github.com/Debrief-BC/go-debrief@v0.0.0-20200420203408-0c26ca968123/core/state/snapshot/iterator_fast.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package snapshot
    18  
    19  import (
    20  	"bytes"
    21  	"fmt"
    22  	"sort"
    23  
    24  	"github.com/Debrief-BC/go-debrief/common"
    25  )
    26  
    27  // weightedAccountIterator is an account iterator with an assigned weight. It is
    28  // used to prioritise which account is the correct one if multiple iterators find
    29  // the same one (modified in multiple consecutive blocks).
    30  type weightedAccountIterator struct {
    31  	it       AccountIterator
    32  	priority int
    33  }
    34  
    35  // weightedAccountIterators is a set of iterators implementing the sort.Interface.
    36  type weightedAccountIterators []*weightedAccountIterator
    37  
    38  // Len implements sort.Interface, returning the number of active iterators.
    39  func (its weightedAccountIterators) Len() int { return len(its) }
    40  
    41  // Less implements sort.Interface, returning which of two iterators in the stack
    42  // is before the other.
    43  func (its weightedAccountIterators) Less(i, j int) bool {
    44  	// Order the iterators primarily by the account hashes
    45  	hashI := its[i].it.Hash()
    46  	hashJ := its[j].it.Hash()
    47  
    48  	switch bytes.Compare(hashI[:], hashJ[:]) {
    49  	case -1:
    50  		return true
    51  	case 1:
    52  		return false
    53  	}
    54  	// Same account in multiple layers, split by priority
    55  	return its[i].priority < its[j].priority
    56  }
    57  
    58  // Swap implements sort.Interface, swapping two entries in the iterator stack.
    59  func (its weightedAccountIterators) Swap(i, j int) {
    60  	its[i], its[j] = its[j], its[i]
    61  }
    62  
    63  // fastAccountIterator is a more optimized multi-layer iterator which maintains a
    64  // direct mapping of all iterators leading down to the bottom layer.
    65  type fastAccountIterator struct {
    66  	tree       *Tree       // Snapshot tree to reinitialize stale sub-iterators with
    67  	root       common.Hash // Root hash to reinitialize stale sub-iterators through
    68  	curAccount []byte
    69  
    70  	iterators weightedAccountIterators
    71  	initiated bool
    72  	fail      error
    73  }
    74  
    75  // newFastAccountIterator creates a new hierarhical account iterator with one
    76  // element per diff layer. The returned combo iterator can be used to walk over
    77  // the entire snapshot diff stack simultaneously.
    78  func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
    79  	snap := tree.Snapshot(root)
    80  	if snap == nil {
    81  		return nil, fmt.Errorf("unknown snapshot: %x", root)
    82  	}
    83  	fi := &fastAccountIterator{
    84  		tree: tree,
    85  		root: root,
    86  	}
    87  	current := snap.(snapshot)
    88  	for depth := 0; current != nil; depth++ {
    89  		fi.iterators = append(fi.iterators, &weightedAccountIterator{
    90  			it:       current.AccountIterator(seek),
    91  			priority: depth,
    92  		})
    93  		current = current.Parent()
    94  	}
    95  	fi.init()
    96  	return fi, nil
    97  }
    98  
    99  // init walks over all the iterators and resolves any clashes between them, after
   100  // which it prepares the stack for step-by-step iteration.
   101  func (fi *fastAccountIterator) init() {
   102  	// Track which account hashes are iterators positioned on
   103  	var positioned = make(map[common.Hash]int)
   104  
   105  	// Position all iterators and track how many remain live
   106  	for i := 0; i < len(fi.iterators); i++ {
   107  		// Retrieve the first element and if it clashes with a previous iterator,
   108  		// advance either the current one or the old one. Repeat until nothing is
   109  		// clashing any more.
   110  		it := fi.iterators[i]
   111  		for {
   112  			// If the iterator is exhausted, drop it off the end
   113  			if !it.it.Next() {
   114  				it.it.Release()
   115  				last := len(fi.iterators) - 1
   116  
   117  				fi.iterators[i] = fi.iterators[last]
   118  				fi.iterators[last] = nil
   119  				fi.iterators = fi.iterators[:last]
   120  
   121  				i--
   122  				break
   123  			}
   124  			// The iterator is still alive, check for collisions with previous ones
   125  			hash := it.it.Hash()
   126  			if other, exist := positioned[hash]; !exist {
   127  				positioned[hash] = i
   128  				break
   129  			} else {
   130  				// Iterators collide, one needs to be progressed, use priority to
   131  				// determine which.
   132  				//
   133  				// This whole else-block can be avoided, if we instead
   134  				// do an initial priority-sort of the iterators. If we do that,
   135  				// then we'll only wind up here if a lower-priority (preferred) iterator
   136  				// has the same value, and then we will always just continue.
   137  				// However, it costs an extra sort, so it's probably not better
   138  				if fi.iterators[other].priority < it.priority {
   139  					// The 'it' should be progressed
   140  					continue
   141  				} else {
   142  					// The 'other' should be progressed, swap them
   143  					it = fi.iterators[other]
   144  					fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
   145  					continue
   146  				}
   147  			}
   148  		}
   149  	}
   150  	// Re-sort the entire list
   151  	sort.Sort(fi.iterators)
   152  	fi.initiated = false
   153  }
   154  
   155  // Next steps the iterator forward one element, returning false if exhausted.
   156  func (fi *fastAccountIterator) Next() bool {
   157  	if len(fi.iterators) == 0 {
   158  		return false
   159  	}
   160  	if !fi.initiated {
   161  		// Don't forward first time -- we had to 'Next' once in order to
   162  		// do the sorting already
   163  		fi.initiated = true
   164  		fi.curAccount = fi.iterators[0].it.Account()
   165  		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
   166  			fi.fail = innerErr
   167  			return false
   168  		}
   169  		if fi.curAccount != nil {
   170  			return true
   171  		}
   172  		// Implicit else: we've hit a nil-account, and need to fall through to the
   173  		// loop below to land on something non-nil
   174  	}
   175  	// If an account is deleted in one of the layers, the key will still be there,
   176  	// but the actual value will be nil. However, the iterator should not
   177  	// export nil-values (but instead simply omit the key), so we need to loop
   178  	// here until we either
   179  	//  - get a non-nil value,
   180  	//  - hit an error,
   181  	//  - or exhaust the iterator
   182  	for {
   183  		if !fi.next(0) {
   184  			return false // exhausted
   185  		}
   186  		fi.curAccount = fi.iterators[0].it.Account()
   187  		if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
   188  			fi.fail = innerErr
   189  			return false // error
   190  		}
   191  		if fi.curAccount != nil {
   192  			break // non-nil value found
   193  		}
   194  	}
   195  	return true
   196  }
   197  
   198  // next handles the next operation internally and should be invoked when we know
   199  // that two elements in the list may have the same value.
   200  //
   201  // For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
   202  // invoke next(3), which will call Next on elem 3 (the second '5') and will
   203  // cascade along the list, applying the same operation if needed.
   204  func (fi *fastAccountIterator) next(idx int) bool {
   205  	// If this particular iterator got exhausted, remove it and return true (the
   206  	// next one is surely not exhausted yet, otherwise it would have been removed
   207  	// already).
   208  	if it := fi.iterators[idx].it; !it.Next() {
   209  		it.Release()
   210  
   211  		fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
   212  		return len(fi.iterators) > 0
   213  	}
   214  	// If there's noone left to cascade into, return
   215  	if idx == len(fi.iterators)-1 {
   216  		return true
   217  	}
   218  	// We next-ed the iterator at 'idx', now we may have to re-sort that element
   219  	var (
   220  		cur, next         = fi.iterators[idx], fi.iterators[idx+1]
   221  		curHash, nextHash = cur.it.Hash(), next.it.Hash()
   222  	)
   223  	if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
   224  		// It is still in correct place
   225  		return true
   226  	} else if diff == 0 && cur.priority < next.priority {
   227  		// So still in correct place, but we need to iterate on the next
   228  		fi.next(idx + 1)
   229  		return true
   230  	}
   231  	// At this point, the iterator is in the wrong location, but the remaining
   232  	// list is sorted. Find out where to move the item.
   233  	clash := -1
   234  	index := sort.Search(len(fi.iterators), func(n int) bool {
   235  		// The iterator always advances forward, so anything before the old slot
   236  		// is known to be behind us, so just skip them altogether. This actually
   237  		// is an important clause since the sort order got invalidated.
   238  		if n < idx {
   239  			return false
   240  		}
   241  		if n == len(fi.iterators)-1 {
   242  			// Can always place an elem last
   243  			return true
   244  		}
   245  		nextHash := fi.iterators[n+1].it.Hash()
   246  		if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
   247  			return true
   248  		} else if diff > 0 {
   249  			return false
   250  		}
   251  		// The elem we're placing it next to has the same value,
   252  		// so whichever winds up on n+1 will need further iteraton
   253  		clash = n + 1
   254  
   255  		return cur.priority < fi.iterators[n+1].priority
   256  	})
   257  	fi.move(idx, index)
   258  	if clash != -1 {
   259  		fi.next(clash)
   260  	}
   261  	return true
   262  }
   263  
   264  // move advances an iterator to another position in the list.
   265  func (fi *fastAccountIterator) move(index, newpos int) {
   266  	elem := fi.iterators[index]
   267  	copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
   268  	fi.iterators[newpos] = elem
   269  }
   270  
   271  // Error returns any failure that occurred during iteration, which might have
   272  // caused a premature iteration exit (e.g. snapshot stack becoming stale).
   273  func (fi *fastAccountIterator) Error() error {
   274  	return fi.fail
   275  }
   276  
   277  // Hash returns the current key
   278  func (fi *fastAccountIterator) Hash() common.Hash {
   279  	return fi.iterators[0].it.Hash()
   280  }
   281  
   282  // Account returns the current key
   283  func (fi *fastAccountIterator) Account() []byte {
   284  	return fi.curAccount
   285  }
   286  
   287  // Release iterates over all the remaining live layer iterators and releases each
   288  // of thme individually.
   289  func (fi *fastAccountIterator) Release() {
   290  	for _, it := range fi.iterators {
   291  		it.it.Release()
   292  	}
   293  	fi.iterators = nil
   294  }
   295  
   296  // Debug is a convencience helper during testing
   297  func (fi *fastAccountIterator) Debug() {
   298  	for _, it := range fi.iterators {
   299  		fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
   300  	}
   301  	fmt.Println()
   302  }