github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/compile/internal/gc/syntax.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package gc
     8  
     9  // A Node is a single node in the syntax tree.
    10  // Actually the syntax tree is a syntax DAG, because there is only one
    11  // node with Op=ONAME for a given instance of a variable x.
    12  // The same is true for Op=OTYPE and Op=OLITERAL.
    13  type Node struct {
    14  	// Tree structure.
    15  	// Generic recursive walks should follow these fields.
    16  	Left  *Node
    17  	Right *Node
    18  	Ninit Nodes
    19  	Nbody Nodes
    20  	List  Nodes
    21  	Rlist Nodes
    22  
    23  	// most nodes
    24  	Type *Type
    25  	Orig *Node // original form, for printing, and tracking copies of ONAMEs
    26  
    27  	// func
    28  	Func *Func
    29  
    30  	// ONAME
    31  	Name *Name
    32  
    33  	Sym *Sym        // various
    34  	E   interface{} // Opt or Val, see methods below
    35  
    36  	// Various. Usually an offset into a struct. For example:
    37  	// - ONAME nodes that refer to local variables use it to identify their stack frame position.
    38  	// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
    39  	// - OSTRUCTKEY uses it to store the named field's offset.
    40  	// - OXCASE and OXFALL use it to validate the use of fallthrough.
    41  	// - ONONAME uses it to store the current value of iota, see Node.Iota
    42  	// Possibly still more uses. If you find any, document them.
    43  	Xoffset int64
    44  
    45  	Lineno int32
    46  
    47  	Esc uint16 // EscXXX
    48  
    49  	Op        Op
    50  	Ullman    uint8 // sethi/ullman number
    51  	Addable   bool  // addressable
    52  	Etype     EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS
    53  	Bounded   bool  // bounds check unnecessary
    54  	NonNil    bool  // guaranteed to be non-nil
    55  	Class     Class // PPARAM, PAUTO, PEXTERN, etc
    56  	Embedded  uint8 // ODCLFIELD embedded type
    57  	Colas     bool  // OAS resulting from :=
    58  	Diag      bool  // already printed error about this
    59  	Noescape  bool  // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
    60  	Walkdef   uint8 // tracks state during typecheckdef; 2 == loop detected
    61  	Typecheck uint8 // tracks state during typechecking; 2 == loop detected
    62  	Local     bool
    63  	IsStatic  bool // whether this Node will be converted to purely static data
    64  	Initorder uint8
    65  	Used      bool // for variable/label declared and not used error
    66  	Isddd     bool // is the argument variadic
    67  	Implicit  bool
    68  	Addrtaken bool  // address taken, even if not moved to heap
    69  	Assigned  bool  // is the variable ever assigned to
    70  	Likely    int8  // likeliness of if statement
    71  	hasVal    int8  // +1 for Val, -1 for Opt, 0 for not yet set
    72  	flags     uint8 // TODO: store more bool fields in this flag field
    73  }
    74  
    75  // IsAutoTmp indicates if n was created by the compiler as a temporary,
    76  // based on the setting of the .AutoTemp flag in n's Name.
    77  func (n *Node) IsAutoTmp() bool {
    78  	if n == nil || n.Op != ONAME {
    79  		return false
    80  	}
    81  	return n.Name.AutoTemp
    82  }
    83  
    84  const (
    85  	hasBreak = 1 << iota
    86  	isClosureVar
    87  	isOutputParamHeapAddr
    88  	noInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
    89  )
    90  
    91  func (n *Node) HasBreak() bool {
    92  	return n.flags&hasBreak != 0
    93  }
    94  func (n *Node) SetHasBreak(b bool) {
    95  	if b {
    96  		n.flags |= hasBreak
    97  	} else {
    98  		n.flags &^= hasBreak
    99  	}
   100  }
   101  func (n *Node) isClosureVar() bool {
   102  	return n.flags&isClosureVar != 0
   103  }
   104  func (n *Node) setIsClosureVar(b bool) {
   105  	if b {
   106  		n.flags |= isClosureVar
   107  	} else {
   108  		n.flags &^= isClosureVar
   109  	}
   110  }
   111  func (n *Node) noInline() bool {
   112  	return n.flags&noInline != 0
   113  }
   114  func (n *Node) setNoInline(b bool) {
   115  	if b {
   116  		n.flags |= noInline
   117  	} else {
   118  		n.flags &^= noInline
   119  	}
   120  }
   121  
   122  func (n *Node) IsOutputParamHeapAddr() bool {
   123  	return n.flags&isOutputParamHeapAddr != 0
   124  }
   125  func (n *Node) setIsOutputParamHeapAddr(b bool) {
   126  	if b {
   127  		n.flags |= isOutputParamHeapAddr
   128  	} else {
   129  		n.flags &^= isOutputParamHeapAddr
   130  	}
   131  }
   132  
   133  // Val returns the Val for the node.
   134  func (n *Node) Val() Val {
   135  	if n.hasVal != +1 {
   136  		return Val{}
   137  	}
   138  	return Val{n.E}
   139  }
   140  
   141  // SetVal sets the Val for the node, which must not have been used with SetOpt.
   142  func (n *Node) SetVal(v Val) {
   143  	if n.hasVal == -1 {
   144  		Debug['h'] = 1
   145  		Dump("have Opt", n)
   146  		Fatalf("have Opt")
   147  	}
   148  	n.hasVal = +1
   149  	n.E = v.U
   150  }
   151  
   152  // Opt returns the optimizer data for the node.
   153  func (n *Node) Opt() interface{} {
   154  	if n.hasVal != -1 {
   155  		return nil
   156  	}
   157  	return n.E
   158  }
   159  
   160  // SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   161  // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   162  func (n *Node) SetOpt(x interface{}) {
   163  	if x == nil && n.hasVal >= 0 {
   164  		return
   165  	}
   166  	if n.hasVal == +1 {
   167  		Debug['h'] = 1
   168  		Dump("have Val", n)
   169  		Fatalf("have Val")
   170  	}
   171  	n.hasVal = -1
   172  	n.E = x
   173  }
   174  
   175  func (n *Node) Iota() int64 {
   176  	return n.Xoffset
   177  }
   178  
   179  func (n *Node) SetIota(x int64) {
   180  	n.Xoffset = x
   181  }
   182  
   183  // Name holds Node fields used only by named nodes (ONAME, OPACK, OLABEL, some OLITERAL).
   184  type Name struct {
   185  	Pack      *Node  // real package for import . names
   186  	Pkg       *Pkg   // pkg for OPACK nodes
   187  	Heapaddr  *Node  // temp holding heap address of param (could move to Param?)
   188  	Defn      *Node  // initializing assignment
   189  	Curfn     *Node  // function for local variables
   190  	Param     *Param // additional fields for ONAME
   191  	Decldepth int32  // declaration loop depth, increased for every loop or label
   192  	Vargen    int32  // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   193  	Funcdepth int32
   194  	Readonly  bool
   195  	Captured  bool // is the variable captured by a closure
   196  	Byval     bool // is the variable captured by value or by reference
   197  	Needzero  bool // if it contains pointers, needs to be zeroed on function entry
   198  	Keepalive bool // mark value live across unknown assembly call
   199  	AutoTemp  bool // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
   200  }
   201  
   202  type Param struct {
   203  	Ntype *Node
   204  
   205  	// ONAME PAUTOHEAP
   206  	Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   207  
   208  	// ONAME PPARAM
   209  	Field *Field // TFIELD in arg struct
   210  
   211  	// ONAME closure linkage
   212  	// Consider:
   213  	//
   214  	//	func f() {
   215  	//		x := 1 // x1
   216  	//		func() {
   217  	//			use(x) // x2
   218  	//			func() {
   219  	//				use(x) // x3
   220  	//				--- parser is here ---
   221  	//			}()
   222  	//		}()
   223  	//	}
   224  	//
   225  	// There is an original declaration of x and then a chain of mentions of x
   226  	// leading into the current function. Each time x is mentioned in a new closure,
   227  	// we create a variable representing x for use in that specific closure,
   228  	// since the way you get to x is different in each closure.
   229  	//
   230  	// Let's number the specific variables as shown in the code:
   231  	// x1 is the original x, x2 is when mentioned in the closure,
   232  	// and x3 is when mentioned in the closure in the closure.
   233  	//
   234  	// We keep these linked (assume N > 1):
   235  	//
   236  	//   - x1.Defn = original declaration statement for x (like most variables)
   237  	//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   238  	//   - x1.isClosureVar() = false
   239  	//
   240  	//   - xN.Defn = x1, N > 1
   241  	//   - xN.isClosureVar() = true, N > 1
   242  	//   - x2.Outer = nil
   243  	//   - xN.Outer = x(N-1), N > 2
   244  	//
   245  	//
   246  	// When we look up x in the symbol table, we always get x1.
   247  	// Then we can use x1.Innermost (if not nil) to get the x
   248  	// for the innermost known closure function,
   249  	// but the first reference in a closure will find either no x1.Innermost
   250  	// or an x1.Innermost with .Funcdepth < Funcdepth.
   251  	// In that case, a new xN must be created, linked in with:
   252  	//
   253  	//     xN.Defn = x1
   254  	//     xN.Outer = x1.Innermost
   255  	//     x1.Innermost = xN
   256  	//
   257  	// When we finish the function, we'll process its closure variables
   258  	// and find xN and pop it off the list using:
   259  	//
   260  	//     x1 := xN.Defn
   261  	//     x1.Innermost = xN.Outer
   262  	//
   263  	// We leave xN.Innermost set so that we can still get to the original
   264  	// variable quickly. Not shown here, but once we're
   265  	// done parsing a function and no longer need xN.Outer for the
   266  	// lexical x reference links as described above, closurebody
   267  	// recomputes xN.Outer as the semantic x reference link tree,
   268  	// even filling in x in intermediate closures that might not
   269  	// have mentioned it along the way to inner closures that did.
   270  	// See closurebody for details.
   271  	//
   272  	// During the eventual compilation, then, for closure variables we have:
   273  	//
   274  	//     xN.Defn = original variable
   275  	//     xN.Outer = variable captured in next outward scope
   276  	//                to make closure where xN appears
   277  	//
   278  	// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   279  	// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   280  	Innermost *Node
   281  	Outer     *Node
   282  
   283  	// OTYPE pragmas
   284  	//
   285  	// TODO: Should Func pragmas also be stored on the Name?
   286  	Pragma Pragma
   287  }
   288  
   289  // Func holds Node fields used only with function-like nodes.
   290  type Func struct {
   291  	Shortname  *Node
   292  	Enter      Nodes // for example, allocate and initialize memory for escaping parameters
   293  	Exit       Nodes
   294  	Cvars      Nodes   // closure params
   295  	Dcl        []*Node // autodcl for this func/closure
   296  	Inldcl     Nodes   // copy of dcl for use in inlining
   297  	Closgen    int
   298  	Outerfunc  *Node // outer function (for closure)
   299  	FieldTrack map[*Sym]struct{}
   300  	Ntype      *Node // signature
   301  	Top        int   // top context (Ecall, Eproc, etc)
   302  	Closure    *Node // OCLOSURE <-> ODCLFUNC
   303  	Nname      *Node
   304  
   305  	Inl     Nodes // copy of the body for use in inlining
   306  	InlCost int32
   307  	Depth   int32
   308  
   309  	Label int32 // largest auto-generated label in this function
   310  
   311  	Endlineno int32
   312  	WBLineno  int32 // line number of first write barrier
   313  
   314  	Pragma          Pragma // go:xxx function annotations
   315  	Dupok           bool   // duplicate definitions ok
   316  	Wrapper         bool   // is method wrapper
   317  	Needctxt        bool   // function uses context register (has closure variables)
   318  	ReflectMethod   bool   // function calls reflect.Type.Method or MethodByName
   319  	IsHiddenClosure bool
   320  	NoFramePointer  bool // Must not use a frame pointer for this function
   321  }
   322  
   323  type Op uint8
   324  
   325  // Node ops.
   326  const (
   327  	OXXX = Op(iota)
   328  
   329  	// names
   330  	ONAME    // var, const or func name
   331  	ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   332  	OTYPE    // type name
   333  	OPACK    // import
   334  	OLITERAL // literal
   335  
   336  	// expressions
   337  	OADD             // Left + Right
   338  	OSUB             // Left - Right
   339  	OOR              // Left | Right
   340  	OXOR             // Left ^ Right
   341  	OADDSTR          // +{List} (string addition, list elements are strings)
   342  	OADDR            // &Left
   343  	OANDAND          // Left && Right
   344  	OAPPEND          // append(List)
   345  	OARRAYBYTESTR    // Type(Left) (Type is string, Left is a []byte)
   346  	OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   347  	OARRAYRUNESTR    // Type(Left) (Type is string, Left is a []rune)
   348  	OSTRARRAYBYTE    // Type(Left) (Type is []byte, Left is a string)
   349  	OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   350  	OSTRARRAYRUNE    // Type(Left) (Type is []rune, Left is a string)
   351  	OAS              // Left = Right or (if Colas=true) Left := Right
   352  	OAS2             // List = Rlist (x, y, z = a, b, c)
   353  	OAS2FUNC         // List = Rlist (x, y = f())
   354  	OAS2RECV         // List = Rlist (x, ok = <-c)
   355  	OAS2MAPR         // List = Rlist (x, ok = m["foo"])
   356  	OAS2DOTTYPE      // List = Rlist (x, ok = I.(int))
   357  	OASOP            // Left Etype= Right (x += y)
   358  	OASWB            // Left = Right (with write barrier)
   359  	OCALL            // Left(List) (function call, method call or type conversion)
   360  	OCALLFUNC        // Left(List) (function call f(args))
   361  	OCALLMETH        // Left(List) (direct method call x.Method(args))
   362  	OCALLINTER       // Left(List) (interface method call x.Method(args))
   363  	OCALLPART        // Left.Right (method expression x.Method, not called)
   364  	OCAP             // cap(Left)
   365  	OCLOSE           // close(Left)
   366  	OCLOSURE         // func Type { Body } (func literal)
   367  	OCMPIFACE        // Left Etype Right (interface comparison, x == y or x != y)
   368  	OCMPSTR          // Left Etype Right (string comparison, x == y, x < y, etc)
   369  	OCOMPLIT         // Right{List} (composite literal, not yet lowered to specific form)
   370  	OMAPLIT          // Type{List} (composite literal, Type is map)
   371  	OSTRUCTLIT       // Type{List} (composite literal, Type is struct)
   372  	OARRAYLIT        // Type{List} (composite literal, Type is array)
   373  	OSLICELIT        // Type{List} (composite literal, Type is slice)
   374  	OPTRLIT          // &Left (left is composite literal)
   375  	OCONV            // Type(Left) (type conversion)
   376  	OCONVIFACE       // Type(Left) (type conversion, to interface)
   377  	OCONVNOP         // Type(Left) (type conversion, no effect)
   378  	OCOPY            // copy(Left, Right)
   379  	ODCL             // var Left (declares Left of type Left.Type)
   380  
   381  	// Used during parsing but don't last.
   382  	ODCLFUNC  // func f() or func (r) f()
   383  	ODCLFIELD // struct field, interface field, or func/method argument/return value.
   384  	ODCLCONST // const pi = 3.14
   385  	ODCLTYPE  // type Int int
   386  
   387  	ODELETE    // delete(Left, Right)
   388  	ODOT       // Left.Sym (Left is of struct type)
   389  	ODOTPTR    // Left.Sym (Left is of pointer to struct type)
   390  	ODOTMETH   // Left.Sym (Left is non-interface, Right is method name)
   391  	ODOTINTER  // Left.Sym (Left is interface, Right is method name)
   392  	OXDOT      // Left.Sym (before rewrite to one of the preceding)
   393  	ODOTTYPE   // Left.Right or Left.Type (.Right during parsing, .Type once resolved)
   394  	ODOTTYPE2  // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE)
   395  	OEQ        // Left == Right
   396  	ONE        // Left != Right
   397  	OLT        // Left < Right
   398  	OLE        // Left <= Right
   399  	OGE        // Left >= Right
   400  	OGT        // Left > Right
   401  	OIND       // *Left
   402  	OINDEX     // Left[Right] (index of array or slice)
   403  	OINDEXMAP  // Left[Right] (index of map)
   404  	OKEY       // Left:Right (key:value in struct/array/map literal)
   405  	OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
   406  	OLEN       // len(Left)
   407  	OMAKE      // make(List) (before type checking converts to one of the following)
   408  	OMAKECHAN  // make(Type, Left) (type is chan)
   409  	OMAKEMAP   // make(Type, Left) (type is map)
   410  	OMAKESLICE // make(Type, Left, Right) (type is slice)
   411  	OMUL       // Left * Right
   412  	ODIV       // Left / Right
   413  	OMOD       // Left % Right
   414  	OLSH       // Left << Right
   415  	ORSH       // Left >> Right
   416  	OAND       // Left & Right
   417  	OANDNOT    // Left &^ Right
   418  	ONEW       // new(Left)
   419  	ONOT       // !Left
   420  	OCOM       // ^Left
   421  	OPLUS      // +Left
   422  	OMINUS     // -Left
   423  	OOROR      // Left || Right
   424  	OPANIC     // panic(Left)
   425  	OPRINT     // print(List)
   426  	OPRINTN    // println(List)
   427  	OPAREN     // (Left)
   428  	OSEND      // Left <- Right
   429  	OSLICE     // Left[List[0] : List[1]] (Left is untypechecked or slice)
   430  	OSLICEARR  // Left[List[0] : List[1]] (Left is array)
   431  	OSLICESTR  // Left[List[0] : List[1]] (Left is string)
   432  	OSLICE3    // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
   433  	OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
   434  	ORECOVER   // recover()
   435  	ORECV      // <-Left
   436  	ORUNESTR   // Type(Left) (Type is string, Left is rune)
   437  	OSELRECV   // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   438  	OSELRECV2  // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   439  	OIOTA      // iota
   440  	OREAL      // real(Left)
   441  	OIMAG      // imag(Left)
   442  	OCOMPLEX   // complex(Left, Right)
   443  	OALIGNOF   // unsafe.Alignof(Left)
   444  	OOFFSETOF  // unsafe.Offsetof(Left)
   445  	OSIZEOF    // unsafe.Sizeof(Left)
   446  
   447  	// statements
   448  	OBLOCK    // { List } (block of code)
   449  	OBREAK    // break
   450  	OCASE     // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
   451  	OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   452  	OCONTINUE // continue
   453  	ODEFER    // defer Left (Left must be call)
   454  	OEMPTY    // no-op (empty statement)
   455  	OFALL     // fallthrough (after processing)
   456  	OXFALL    // fallthrough (before processing)
   457  	OFOR      // for Ninit; Left; Right { Nbody }
   458  	OGOTO     // goto Left
   459  	OIF       // if Ninit; Left { Nbody } else { Rlist }
   460  	OLABEL    // Left:
   461  	OPROC     // go Left (Left must be call)
   462  	ORANGE    // for List = range Right { Nbody }
   463  	ORETURN   // return List
   464  	OSELECT   // select { List } (List is list of OXCASE or OCASE)
   465  	OSWITCH   // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   466  	OTYPESW   // List = Left.(type) (appears as .Left of OSWITCH)
   467  
   468  	// types
   469  	OTCHAN   // chan int
   470  	OTMAP    // map[string]int
   471  	OTSTRUCT // struct{}
   472  	OTINTER  // interface{}
   473  	OTFUNC   // func()
   474  	OTARRAY  // []int, [8]int, [N]int or [...]int
   475  
   476  	// misc
   477  	ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   478  	ODDDARG     // func f(args ...int), introduced by escape analysis.
   479  	OINLCALL    // intermediary representation of an inlined call.
   480  	OEFACE      // itable and data words of an empty-interface value.
   481  	OITAB       // itable word of an interface value.
   482  	OIDATA      // data word of an interface value in Left
   483  	OSPTR       // base pointer of a slice or string.
   484  	OCLOSUREVAR // variable reference at beginning of closure function
   485  	OCFUNC      // reference to c function pointer (not go func value)
   486  	OCHECKNIL   // emit code to ensure pointer/interface not nil
   487  	OVARKILL    // variable is dead
   488  	OVARLIVE    // variable is alive
   489  	OINDREGSP   // offset plus indirect of REGSP, such as 8(SP).
   490  
   491  	// arch-specific opcodes
   492  	OCMP    // compare: ACMP.
   493  	ODEC    // decrement: ADEC.
   494  	OINC    // increment: AINC.
   495  	OEXTEND // extend: ACWD/ACDQ/ACQO.
   496  	OHMUL   // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
   497  	OLROT   // left rotate: AROL.
   498  	ORROTC  // right rotate-carry: ARCR.
   499  	ORETJMP // return to other function
   500  	OPS     // compare parity set (for x86 NaN check)
   501  	OPC     // compare parity clear (for x86 NaN check)
   502  	OSQRT   // sqrt(float64), on systems that have hw support
   503  	OGETG   // runtime.getg() (read g pointer)
   504  
   505  	OEND
   506  )
   507  
   508  // Nodes is a pointer to a slice of *Node.
   509  // For fields that are not used in most nodes, this is used instead of
   510  // a slice to save space.
   511  type Nodes struct{ slice *[]*Node }
   512  
   513  // Slice returns the entries in Nodes as a slice.
   514  // Changes to the slice entries (as in s[i] = n) will be reflected in
   515  // the Nodes.
   516  func (n Nodes) Slice() []*Node {
   517  	if n.slice == nil {
   518  		return nil
   519  	}
   520  	return *n.slice
   521  }
   522  
   523  // Len returns the number of entries in Nodes.
   524  func (n Nodes) Len() int {
   525  	if n.slice == nil {
   526  		return 0
   527  	}
   528  	return len(*n.slice)
   529  }
   530  
   531  // Index returns the i'th element of Nodes.
   532  // It panics if n does not have at least i+1 elements.
   533  func (n Nodes) Index(i int) *Node {
   534  	return (*n.slice)[i]
   535  }
   536  
   537  // First returns the first element of Nodes (same as n.Index(0)).
   538  // It panics if n has no elements.
   539  func (n Nodes) First() *Node {
   540  	return (*n.slice)[0]
   541  }
   542  
   543  // Second returns the second element of Nodes (same as n.Index(1)).
   544  // It panics if n has fewer than two elements.
   545  func (n Nodes) Second() *Node {
   546  	return (*n.slice)[1]
   547  }
   548  
   549  // Set sets n to a slice.
   550  // This takes ownership of the slice.
   551  func (n *Nodes) Set(s []*Node) {
   552  	if len(s) == 0 {
   553  		n.slice = nil
   554  	} else {
   555  		// Copy s and take address of t rather than s to avoid
   556  		// allocation in the case where len(s) == 0 (which is
   557  		// over 3x more common, dynamically, for make.bash).
   558  		t := s
   559  		n.slice = &t
   560  	}
   561  }
   562  
   563  // Set1 sets n to a slice containing a single node.
   564  func (n *Nodes) Set1(node *Node) {
   565  	n.slice = &[]*Node{node}
   566  }
   567  
   568  // Set2 sets n to a slice containing two nodes.
   569  func (n *Nodes) Set2(n1, n2 *Node) {
   570  	n.slice = &[]*Node{n1, n2}
   571  }
   572  
   573  // MoveNodes sets n to the contents of n2, then clears n2.
   574  func (n *Nodes) MoveNodes(n2 *Nodes) {
   575  	n.slice = n2.slice
   576  	n2.slice = nil
   577  }
   578  
   579  // SetIndex sets the i'th element of Nodes to node.
   580  // It panics if n does not have at least i+1 elements.
   581  func (n Nodes) SetIndex(i int, node *Node) {
   582  	(*n.slice)[i] = node
   583  }
   584  
   585  // Addr returns the address of the i'th element of Nodes.
   586  // It panics if n does not have at least i+1 elements.
   587  func (n Nodes) Addr(i int) **Node {
   588  	return &(*n.slice)[i]
   589  }
   590  
   591  // Append appends entries to Nodes.
   592  // If a slice is passed in, this will take ownership of it.
   593  func (n *Nodes) Append(a ...*Node) {
   594  	if len(a) == 0 {
   595  		return
   596  	}
   597  	if n.slice == nil {
   598  		n.slice = &a
   599  	} else {
   600  		*n.slice = append(*n.slice, a...)
   601  	}
   602  }
   603  
   604  // Prepend prepends entries to Nodes.
   605  // If a slice is passed in, this will take ownership of it.
   606  func (n *Nodes) Prepend(a ...*Node) {
   607  	if len(a) == 0 {
   608  		return
   609  	}
   610  	if n.slice == nil {
   611  		n.slice = &a
   612  	} else {
   613  		*n.slice = append(a, *n.slice...)
   614  	}
   615  }
   616  
   617  // AppendNodes appends the contents of *n2 to n, then clears n2.
   618  func (n *Nodes) AppendNodes(n2 *Nodes) {
   619  	switch {
   620  	case n2.slice == nil:
   621  	case n.slice == nil:
   622  		n.slice = n2.slice
   623  	default:
   624  		*n.slice = append(*n.slice, *n2.slice...)
   625  	}
   626  	n2.slice = nil
   627  }