is conformant to the specs
   823  func (t Types) validate() error {
   824  	for typeKey, typeArr := range t {
   825  		if len(typeKey) == 0 {
   826  			return fmt.Errorf("empty type key")
   827  		}
   828  		for i, typeObj := range typeArr {
   829  			if len(typeObj.Type) == 0 {
   830  				return fmt.Errorf("type %v:%d: empty Type", typeKey, i)
   831  			}
   832  			if len(typeObj.Name) == 0 {
   833  				return fmt.Errorf("type %v:%d: empty Name", typeKey, i)
   834  			}
   835  			if typeKey == typeObj.Type {
   836  				return fmt.Errorf("type '%s' cannot reference itself", typeObj.Type)
   837  			}
   838  			if typeObj.isReferenceType() {
   839  				if _, exist := t[typeObj.typeName()]; !exist {
   840  					return fmt.Errorf("reference type '%s' is undefined", typeObj.Type)
   841  				}
   842  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   843  					return fmt.Errorf("unknown reference type '%s", typeObj.Type)
   844  				}
   845  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   846  				return fmt.Errorf("unknown type '%s'", typeObj.Type)
   847  			}
   848  		}
   849  	}
   850  	return nil
   851  }
   852  
   853  // Checks if the primitive value is valid
   854  func isPrimitiveTypeValid(primitiveType string) bool {
   855  	if primitiveType == "address" ||
   856  		primitiveType == "address[]" ||
   857  		primitiveType == "bool" ||
   858  		primitiveType == "bool[]" ||
   859  		primitiveType == "string" ||
   860  		primitiveType == "string[]" {
   861  		return true
   862  	}
   863  	if primitiveType == "bytes" ||
   864  		primitiveType == "bytes[]" ||
   865  		primitiveType == "bytes1" ||
   866  		primitiveType == "bytes1[]" ||
   867  		primitiveType == "bytes2" ||
   868  		primitiveType == "bytes2[]" ||
   869  		primitiveType == "bytes3" ||
   870  		primitiveType == "bytes3[]" ||
   871  		primitiveType == "bytes4" ||
   872  		primitiveType == "bytes4[]" ||
   873  		primitiveType == "bytes5" ||
   874  		primitiveType == "bytes5[]" ||
   875  		primitiveType == "bytes6" ||
   876  		primitiveType == "bytes6[]" ||
   877  		primitiveType == "bytes7" ||
   878  		primitiveType == "bytes7[]" ||
   879  		primitiveType == "bytes8" ||
   880  		primitiveType == "bytes8[]" ||
   881  		primitiveType == "bytes9" ||
   882  		primitiveType == "bytes9[]" ||
   883  		primitiveType == "bytes10" ||
   884  		primitiveType == "bytes10[]" ||
   885  		primitiveType == "bytes11" ||
   886  		primitiveType == "bytes11[]" ||
   887  		primitiveType == "bytes12" ||
   888  		primitiveType == "bytes12[]" ||
   889  		primitiveType == "bytes13" ||
   890  		primitiveType == "bytes13[]" ||
   891  		primitiveType == "bytes14" ||
   892  		primitiveType == "bytes14[]" ||
   893  		primitiveType == "bytes15" ||
   894  		primitiveType == "bytes15[]" ||
   895  		primitiveType == "bytes16" ||
   896  		primitiveType == "bytes16[]" ||
   897  		primitiveType == "bytes17" ||
   898  		primitiveType == "bytes17[]" ||
   899  		primitiveType == "bytes18" ||
   900  		primitiveType == "bytes18[]" ||
   901  		primitiveType == "bytes19" ||
   902  		primitiveType == "bytes19[]" ||
   903  		primitiveType == "bytes20" ||
   904  		primitiveType == "bytes20[]" ||
   905  		primitiveType == "bytes21" ||
   906  		primitiveType == "bytes21[]" ||
   907  		primitiveType == "bytes22" ||
   908  		primitiveType == "bytes22[]" ||
   909  		primitiveType == "bytes23" ||
   910  		primitiveType == "bytes23[]" ||
   911  		primitiveType == "bytes24" ||
   912  		primitiveType == "bytes24[]" ||
   913  		primitiveType == "bytes25" ||
   914  		primitiveType == "bytes25[]" ||
   915  		primitiveType == "bytes26" ||
   916  		primitiveType == "bytes26[]" ||
   917  		primitiveType == "bytes27" ||
   918  		primitiveType == "bytes27[]" ||
   919  		primitiveType == "bytes28" ||
   920  		primitiveType == "bytes28[]" ||
   921  		primitiveType == "bytes29" ||
   922  		primitiveType == "bytes29[]" ||
   923  		primitiveType == "bytes30" ||
   924  		primitiveType == "bytes30[]" ||
   925  		primitiveType == "bytes31" ||
   926  		primitiveType == "bytes31[]" {
   927  		return true
   928  	}
   929  	if primitiveType == "int" ||
   930  		primitiveType == "int[]" ||
   931  		primitiveType == "int8" ||
   932  		primitiveType == "int8[]" ||
   933  		primitiveType == "int16" ||
   934  		primitiveType == "int16[]" ||
   935  		primitiveType == "int32" ||
   936  		primitiveType == "int32[]" ||
   937  		primitiveType == "int64" ||
   938  		primitiveType == "int64[]" ||
   939  		primitiveType == "int128" ||
   940  		primitiveType == "int128[]" ||
   941  		primitiveType == "int256" ||
   942  		primitiveType == "int256[]" {
   943  		return true
   944  	}
   945  	if primitiveType == "uint" ||
   946  		primitiveType == "uint[]" ||
   947  		primitiveType == "uint8" ||
   948  		primitiveType == "uint8[]" ||
   949  		primitiveType == "uint16" ||
   950  		primitiveType == "uint16[]" ||
   951  		primitiveType == "uint32" ||
   952  		primitiveType == "uint32[]" ||
   953  		primitiveType == "uint64" ||
   954  		primitiveType == "uint64[]" ||
   955  		primitiveType == "uint128" ||
   956  		primitiveType == "uint128[]" ||
   957  		primitiveType == "uint256" ||
   958  		primitiveType == "uint256[]" {
   959  		return true
   960  	}
   961  	return false
   962  }
   963  
   964  // validate checks if the given domain is valid, i.e. contains at least
   965  // the minimum viable keys and values
   966  func (domain *TypedDataDomain) validate() error {
   967  	if domain.ChainId == nil {
   968  		return errors.New("chainId must be specified according to EIP-155")
   969  	}
   970  
   971  	if len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
   972  		return errors.New("domain is undefined")
   973  	}
   974  
   975  	return nil
   976  }
   977  
   978  // Map is a helper function to generate a map version of the domain
   979  func (domain *TypedDataDomain) Map() map[string]interface{} {
   980  	dataMap := map[string]interface{}{}
   981  
   982  	if domain.ChainId != nil {
   983  		dataMap["chainId"] = domain.ChainId
   984  	}
   985  
   986  	if len(domain.Name) > 0 {
   987  		dataMap["name"] = domain.Name
   988  	}
   989  
   990  	if len(domain.Version) > 0 {
   991  		dataMap["version"] = domain.Version
   992  	}
   993  
   994  	if len(domain.VerifyingContract) > 0 {
   995  		dataMap["verifyingContract"] = domain.VerifyingContract
   996  	}
   997  
   998  	if len(domain.Salt) > 0 {
   999  		dataMap["salt"] = domain.Salt
  1000  	}
  1001  	return dataMap
  1002  }