github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/compile/internal/gc/bimport.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Binary package import. 6 // See bexport.go for the export data format and how 7 // to make a format change. 8 9 package gc 10 11 import ( 12 "bufio" 13 "encoding/binary" 14 "fmt" 15 "math/big" 16 "strconv" 17 "strings" 18 ) 19 20 // The overall structure of Import is symmetric to Export: For each 21 // export method in bexport.go there is a matching and symmetric method 22 // in bimport.go. Changing the export format requires making symmetric 23 // changes to bimport.go and bexport.go. 24 25 type importer struct { 26 in *bufio.Reader 27 buf []byte // reused for reading strings 28 version int // export format version 29 30 // object lists, in order of deserialization 31 strList []string 32 pkgList []*Pkg 33 typList []*Type 34 funcList []*Node // nil entry means already declared 35 trackAllTypes bool 36 37 // for delayed type verification 38 cmpList []struct{ pt, t *Type } 39 40 // position encoding 41 posInfoFormat bool 42 prevFile string 43 prevLine int 44 45 // debugging support 46 debugFormat bool 47 read int // bytes read 48 } 49 50 // Import populates importpkg from the serialized package data. 51 func Import(in *bufio.Reader) { 52 p := importer{ 53 in: in, 54 version: -1, // unknown version 55 strList: []string{""}, // empty string is mapped to 0 56 } 57 58 // read version info 59 var versionstr string 60 if b := p.rawByte(); b == 'c' || b == 'd' { 61 // Go1.7 encoding; first byte encodes low-level 62 // encoding format (compact vs debug). 63 // For backward-compatibility only (avoid problems with 64 // old installed packages). Newly compiled packages use 65 // the extensible format string. 66 // TODO(gri) Remove this support eventually; after Go1.8. 67 if b == 'd' { 68 p.debugFormat = true 69 } 70 p.trackAllTypes = p.rawByte() == 'a' 71 p.posInfoFormat = p.bool() 72 versionstr = p.string() 73 if versionstr == "v1" { 74 p.version = 0 75 } 76 } else { 77 // Go1.8 extensible encoding 78 // read version string and extract version number (ignore anything after the version number) 79 versionstr = p.rawStringln(b) 80 if s := strings.SplitN(versionstr, " ", 3); len(s) >= 2 && s[0] == "version" { 81 if v, err := strconv.Atoi(s[1]); err == nil && v > 0 { 82 p.version = v 83 } 84 } 85 } 86 87 // read version specific flags - extend as necessary 88 switch p.version { 89 // case 4: 90 // ... 91 // fallthrough 92 case 3, 2, 1: 93 p.debugFormat = p.rawStringln(p.rawByte()) == "debug" 94 p.trackAllTypes = p.bool() 95 p.posInfoFormat = p.bool() 96 case 0: 97 // Go1.7 encoding format - nothing to do here 98 default: 99 formatErrorf("unknown export format version %d (%q)", p.version, versionstr) 100 } 101 102 // --- generic export data --- 103 104 // populate typList with predeclared "known" types 105 p.typList = append(p.typList, predeclared()...) 106 107 // read package data 108 p.pkg() 109 110 // defer some type-checking until all types are read in completely 111 tcok := typecheckok 112 typecheckok = true 113 defercheckwidth() 114 115 // read objects 116 117 // phase 1 118 objcount := 0 119 for { 120 tag := p.tagOrIndex() 121 if tag == endTag { 122 break 123 } 124 p.obj(tag) 125 objcount++ 126 } 127 128 // self-verification 129 if count := p.int(); count != objcount { 130 formatErrorf("got %d objects; want %d", objcount, count) 131 } 132 133 // --- compiler-specific export data --- 134 135 // read compiler-specific flags 136 137 // phase 2 138 objcount = 0 139 for { 140 tag := p.tagOrIndex() 141 if tag == endTag { 142 break 143 } 144 p.obj(tag) 145 objcount++ 146 } 147 148 // self-verification 149 if count := p.int(); count != objcount { 150 formatErrorf("got %d objects; want %d", objcount, count) 151 } 152 153 // read inlineable functions bodies 154 if dclcontext != PEXTERN { 155 formatErrorf("unexpected context %d", dclcontext) 156 } 157 158 objcount = 0 159 for i0 := -1; ; { 160 i := p.int() // index of function with inlineable body 161 if i < 0 { 162 break 163 } 164 165 // don't process the same function twice 166 if i <= i0 { 167 formatErrorf("index not increasing: %d <= %d", i, i0) 168 } 169 i0 = i 170 171 if funcdepth != 0 { 172 formatErrorf("unexpected Funcdepth %d", funcdepth) 173 } 174 175 // Note: In the original code, funchdr and funcbody are called for 176 // all functions (that were not yet imported). Now, we are calling 177 // them only for functions with inlineable bodies. funchdr does 178 // parameter renaming which doesn't matter if we don't have a body. 179 180 if f := p.funcList[i]; f != nil { 181 // function not yet imported - read body and set it 182 funchdr(f) 183 body := p.stmtList() 184 if body == nil { 185 // Make sure empty body is not interpreted as 186 // no inlineable body (see also parser.fnbody) 187 // (not doing so can cause significant performance 188 // degradation due to unnecessary calls to empty 189 // functions). 190 body = []*Node{nod(OEMPTY, nil, nil)} 191 } 192 f.Func.Inl.Set(body) 193 funcbody(f) 194 } else { 195 // function already imported - read body but discard declarations 196 dclcontext = PDISCARD // throw away any declarations 197 p.stmtList() 198 dclcontext = PEXTERN 199 } 200 201 objcount++ 202 } 203 204 // self-verification 205 if count := p.int(); count != objcount { 206 formatErrorf("got %d functions; want %d", objcount, count) 207 } 208 209 if dclcontext != PEXTERN { 210 formatErrorf("unexpected context %d", dclcontext) 211 } 212 213 p.verifyTypes() 214 215 // --- end of export data --- 216 217 typecheckok = tcok 218 resumecheckwidth() 219 220 if debug_dclstack != 0 { 221 testdclstack() 222 } 223 } 224 225 func formatErrorf(format string, args ...interface{}) { 226 if debugFormat { 227 Fatalf(format, args...) 228 } 229 230 yyerror("cannot import %q due to version skew - reinstall package (%s)", 231 importpkg.Path, fmt.Sprintf(format, args...)) 232 errorexit() 233 } 234 235 func (p *importer) verifyTypes() { 236 for _, pair := range p.cmpList { 237 pt := pair.pt 238 t := pair.t 239 if !eqtype(pt.Orig, t) { 240 formatErrorf("inconsistent definition for type %v during import\n\t%L (in %q)\n\t%L (in %q)", pt.Sym, pt, pt.Sym.Importdef.Path, t, importpkg.Path) 241 } 242 } 243 } 244 245 // numImport tracks how often a package with a given name is imported. 246 // It is used to provide a better error message (by using the package 247 // path to disambiguate) if a package that appears multiple times with 248 // the same name appears in an error message. 249 var numImport = make(map[string]int) 250 251 func (p *importer) pkg() *Pkg { 252 // if the package was seen before, i is its index (>= 0) 253 i := p.tagOrIndex() 254 if i >= 0 { 255 return p.pkgList[i] 256 } 257 258 // otherwise, i is the package tag (< 0) 259 if i != packageTag { 260 formatErrorf("expected package tag, found tag = %d", i) 261 } 262 263 // read package data 264 name := p.string() 265 path := p.string() 266 267 // we should never see an empty package name 268 if name == "" { 269 formatErrorf("empty package name for path %q", path) 270 } 271 272 // we should never see a bad import path 273 if isbadimport(path) { 274 formatErrorf("bad package path %q for package %s", path, name) 275 } 276 277 // an empty path denotes the package we are currently importing; 278 // it must be the first package we see 279 if (path == "") != (len(p.pkgList) == 0) { 280 formatErrorf("package path %q for pkg index %d", path, len(p.pkgList)) 281 } 282 283 // add package to pkgList 284 pkg := importpkg 285 if path != "" { 286 pkg = mkpkg(path) 287 } 288 if pkg.Name == "" { 289 pkg.Name = name 290 numImport[name]++ 291 } else if pkg.Name != name { 292 yyerror("conflicting package names %s and %s for path %q", pkg.Name, name, path) 293 } 294 if myimportpath != "" && path == myimportpath { 295 yyerror("import %q: package depends on %q (import cycle)", importpkg.Path, path) 296 errorexit() 297 } 298 p.pkgList = append(p.pkgList, pkg) 299 300 return pkg 301 } 302 303 func idealType(typ *Type) *Type { 304 if typ.IsUntyped() { 305 // canonicalize ideal types 306 typ = Types[TIDEAL] 307 } 308 return typ 309 } 310 311 func (p *importer) obj(tag int) { 312 switch tag { 313 case constTag: 314 p.pos() 315 sym := p.qualifiedName() 316 typ := p.typ() 317 val := p.value(typ) 318 importconst(sym, idealType(typ), nodlit(val)) 319 320 case typeTag: 321 p.typ() 322 323 case varTag: 324 p.pos() 325 sym := p.qualifiedName() 326 typ := p.typ() 327 importvar(sym, typ) 328 329 case funcTag: 330 p.pos() 331 sym := p.qualifiedName() 332 params := p.paramList() 333 result := p.paramList() 334 335 sig := functypefield(nil, params, result) 336 importsym(sym, ONAME) 337 if sym.Def != nil && sym.Def.Op == ONAME { 338 // function was imported before (via another import) 339 if !eqtype(sig, sym.Def.Type) { 340 formatErrorf("inconsistent definition for func %v during import\n\t%v\n\t%v", sym, sym.Def.Type, sig) 341 } 342 p.funcList = append(p.funcList, nil) 343 break 344 } 345 346 n := newfuncname(sym) 347 n.Type = sig 348 declare(n, PFUNC) 349 p.funcList = append(p.funcList, n) 350 importlist = append(importlist, n) 351 352 if Debug['E'] > 0 { 353 fmt.Printf("import [%q] func %v \n", importpkg.Path, n) 354 if Debug['m'] > 2 && n.Func.Inl.Len() != 0 { 355 fmt.Printf("inl body: %v\n", n.Func.Inl) 356 } 357 } 358 359 case aliasTag: 360 p.pos() 361 alias := importpkg.Lookup(p.string()) 362 orig := p.qualifiedName() 363 364 // Although the protocol allows the alias to precede the original, 365 // this never happens in files produced by gc. 366 alias.Flags |= SymAlias 367 alias.Def = orig.Def 368 importsym(alias, orig.Def.Op) 369 370 default: 371 formatErrorf("unexpected object (tag = %d)", tag) 372 } 373 } 374 375 func (p *importer) pos() { 376 if !p.posInfoFormat { 377 return 378 } 379 380 file := p.prevFile 381 line := p.prevLine 382 if delta := p.int(); delta != 0 { 383 // line changed 384 line += delta 385 } else if n := p.int(); n >= 0 { 386 // file changed 387 file = p.prevFile[:n] + p.string() 388 p.prevFile = file 389 line = p.int() 390 } 391 p.prevLine = line 392 393 // TODO(gri) register new position 394 } 395 396 func (p *importer) newtyp(etype EType) *Type { 397 t := typ(etype) 398 if p.trackAllTypes { 399 p.typList = append(p.typList, t) 400 } 401 return t 402 } 403 404 // importtype declares that pt, an imported named type, has underlying type t. 405 func (p *importer) importtype(pt, t *Type) { 406 if pt.Etype == TFORW { 407 n := pt.nod 408 copytype(pt.nod, t) 409 pt.nod = n // unzero nod 410 pt.Sym.Importdef = importpkg 411 pt.Sym.Lastlineno = lineno 412 declare(n, PEXTERN) 413 checkwidth(pt) 414 } else { 415 // pt.Orig and t must be identical. 416 if p.trackAllTypes { 417 // If we track all types, t may not be fully set up yet. 418 // Collect the types and verify identity later. 419 p.cmpList = append(p.cmpList, struct{ pt, t *Type }{pt, t}) 420 } else if !eqtype(pt.Orig, t) { 421 yyerror("inconsistent definition for type %v during import\n\t%L (in %q)\n\t%L (in %q)", pt.Sym, pt, pt.Sym.Importdef.Path, t, importpkg.Path) 422 } 423 } 424 425 if Debug['E'] != 0 { 426 fmt.Printf("import type %v %L\n", pt, t) 427 } 428 } 429 430 func (p *importer) typ() *Type { 431 // if the type was seen before, i is its index (>= 0) 432 i := p.tagOrIndex() 433 if i >= 0 { 434 return p.typList[i] 435 } 436 437 // otherwise, i is the type tag (< 0) 438 var t *Type 439 switch i { 440 case namedTag: 441 p.pos() 442 tsym := p.qualifiedName() 443 444 t = pkgtype(tsym) 445 p.typList = append(p.typList, t) 446 447 // read underlying type 448 t0 := p.typ() 449 p.importtype(t, t0) 450 451 // interfaces don't have associated methods 452 if t0.IsInterface() { 453 break 454 } 455 456 // set correct import context (since p.typ() may be called 457 // while importing the body of an inlined function) 458 savedContext := dclcontext 459 dclcontext = PEXTERN 460 461 // read associated methods 462 for i := p.int(); i > 0; i-- { 463 p.pos() 464 sym := p.fieldSym() 465 466 // during import unexported method names should be in the type's package 467 if !exportname(sym.Name) && sym.Pkg != tsym.Pkg { 468 Fatalf("imported method name %+v in wrong package %s\n", sym, tsym.Pkg.Name) 469 } 470 471 recv := p.paramList() // TODO(gri) do we need a full param list for the receiver? 472 params := p.paramList() 473 result := p.paramList() 474 nointerface := p.bool() 475 476 base := recv[0].Type 477 star := false 478 if base.IsPtr() { 479 base = base.Elem() 480 star = true 481 } 482 483 n := methodname0(sym, star, base.Sym) 484 n.Type = functypefield(recv[0], params, result) 485 checkwidth(n.Type) 486 addmethod(sym, n.Type, false, nointerface) 487 p.funcList = append(p.funcList, n) 488 importlist = append(importlist, n) 489 490 // (comment from parser.go) 491 // inl.C's inlnode in on a dotmeth node expects to find the inlineable body as 492 // (dotmeth's type).Nname.Inl, and dotmeth's type has been pulled 493 // out by typecheck's lookdot as this $$.ttype. So by providing 494 // this back link here we avoid special casing there. 495 n.Type.SetNname(n) 496 497 if Debug['E'] > 0 { 498 fmt.Printf("import [%q] meth %v \n", importpkg.Path, n) 499 if Debug['m'] > 2 && n.Func.Inl.Len() != 0 { 500 fmt.Printf("inl body: %v\n", n.Func.Inl) 501 } 502 } 503 } 504 505 dclcontext = savedContext 506 507 case arrayTag: 508 t = p.newtyp(TARRAY) 509 bound := p.int64() 510 elem := p.typ() 511 t.Extra = &ArrayType{Elem: elem, Bound: bound} 512 513 case sliceTag: 514 t = p.newtyp(TSLICE) 515 elem := p.typ() 516 t.Extra = SliceType{Elem: elem} 517 518 case dddTag: 519 t = p.newtyp(TDDDFIELD) 520 t.Extra = DDDFieldType{T: p.typ()} 521 522 case structTag: 523 t = p.newtyp(TSTRUCT) 524 t.SetFields(p.fieldList()) 525 checkwidth(t) 526 527 case pointerTag: 528 t = p.newtyp(Tptr) 529 t.Extra = PtrType{Elem: p.typ()} 530 531 case signatureTag: 532 t = p.newtyp(TFUNC) 533 params := p.paramList() 534 result := p.paramList() 535 functypefield0(t, nil, params, result) 536 537 case interfaceTag: 538 t = p.newtyp(TINTER) 539 if p.int() != 0 { 540 formatErrorf("unexpected embedded interface") 541 } 542 t.SetFields(p.methodList()) 543 checkwidth(t) 544 545 case mapTag: 546 t = p.newtyp(TMAP) 547 mt := t.MapType() 548 mt.Key = p.typ() 549 mt.Val = p.typ() 550 551 case chanTag: 552 t = p.newtyp(TCHAN) 553 ct := t.ChanType() 554 ct.Dir = ChanDir(p.int()) 555 ct.Elem = p.typ() 556 557 default: 558 formatErrorf("unexpected type (tag = %d)", i) 559 } 560 561 if t == nil { 562 formatErrorf("nil type (type tag = %d)", i) 563 } 564 565 return t 566 } 567 568 func (p *importer) qualifiedName() *Sym { 569 name := p.string() 570 pkg := p.pkg() 571 return pkg.Lookup(name) 572 } 573 574 func (p *importer) fieldList() (fields []*Field) { 575 if n := p.int(); n > 0 { 576 fields = make([]*Field, n) 577 for i := range fields { 578 fields[i] = p.field() 579 } 580 } 581 return 582 } 583 584 func (p *importer) field() *Field { 585 p.pos() 586 sym := p.fieldName() 587 typ := p.typ() 588 note := p.string() 589 590 f := newField() 591 if sym.Name == "" { 592 // anonymous field - typ must be T or *T and T must be a type name 593 s := typ.Sym 594 if s == nil && typ.IsPtr() { 595 s = typ.Elem().Sym // deref 596 } 597 sym = sym.Pkg.Lookup(s.Name) 598 f.Embedded = 1 599 } 600 601 f.Sym = sym 602 f.Nname = newname(sym) 603 f.Type = typ 604 f.Note = note 605 606 return f 607 } 608 609 func (p *importer) methodList() (methods []*Field) { 610 if n := p.int(); n > 0 { 611 methods = make([]*Field, n) 612 for i := range methods { 613 methods[i] = p.method() 614 } 615 } 616 return 617 } 618 619 func (p *importer) method() *Field { 620 p.pos() 621 sym := p.fieldName() 622 params := p.paramList() 623 result := p.paramList() 624 625 f := newField() 626 f.Sym = sym 627 f.Nname = newname(sym) 628 f.Type = functypefield(fakethisfield(), params, result) 629 return f 630 } 631 632 func (p *importer) fieldName() *Sym { 633 name := p.string() 634 if p.version == 0 && name == "_" { 635 // version 0 didn't export a package for _ fields 636 // but used the builtin package instead 637 return builtinpkg.Lookup(name) 638 } 639 pkg := localpkg 640 if name != "" && !exportname(name) { 641 if name == "?" { 642 name = "" 643 } 644 pkg = p.pkg() 645 } 646 return pkg.Lookup(name) 647 } 648 649 func (p *importer) paramList() []*Field { 650 i := p.int() 651 if i == 0 { 652 return nil 653 } 654 // negative length indicates unnamed parameters 655 named := true 656 if i < 0 { 657 i = -i 658 named = false 659 } 660 // i > 0 661 fs := make([]*Field, i) 662 for i := range fs { 663 fs[i] = p.param(named) 664 } 665 return fs 666 } 667 668 func (p *importer) param(named bool) *Field { 669 f := newField() 670 f.Type = p.typ() 671 if f.Type.Etype == TDDDFIELD { 672 // TDDDFIELD indicates wrapped ... slice type 673 f.Type = typSlice(f.Type.DDDField()) 674 f.Isddd = true 675 } 676 677 if named { 678 name := p.string() 679 if name == "" { 680 formatErrorf("expected named parameter") 681 } 682 // TODO(gri) Supply function/method package rather than 683 // encoding the package for each parameter repeatedly. 684 pkg := localpkg 685 if name != "_" { 686 pkg = p.pkg() 687 } 688 f.Sym = pkg.Lookup(name) 689 f.Nname = newname(f.Sym) 690 } 691 692 // TODO(gri) This is compiler-specific (escape info). 693 // Move into compiler-specific section eventually? 694 f.Note = p.string() 695 696 return f 697 } 698 699 func (p *importer) value(typ *Type) (x Val) { 700 switch tag := p.tagOrIndex(); tag { 701 case falseTag: 702 x.U = false 703 704 case trueTag: 705 x.U = true 706 707 case int64Tag: 708 u := new(Mpint) 709 u.SetInt64(p.int64()) 710 u.Rune = typ == idealrune 711 x.U = u 712 713 case floatTag: 714 f := newMpflt() 715 p.float(f) 716 if typ == idealint || typ.IsInteger() { 717 // uncommon case: large int encoded as float 718 u := new(Mpint) 719 u.SetFloat(f) 720 x.U = u 721 break 722 } 723 x.U = f 724 725 case complexTag: 726 u := new(Mpcplx) 727 p.float(&u.Real) 728 p.float(&u.Imag) 729 x.U = u 730 731 case stringTag: 732 x.U = p.string() 733 734 case unknownTag: 735 formatErrorf("unknown constant (importing package with errors)") 736 737 case nilTag: 738 x.U = new(NilVal) 739 740 default: 741 formatErrorf("unexpected value tag %d", tag) 742 } 743 744 // verify ideal type 745 if typ.IsUntyped() && untype(x.Ctype()) != typ { 746 formatErrorf("value %v and type %v don't match", x, typ) 747 } 748 749 return 750 } 751 752 func (p *importer) float(x *Mpflt) { 753 sign := p.int() 754 if sign == 0 { 755 x.SetFloat64(0) 756 return 757 } 758 759 exp := p.int() 760 mant := new(big.Int).SetBytes([]byte(p.string())) 761 762 m := x.Val.SetInt(mant) 763 m.SetMantExp(m, exp-mant.BitLen()) 764 if sign < 0 { 765 m.Neg(m) 766 } 767 } 768 769 // ---------------------------------------------------------------------------- 770 // Inlined function bodies 771 772 // Approach: Read nodes and use them to create/declare the same data structures 773 // as done originally by the (hidden) parser by closely following the parser's 774 // original code. In other words, "parsing" the import data (which happens to 775 // be encoded in binary rather textual form) is the best way at the moment to 776 // re-establish the syntax tree's invariants. At some future point we might be 777 // able to avoid this round-about way and create the rewritten nodes directly, 778 // possibly avoiding a lot of duplicate work (name resolution, type checking). 779 // 780 // Refined nodes (e.g., ODOTPTR as a refinement of OXDOT) are exported as their 781 // unrefined nodes (since this is what the importer uses). The respective case 782 // entries are unreachable in the importer. 783 784 func (p *importer) stmtList() []*Node { 785 var list []*Node 786 for { 787 n := p.node() 788 if n == nil { 789 break 790 } 791 // OBLOCK nodes may be created when importing ODCL nodes - unpack them 792 if n.Op == OBLOCK { 793 list = append(list, n.List.Slice()...) 794 } else { 795 list = append(list, n) 796 } 797 } 798 return list 799 } 800 801 func (p *importer) exprList() []*Node { 802 var list []*Node 803 for { 804 n := p.expr() 805 if n == nil { 806 break 807 } 808 list = append(list, n) 809 } 810 return list 811 } 812 813 func (p *importer) elemList() []*Node { 814 c := p.int() 815 list := make([]*Node, c) 816 for i := range list { 817 s := p.fieldSym() 818 list[i] = nodSym(OSTRUCTKEY, p.expr(), s) 819 } 820 return list 821 } 822 823 func (p *importer) expr() *Node { 824 n := p.node() 825 if n != nil && n.Op == OBLOCK { 826 Fatalf("unexpected block node: %v", n) 827 } 828 return n 829 } 830 831 // TODO(gri) split into expr and stmt 832 func (p *importer) node() *Node { 833 switch op := p.op(); op { 834 // expressions 835 // case OPAREN: 836 // unreachable - unpacked by exporter 837 838 // case ODDDARG: 839 // unimplemented 840 841 case OLITERAL: 842 typ := p.typ() 843 n := nodlit(p.value(typ)) 844 if !typ.IsUntyped() { 845 // Type-checking simplifies unsafe.Pointer(uintptr(c)) 846 // to unsafe.Pointer(c) which then cannot type-checked 847 // again. Re-introduce explicit uintptr(c) conversion. 848 // (issue 16317). 849 if typ.IsUnsafePtr() { 850 conv := nod(OCALL, typenod(Types[TUINTPTR]), nil) 851 conv.List.Set1(n) 852 n = conv 853 } 854 conv := nod(OCALL, typenod(typ), nil) 855 conv.List.Set1(n) 856 n = conv 857 } 858 return n 859 860 case ONAME: 861 return mkname(p.sym()) 862 863 // case OPACK, ONONAME: 864 // unreachable - should have been resolved by typechecking 865 866 case OTYPE: 867 if p.bool() { 868 return mkname(p.sym()) 869 } 870 return typenod(p.typ()) 871 872 // case OTARRAY, OTMAP, OTCHAN, OTSTRUCT, OTINTER, OTFUNC: 873 // unreachable - should have been resolved by typechecking 874 875 // case OCLOSURE: 876 // unimplemented 877 878 case OPTRLIT: 879 n := p.expr() 880 if !p.bool() /* !implicit, i.e. '&' operator */ { 881 if n.Op == OCOMPLIT { 882 // Special case for &T{...}: turn into (*T){...}. 883 n.Right = nod(OIND, n.Right, nil) 884 n.Right.Implicit = true 885 } else { 886 n = nod(OADDR, n, nil) 887 } 888 } 889 return n 890 891 case OSTRUCTLIT: 892 n := nod(OCOMPLIT, nil, typenod(p.typ())) 893 n.List.Set(p.elemList()) // special handling of field names 894 return n 895 896 // case OARRAYLIT, OSLICELIT, OMAPLIT: 897 // unreachable - mapped to case OCOMPLIT below by exporter 898 899 case OCOMPLIT: 900 n := nod(OCOMPLIT, nil, typenod(p.typ())) 901 n.List.Set(p.exprList()) 902 return n 903 904 case OKEY: 905 left, right := p.exprsOrNil() 906 return nod(OKEY, left, right) 907 908 // case OSTRUCTKEY: 909 // unreachable - handled in case OSTRUCTLIT by elemList 910 911 // case OCALLPART: 912 // unimplemented 913 914 // case OXDOT, ODOT, ODOTPTR, ODOTINTER, ODOTMETH: 915 // unreachable - mapped to case OXDOT below by exporter 916 917 case OXDOT: 918 // see parser.new_dotname 919 return nodSym(OXDOT, p.expr(), p.fieldSym()) 920 921 // case ODOTTYPE, ODOTTYPE2: 922 // unreachable - mapped to case ODOTTYPE below by exporter 923 924 case ODOTTYPE: 925 n := nod(ODOTTYPE, p.expr(), nil) 926 if p.bool() { 927 n.Right = p.expr() 928 } else { 929 n.Right = typenod(p.typ()) 930 } 931 return n 932 933 // case OINDEX, OINDEXMAP, OSLICE, OSLICESTR, OSLICEARR, OSLICE3, OSLICE3ARR: 934 // unreachable - mapped to cases below by exporter 935 936 case OINDEX: 937 return nod(op, p.expr(), p.expr()) 938 939 case OSLICE, OSLICE3: 940 n := nod(op, p.expr(), nil) 941 low, high := p.exprsOrNil() 942 var max *Node 943 if n.Op.IsSlice3() { 944 max = p.expr() 945 } 946 n.SetSliceBounds(low, high, max) 947 return n 948 949 // case OCONV, OCONVIFACE, OCONVNOP, OARRAYBYTESTR, OARRAYRUNESTR, OSTRARRAYBYTE, OSTRARRAYRUNE, ORUNESTR: 950 // unreachable - mapped to OCONV case below by exporter 951 952 case OCONV: 953 n := nod(OCALL, typenod(p.typ()), nil) 954 n.List.Set(p.exprList()) 955 return n 956 957 case OCOPY, OCOMPLEX, OREAL, OIMAG, OAPPEND, OCAP, OCLOSE, ODELETE, OLEN, OMAKE, ONEW, OPANIC, ORECOVER, OPRINT, OPRINTN: 958 n := builtinCall(op) 959 n.List.Set(p.exprList()) 960 if op == OAPPEND { 961 n.Isddd = p.bool() 962 } 963 return n 964 965 // case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OGETG: 966 // unreachable - mapped to OCALL case below by exporter 967 968 case OCALL: 969 n := nod(OCALL, p.expr(), nil) 970 n.List.Set(p.exprList()) 971 n.Isddd = p.bool() 972 return n 973 974 case OMAKEMAP, OMAKECHAN, OMAKESLICE: 975 n := builtinCall(OMAKE) 976 n.List.Append(typenod(p.typ())) 977 n.List.Append(p.exprList()...) 978 return n 979 980 // unary expressions 981 case OPLUS, OMINUS, OADDR, OCOM, OIND, ONOT, ORECV: 982 return nod(op, p.expr(), nil) 983 984 // binary expressions 985 case OADD, OAND, OANDAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE, OLT, 986 OLSH, OMOD, OMUL, ONE, OOR, OOROR, ORSH, OSEND, OSUB, OXOR: 987 return nod(op, p.expr(), p.expr()) 988 989 case OADDSTR: 990 list := p.exprList() 991 x := list[0] 992 for _, y := range list[1:] { 993 x = nod(OADD, x, y) 994 } 995 return x 996 997 // case OCMPSTR, OCMPIFACE: 998 // unreachable - mapped to std comparison operators by exporter 999 1000 case ODCLCONST: 1001 // TODO(gri) these should not be exported in the first place 1002 return nod(OEMPTY, nil, nil) 1003 1004 // -------------------------------------------------------------------- 1005 // statements 1006 case ODCL: 1007 if p.version < 2 { 1008 // versions 0 and 1 exported a bool here but it 1009 // was always false - simply ignore in this case 1010 p.bool() 1011 } 1012 lhs := dclname(p.sym()) 1013 typ := typenod(p.typ()) 1014 return liststmt(variter([]*Node{lhs}, typ, nil)) // TODO(gri) avoid list creation 1015 1016 // case ODCLFIELD: 1017 // unimplemented 1018 1019 // case OAS, OASWB: 1020 // unreachable - mapped to OAS case below by exporter 1021 1022 case OAS: 1023 return nod(OAS, p.expr(), p.expr()) 1024 1025 case OASOP: 1026 n := nod(OASOP, nil, nil) 1027 n.Etype = EType(p.int()) 1028 n.Left = p.expr() 1029 if !p.bool() { 1030 n.Right = nodintconst(1) 1031 n.Implicit = true 1032 } else { 1033 n.Right = p.expr() 1034 } 1035 return n 1036 1037 // case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV: 1038 // unreachable - mapped to OAS2 case below by exporter 1039 1040 case OAS2: 1041 n := nod(OAS2, nil, nil) 1042 n.List.Set(p.exprList()) 1043 n.Rlist.Set(p.exprList()) 1044 return n 1045 1046 case ORETURN: 1047 n := nod(ORETURN, nil, nil) 1048 n.List.Set(p.exprList()) 1049 return n 1050 1051 // case ORETJMP: 1052 // unreachable - generated by compiler for trampolin routines (not exported) 1053 1054 case OPROC, ODEFER: 1055 return nod(op, p.expr(), nil) 1056 1057 case OIF: 1058 markdcl() 1059 n := nod(OIF, nil, nil) 1060 n.Ninit.Set(p.stmtList()) 1061 n.Left = p.expr() 1062 n.Nbody.Set(p.stmtList()) 1063 n.Rlist.Set(p.stmtList()) 1064 popdcl() 1065 return n 1066 1067 case OFOR: 1068 markdcl() 1069 n := nod(OFOR, nil, nil) 1070 n.Ninit.Set(p.stmtList()) 1071 n.Left, n.Right = p.exprsOrNil() 1072 n.Nbody.Set(p.stmtList()) 1073 popdcl() 1074 return n 1075 1076 case ORANGE: 1077 markdcl() 1078 n := nod(ORANGE, nil, nil) 1079 n.List.Set(p.stmtList()) 1080 n.Right = p.expr() 1081 n.Nbody.Set(p.stmtList()) 1082 popdcl() 1083 return n 1084 1085 case OSELECT, OSWITCH: 1086 markdcl() 1087 n := nod(op, nil, nil) 1088 n.Ninit.Set(p.stmtList()) 1089 n.Left, _ = p.exprsOrNil() 1090 n.List.Set(p.stmtList()) 1091 popdcl() 1092 return n 1093 1094 // case OCASE, OXCASE: 1095 // unreachable - mapped to OXCASE case below by exporter 1096 1097 case OXCASE: 1098 markdcl() 1099 n := nod(OXCASE, nil, nil) 1100 n.Xoffset = int64(block) 1101 n.List.Set(p.exprList()) 1102 // TODO(gri) eventually we must declare variables for type switch 1103 // statements (type switch statements are not yet exported) 1104 n.Nbody.Set(p.stmtList()) 1105 popdcl() 1106 return n 1107 1108 // case OFALL: 1109 // unreachable - mapped to OXFALL case below by exporter 1110 1111 case OXFALL: 1112 n := nod(OXFALL, nil, nil) 1113 n.Xoffset = int64(block) 1114 return n 1115 1116 case OBREAK, OCONTINUE: 1117 left, _ := p.exprsOrNil() 1118 if left != nil { 1119 left = newname(left.Sym) 1120 } 1121 return nod(op, left, nil) 1122 1123 // case OEMPTY: 1124 // unreachable - not emitted by exporter 1125 1126 case OGOTO, OLABEL: 1127 n := nod(op, newname(p.expr().Sym), nil) 1128 n.Sym = dclstack // context, for goto restrictions 1129 return n 1130 1131 case OEND: 1132 return nil 1133 1134 default: 1135 Fatalf("cannot import %v (%d) node\n"+ 1136 "==> please file an issue and assign to gri@\n", op, int(op)) 1137 panic("unreachable") // satisfy compiler 1138 } 1139 } 1140 1141 func builtinCall(op Op) *Node { 1142 return nod(OCALL, mkname(builtinpkg.Lookup(goopnames[op])), nil) 1143 } 1144 1145 func (p *importer) exprsOrNil() (a, b *Node) { 1146 ab := p.int() 1147 if ab&1 != 0 { 1148 a = p.expr() 1149 } 1150 if ab&2 != 0 { 1151 b = p.expr() 1152 } 1153 return 1154 } 1155 1156 func (p *importer) fieldSym() *Sym { 1157 name := p.string() 1158 pkg := localpkg 1159 if !exportname(name) { 1160 pkg = p.pkg() 1161 } 1162 return pkg.Lookup(name) 1163 } 1164 1165 func (p *importer) sym() *Sym { 1166 name := p.string() 1167 pkg := localpkg 1168 if name != "_" { 1169 pkg = p.pkg() 1170 } 1171 return pkg.Lookup(name) 1172 } 1173 1174 func (p *importer) bool() bool { 1175 return p.int() != 0 1176 } 1177 1178 func (p *importer) op() Op { 1179 return Op(p.int()) 1180 } 1181 1182 // ---------------------------------------------------------------------------- 1183 // Low-level decoders 1184 1185 func (p *importer) tagOrIndex() int { 1186 if p.debugFormat { 1187 p.marker('t') 1188 } 1189 1190 return int(p.rawInt64()) 1191 } 1192 1193 func (p *importer) int() int { 1194 x := p.int64() 1195 if int64(int(x)) != x { 1196 formatErrorf("exported integer too large") 1197 } 1198 return int(x) 1199 } 1200 1201 func (p *importer) int64() int64 { 1202 if p.debugFormat { 1203 p.marker('i') 1204 } 1205 1206 return p.rawInt64() 1207 } 1208 1209 func (p *importer) string() string { 1210 if p.debugFormat { 1211 p.marker('s') 1212 } 1213 // if the string was seen before, i is its index (>= 0) 1214 // (the empty string is at index 0) 1215 i := p.rawInt64() 1216 if i >= 0 { 1217 return p.strList[i] 1218 } 1219 // otherwise, i is the negative string length (< 0) 1220 if n := int(-i); n <= cap(p.buf) { 1221 p.buf = p.buf[:n] 1222 } else { 1223 p.buf = make([]byte, n) 1224 } 1225 for i := range p.buf { 1226 p.buf[i] = p.rawByte() 1227 } 1228 s := string(p.buf) 1229 p.strList = append(p.strList, s) 1230 return s 1231 } 1232 1233 func (p *importer) marker(want byte) { 1234 if got := p.rawByte(); got != want { 1235 formatErrorf("incorrect marker: got %c; want %c (pos = %d)", got, want, p.read) 1236 } 1237 1238 pos := p.read 1239 if n := int(p.rawInt64()); n != pos { 1240 formatErrorf("incorrect position: got %d; want %d", n, pos) 1241 } 1242 } 1243 1244 // rawInt64 should only be used by low-level decoders. 1245 func (p *importer) rawInt64() int64 { 1246 i, err := binary.ReadVarint(p) 1247 if err != nil { 1248 formatErrorf("read error: %v", err) 1249 } 1250 return i 1251 } 1252 1253 // rawStringln should only be used to read the initial version string. 1254 func (p *importer) rawStringln(b byte) string { 1255 p.buf = p.buf[:0] 1256 for b != '\n' { 1257 p.buf = append(p.buf, b) 1258 b = p.rawByte() 1259 } 1260 return string(p.buf) 1261 } 1262 1263 // needed for binary.ReadVarint in rawInt64 1264 func (p *importer) ReadByte() (byte, error) { 1265 return p.rawByte(), nil 1266 } 1267 1268 // rawByte is the bottleneck interface for reading from p.in. 1269 // It unescapes '|' 'S' to '$' and '|' '|' to '|'. 1270 // rawByte should only be used by low-level decoders. 1271 func (p *importer) rawByte() byte { 1272 c, err := p.in.ReadByte() 1273 p.read++ 1274 if err != nil { 1275 formatErrorf("read error: %v", err) 1276 } 1277 if c == '|' { 1278 c, err = p.in.ReadByte() 1279 p.read++ 1280 if err != nil { 1281 formatErrorf("read error: %v", err) 1282 } 1283 switch c { 1284 case 'S': 1285 c = '$' 1286 case '|': 1287 // nothing to do 1288 default: 1289 formatErrorf("unexpected escape sequence in export data") 1290 } 1291 } 1292 return c 1293 }