github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/compile/internal/gc/phi.go (about)

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"cmd/compile/internal/ssa"
     9  	"container/heap"
    10  	"fmt"
    11  )
    12  
    13  // This file contains the algorithm to place phi nodes in a function.
    14  // For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau.
    15  // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
    16  // For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes.
    17  // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf
    18  
    19  const smallBlocks = 500
    20  
    21  const debugPhi = false
    22  
    23  // insertPhis finds all the places in the function where a phi is
    24  // necessary and inserts them.
    25  // Uses FwdRef ops to find all uses of variables, and s.defvars to find
    26  // all definitions.
    27  // Phi values are inserted, and all FwdRefs are changed to a Copy
    28  // of the appropriate phi or definition.
    29  // TODO: make this part of cmd/compile/internal/ssa somehow?
    30  func (s *state) insertPhis() {
    31  	if len(s.f.Blocks) <= smallBlocks {
    32  		sps := simplePhiState{s: s, f: s.f, defvars: s.defvars}
    33  		sps.insertPhis()
    34  		return
    35  	}
    36  	ps := phiState{s: s, f: s.f, defvars: s.defvars}
    37  	ps.insertPhis()
    38  }
    39  
    40  type phiState struct {
    41  	s       *state                 // SSA state
    42  	f       *ssa.Func              // function to work on
    43  	defvars []map[*Node]*ssa.Value // defined variables at end of each block
    44  
    45  	varnum map[*Node]int32 // variable numbering
    46  
    47  	// properties of the dominator tree
    48  	idom  []*ssa.Block // dominator parents
    49  	tree  []domBlock   // dominator child+sibling
    50  	level []int32      // level in dominator tree (0 = root or unreachable, 1 = children of root, ...)
    51  
    52  	// scratch locations
    53  	priq   blockHeap    // priority queue of blocks, higher level (toward leaves) = higher priority
    54  	q      []*ssa.Block // inner loop queue
    55  	queued *sparseSet   // has been put in q
    56  	hasPhi *sparseSet   // has a phi
    57  	hasDef *sparseSet   // has a write of the variable we're processing
    58  
    59  	// miscellaneous
    60  	placeholder *ssa.Value // dummy value to use as a "not set yet" placeholder.
    61  }
    62  
    63  func (s *phiState) insertPhis() {
    64  	if debugPhi {
    65  		fmt.Println(s.f.String())
    66  	}
    67  
    68  	// Find all the variables for which we need to match up reads & writes.
    69  	// This step prunes any basic-block-only variables from consideration.
    70  	// Generate a numbering for these variables.
    71  	s.varnum = map[*Node]int32{}
    72  	var vars []*Node
    73  	var vartypes []ssa.Type
    74  	for _, b := range s.f.Blocks {
    75  		for _, v := range b.Values {
    76  			if v.Op != ssa.OpFwdRef {
    77  				continue
    78  			}
    79  			var_ := v.Aux.(*Node)
    80  
    81  			// Optimization: look back 1 block for the definition.
    82  			if len(b.Preds) == 1 {
    83  				c := b.Preds[0].Block()
    84  				if w := s.defvars[c.ID][var_]; w != nil {
    85  					v.Op = ssa.OpCopy
    86  					v.Aux = nil
    87  					v.AddArg(w)
    88  					continue
    89  				}
    90  			}
    91  
    92  			if _, ok := s.varnum[var_]; ok {
    93  				continue
    94  			}
    95  			s.varnum[var_] = int32(len(vartypes))
    96  			if debugPhi {
    97  				fmt.Printf("var%d = %v\n", len(vartypes), var_)
    98  			}
    99  			vars = append(vars, var_)
   100  			vartypes = append(vartypes, v.Type)
   101  		}
   102  	}
   103  
   104  	if len(vartypes) == 0 {
   105  		return
   106  	}
   107  
   108  	// Find all definitions of the variables we need to process.
   109  	// defs[n] contains all the blocks in which variable number n is assigned.
   110  	defs := make([][]*ssa.Block, len(vartypes))
   111  	for _, b := range s.f.Blocks {
   112  		for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map.
   113  			if n, ok := s.varnum[var_]; ok {
   114  				defs[n] = append(defs[n], b)
   115  			}
   116  		}
   117  	}
   118  
   119  	// Make dominator tree.
   120  	s.idom = s.f.Idom()
   121  	s.tree = make([]domBlock, s.f.NumBlocks())
   122  	for _, b := range s.f.Blocks {
   123  		p := s.idom[b.ID]
   124  		if p != nil {
   125  			s.tree[b.ID].sibling = s.tree[p.ID].firstChild
   126  			s.tree[p.ID].firstChild = b
   127  		}
   128  	}
   129  	// Compute levels in dominator tree.
   130  	// With parent pointers we can do a depth-first walk without
   131  	// any auxiliary storage.
   132  	s.level = make([]int32, s.f.NumBlocks())
   133  	b := s.f.Entry
   134  levels:
   135  	for {
   136  		if p := s.idom[b.ID]; p != nil {
   137  			s.level[b.ID] = s.level[p.ID] + 1
   138  			if debugPhi {
   139  				fmt.Printf("level %s = %d\n", b, s.level[b.ID])
   140  			}
   141  		}
   142  		if c := s.tree[b.ID].firstChild; c != nil {
   143  			b = c
   144  			continue
   145  		}
   146  		for {
   147  			if c := s.tree[b.ID].sibling; c != nil {
   148  				b = c
   149  				continue levels
   150  			}
   151  			b = s.idom[b.ID]
   152  			if b == nil {
   153  				break levels
   154  			}
   155  		}
   156  	}
   157  
   158  	// Allocate scratch locations.
   159  	s.priq.level = s.level
   160  	s.q = make([]*ssa.Block, 0, s.f.NumBlocks())
   161  	s.queued = newSparseSet(s.f.NumBlocks())
   162  	s.hasPhi = newSparseSet(s.f.NumBlocks())
   163  	s.hasDef = newSparseSet(s.f.NumBlocks())
   164  	s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, ssa.TypeInvalid)
   165  
   166  	// Generate phi ops for each variable.
   167  	for n := range vartypes {
   168  		s.insertVarPhis(n, vars[n], defs[n], vartypes[n])
   169  	}
   170  
   171  	// Resolve FwdRefs to the correct write or phi.
   172  	s.resolveFwdRefs()
   173  
   174  	// Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed.
   175  	for _, b := range s.f.Blocks {
   176  		for _, v := range b.Values {
   177  			if v.Op == ssa.OpPhi {
   178  				v.AuxInt = 0
   179  			}
   180  		}
   181  	}
   182  }
   183  
   184  func (s *phiState) insertVarPhis(n int, var_ *Node, defs []*ssa.Block, typ ssa.Type) {
   185  	priq := &s.priq
   186  	q := s.q
   187  	queued := s.queued
   188  	queued.clear()
   189  	hasPhi := s.hasPhi
   190  	hasPhi.clear()
   191  	hasDef := s.hasDef
   192  	hasDef.clear()
   193  
   194  	// Add defining blocks to priority queue.
   195  	for _, b := range defs {
   196  		priq.a = append(priq.a, b)
   197  		hasDef.add(b.ID)
   198  		if debugPhi {
   199  			fmt.Printf("def of var%d in %s\n", n, b)
   200  		}
   201  	}
   202  	heap.Init(priq)
   203  
   204  	// Visit blocks defining variable n, from deepest to shallowest.
   205  	for len(priq.a) > 0 {
   206  		currentRoot := heap.Pop(priq).(*ssa.Block)
   207  		if debugPhi {
   208  			fmt.Printf("currentRoot %s\n", currentRoot)
   209  		}
   210  		// Walk subtree below definition.
   211  		// Skip subtrees we've done in previous iterations.
   212  		// Find edges exiting tree dominated by definition (the dominance frontier).
   213  		// Insert phis at target blocks.
   214  		if queued.contains(currentRoot.ID) {
   215  			s.s.Fatalf("root already in queue")
   216  		}
   217  		q = append(q, currentRoot)
   218  		queued.add(currentRoot.ID)
   219  		for len(q) > 0 {
   220  			b := q[len(q)-1]
   221  			q = q[:len(q)-1]
   222  			if debugPhi {
   223  				fmt.Printf("  processing %s\n", b)
   224  			}
   225  
   226  			for _, e := range b.Succs {
   227  				c := e.Block()
   228  				// TODO: if the variable is dead at c, skip it.
   229  				if s.level[c.ID] > s.level[currentRoot.ID] {
   230  					// a D-edge, or an edge whose target is in currentRoot's subtree.
   231  					continue
   232  				}
   233  				if !hasPhi.contains(c.ID) {
   234  					// Add a phi to block c for variable n.
   235  					hasPhi.add(c.ID)
   236  					v := c.NewValue0I(currentRoot.Line, ssa.OpPhi, typ, int64(n)) // TODO: line number right?
   237  					// Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building.
   238  					s.s.addNamedValue(var_, v)
   239  					for i := 0; i < len(c.Preds); i++ {
   240  						v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs.
   241  					}
   242  					if debugPhi {
   243  						fmt.Printf("new phi for var%d in %s: %s\n", n, c, v)
   244  					}
   245  					if !hasDef.contains(c.ID) {
   246  						// There's now a new definition of this variable in block c.
   247  						// Add it to the priority queue to explore.
   248  						heap.Push(priq, c)
   249  						hasDef.add(c.ID)
   250  					}
   251  				}
   252  			}
   253  
   254  			// Visit children if they have not been visited yet.
   255  			for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
   256  				if !queued.contains(c.ID) {
   257  					q = append(q, c)
   258  					queued.add(c.ID)
   259  				}
   260  			}
   261  		}
   262  	}
   263  }
   264  
   265  // resolveFwdRefs links all FwdRef uses up to their nearest dominating definition.
   266  func (s *phiState) resolveFwdRefs() {
   267  	// Do a depth-first walk of the dominator tree, keeping track
   268  	// of the most-recently-seen value for each variable.
   269  
   270  	// Map from variable ID to SSA value at the current point of the walk.
   271  	values := make([]*ssa.Value, len(s.varnum))
   272  	for i := range values {
   273  		values[i] = s.placeholder
   274  	}
   275  
   276  	// Stack of work to do.
   277  	type stackEntry struct {
   278  		b *ssa.Block // block to explore
   279  
   280  		// variable/value pair to reinstate on exit
   281  		n int32 // variable ID
   282  		v *ssa.Value
   283  
   284  		// Note: only one of b or n,v will be set.
   285  	}
   286  	var stk []stackEntry
   287  
   288  	stk = append(stk, stackEntry{b: s.f.Entry})
   289  	for len(stk) > 0 {
   290  		work := stk[len(stk)-1]
   291  		stk = stk[:len(stk)-1]
   292  
   293  		b := work.b
   294  		if b == nil {
   295  			// On exit from a block, this case will undo any assignments done below.
   296  			values[work.n] = work.v
   297  			continue
   298  		}
   299  
   300  		// Process phis as new defs. They come before FwdRefs in this block.
   301  		for _, v := range b.Values {
   302  			if v.Op != ssa.OpPhi {
   303  				continue
   304  			}
   305  			n := int32(v.AuxInt)
   306  			// Remember the old assignment so we can undo it when we exit b.
   307  			stk = append(stk, stackEntry{n: n, v: values[n]})
   308  			// Record the new assignment.
   309  			values[n] = v
   310  		}
   311  
   312  		// Replace a FwdRef op with the current incoming value for its variable.
   313  		for _, v := range b.Values {
   314  			if v.Op != ssa.OpFwdRef {
   315  				continue
   316  			}
   317  			n := s.varnum[v.Aux.(*Node)]
   318  			v.Op = ssa.OpCopy
   319  			v.Aux = nil
   320  			v.AddArg(values[n])
   321  		}
   322  
   323  		// Establish values for variables defined in b.
   324  		for var_, v := range s.defvars[b.ID] {
   325  			n, ok := s.varnum[var_]
   326  			if !ok {
   327  				// some variable not live across a basic block boundary.
   328  				continue
   329  			}
   330  			// Remember the old assignment so we can undo it when we exit b.
   331  			stk = append(stk, stackEntry{n: n, v: values[n]})
   332  			// Record the new assignment.
   333  			values[n] = v
   334  		}
   335  
   336  		// Replace phi args in successors with the current incoming value.
   337  		for _, e := range b.Succs {
   338  			c, i := e.Block(), e.Index()
   339  			for j := len(c.Values) - 1; j >= 0; j-- {
   340  				v := c.Values[j]
   341  				if v.Op != ssa.OpPhi {
   342  					break // All phis will be at the end of the block during phi building.
   343  				}
   344  				v.SetArg(i, values[v.AuxInt])
   345  			}
   346  		}
   347  
   348  		// Walk children in dominator tree.
   349  		for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
   350  			stk = append(stk, stackEntry{b: c})
   351  		}
   352  	}
   353  }
   354  
   355  // domBlock contains extra per-block information to record the dominator tree.
   356  type domBlock struct {
   357  	firstChild *ssa.Block // first child of block in dominator tree
   358  	sibling    *ssa.Block // next child of parent in dominator tree
   359  }
   360  
   361  // A block heap is used as a priority queue to implement the PiggyBank
   362  // from Sreedhar and Gao.  That paper uses an array which is better
   363  // asymptotically but worse in the common case when the PiggyBank
   364  // holds a sparse set of blocks.
   365  type blockHeap struct {
   366  	a     []*ssa.Block // block IDs in heap
   367  	level []int32      // depth in dominator tree (static, used for determining priority)
   368  }
   369  
   370  func (h *blockHeap) Len() int      { return len(h.a) }
   371  func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
   372  
   373  func (h *blockHeap) Push(x interface{}) {
   374  	v := x.(*ssa.Block)
   375  	h.a = append(h.a, v)
   376  }
   377  func (h *blockHeap) Pop() interface{} {
   378  	old := h.a
   379  	n := len(old)
   380  	x := old[n-1]
   381  	h.a = old[:n-1]
   382  	return x
   383  }
   384  func (h *blockHeap) Less(i, j int) bool {
   385  	return h.level[h.a[i].ID] > h.level[h.a[j].ID]
   386  }
   387  
   388  // TODO: stop walking the iterated domininance frontier when
   389  // the variable is dead. Maybe detect that by checking if the
   390  // node we're on is reverse dominated by all the reads?
   391  // Reverse dominated by the highest common successor of all the reads?
   392  
   393  // copy of ../ssa/sparseset.go
   394  // TODO: move this file to ../ssa, then use sparseSet there.
   395  type sparseSet struct {
   396  	dense  []ssa.ID
   397  	sparse []int32
   398  }
   399  
   400  // newSparseSet returns a sparseSet that can represent
   401  // integers between 0 and n-1
   402  func newSparseSet(n int) *sparseSet {
   403  	return &sparseSet{dense: nil, sparse: make([]int32, n)}
   404  }
   405  
   406  func (s *sparseSet) contains(x ssa.ID) bool {
   407  	i := s.sparse[x]
   408  	return i < int32(len(s.dense)) && s.dense[i] == x
   409  }
   410  
   411  func (s *sparseSet) add(x ssa.ID) {
   412  	i := s.sparse[x]
   413  	if i < int32(len(s.dense)) && s.dense[i] == x {
   414  		return
   415  	}
   416  	s.dense = append(s.dense, x)
   417  	s.sparse[x] = int32(len(s.dense)) - 1
   418  }
   419  
   420  func (s *sparseSet) clear() {
   421  	s.dense = s.dense[:0]
   422  }
   423  
   424  // Variant to use for small functions.
   425  type simplePhiState struct {
   426  	s       *state                 // SSA state
   427  	f       *ssa.Func              // function to work on
   428  	fwdrefs []*ssa.Value           // list of FwdRefs to be processed
   429  	defvars []map[*Node]*ssa.Value // defined variables at end of each block
   430  }
   431  
   432  func (s *simplePhiState) insertPhis() {
   433  	// Find FwdRef ops.
   434  	for _, b := range s.f.Blocks {
   435  		for _, v := range b.Values {
   436  			if v.Op != ssa.OpFwdRef {
   437  				continue
   438  			}
   439  			s.fwdrefs = append(s.fwdrefs, v)
   440  			var_ := v.Aux.(*Node)
   441  			if _, ok := s.defvars[b.ID][var_]; !ok {
   442  				s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
   443  			}
   444  		}
   445  	}
   446  
   447  	var args []*ssa.Value
   448  
   449  loop:
   450  	for len(s.fwdrefs) > 0 {
   451  		v := s.fwdrefs[len(s.fwdrefs)-1]
   452  		s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
   453  		b := v.Block
   454  		var_ := v.Aux.(*Node)
   455  		if len(b.Preds) == 0 {
   456  			if b == s.f.Entry {
   457  				// No variable should be live at entry.
   458  				s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
   459  			}
   460  			// This block is dead; it has no predecessors and it is not the entry block.
   461  			// It doesn't matter what we use here as long as it is well-formed.
   462  			v.Op = ssa.OpUnknown
   463  			v.Aux = nil
   464  			continue
   465  		}
   466  		// Find variable value on each predecessor.
   467  		args = args[:0]
   468  		for _, e := range b.Preds {
   469  			args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Line))
   470  		}
   471  
   472  		// Decide if we need a phi or not. We need a phi if there
   473  		// are two different args (which are both not v).
   474  		var w *ssa.Value
   475  		for _, a := range args {
   476  			if a == v {
   477  				continue // self-reference
   478  			}
   479  			if a == w {
   480  				continue // already have this witness
   481  			}
   482  			if w != nil {
   483  				// two witnesses, need a phi value
   484  				v.Op = ssa.OpPhi
   485  				v.AddArgs(args...)
   486  				v.Aux = nil
   487  				continue loop
   488  			}
   489  			w = a // save witness
   490  		}
   491  		if w == nil {
   492  			s.s.Fatalf("no witness for reachable phi %s", v)
   493  		}
   494  		// One witness. Make v a copy of w.
   495  		v.Op = ssa.OpCopy
   496  		v.Aux = nil
   497  		v.AddArg(w)
   498  	}
   499  }
   500  
   501  // lookupVarOutgoing finds the variable's value at the end of block b.
   502  func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t ssa.Type, var_ *Node, line int32) *ssa.Value {
   503  	for {
   504  		if v := s.defvars[b.ID][var_]; v != nil {
   505  			return v
   506  		}
   507  		// The variable is not defined by b and we haven't looked it up yet.
   508  		// If b has exactly one predecessor, loop to look it up there.
   509  		// Otherwise, give up and insert a new FwdRef and resolve it later.
   510  		if len(b.Preds) != 1 {
   511  			break
   512  		}
   513  		b = b.Preds[0].Block()
   514  	}
   515  	// Generate a FwdRef for the variable and return that.
   516  	v := b.NewValue0A(line, ssa.OpFwdRef, t, var_)
   517  	s.defvars[b.ID][var_] = v
   518  	s.s.addNamedValue(var_, v)
   519  	s.fwdrefs = append(s.fwdrefs, v)
   520  	return v
   521  }