github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/compile/internal/ssa/cse.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"fmt"
     9  	"sort"
    10  )
    11  
    12  // cse does common-subexpression elimination on the Function.
    13  // Values are just relinked, nothing is deleted. A subsequent deadcode
    14  // pass is required to actually remove duplicate expressions.
    15  func cse(f *Func) {
    16  	// Two values are equivalent if they satisfy the following definition:
    17  	// equivalent(v, w):
    18  	//   v.op == w.op
    19  	//   v.type == w.type
    20  	//   v.aux == w.aux
    21  	//   v.auxint == w.auxint
    22  	//   len(v.args) == len(w.args)
    23  	//   v.block == w.block if v.op == OpPhi
    24  	//   equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1
    25  
    26  	// The algorithm searches for a partition of f's values into
    27  	// equivalence classes using the above definition.
    28  	// It starts with a coarse partition and iteratively refines it
    29  	// until it reaches a fixed point.
    30  
    31  	// Make initial coarse partitions by using a subset of the conditions above.
    32  	a := make([]*Value, 0, f.NumValues())
    33  	auxIDs := auxmap{}
    34  	for _, b := range f.Blocks {
    35  		for _, v := range b.Values {
    36  			if auxIDs[v.Aux] == 0 {
    37  				auxIDs[v.Aux] = int32(len(auxIDs)) + 1
    38  			}
    39  			if v.Type.IsMemory() {
    40  				continue // memory values can never cse
    41  			}
    42  			if opcodeTable[v.Op].commutative && len(v.Args) == 2 && v.Args[1].ID < v.Args[0].ID {
    43  				// Order the arguments of binary commutative operations.
    44  				v.Args[0], v.Args[1] = v.Args[1], v.Args[0]
    45  			}
    46  			a = append(a, v)
    47  		}
    48  	}
    49  	partition := partitionValues(a, auxIDs)
    50  
    51  	// map from value id back to eqclass id
    52  	valueEqClass := make([]ID, f.NumValues())
    53  	for _, b := range f.Blocks {
    54  		for _, v := range b.Values {
    55  			// Use negative equivalence class #s for unique values.
    56  			valueEqClass[v.ID] = -v.ID
    57  		}
    58  	}
    59  	var pNum ID = 1
    60  	for _, e := range partition {
    61  		if f.pass.debug > 1 && len(e) > 500 {
    62  			fmt.Printf("CSE.large partition (%d): ", len(e))
    63  			for j := 0; j < 3; j++ {
    64  				fmt.Printf("%s ", e[j].LongString())
    65  			}
    66  			fmt.Println()
    67  		}
    68  
    69  		for _, v := range e {
    70  			valueEqClass[v.ID] = pNum
    71  		}
    72  		if f.pass.debug > 2 && len(e) > 1 {
    73  			fmt.Printf("CSE.partition #%d:", pNum)
    74  			for _, v := range e {
    75  				fmt.Printf(" %s", v.String())
    76  			}
    77  			fmt.Printf("\n")
    78  		}
    79  		pNum++
    80  	}
    81  
    82  	// Split equivalence classes at points where they have
    83  	// non-equivalent arguments.  Repeat until we can't find any
    84  	// more splits.
    85  	var splitPoints []int
    86  	byArgClass := new(partitionByArgClass) // reuseable partitionByArgClass to reduce allocations
    87  	for {
    88  		changed := false
    89  
    90  		// partition can grow in the loop. By not using a range loop here,
    91  		// we process new additions as they arrive, avoiding O(n^2) behavior.
    92  		for i := 0; i < len(partition); i++ {
    93  			e := partition[i]
    94  
    95  			// Sort by eq class of arguments.
    96  			byArgClass.a = e
    97  			byArgClass.eqClass = valueEqClass
    98  			sort.Sort(byArgClass)
    99  
   100  			// Find split points.
   101  			splitPoints = append(splitPoints[:0], 0)
   102  			for j := 1; j < len(e); j++ {
   103  				v, w := e[j-1], e[j]
   104  				eqArgs := true
   105  				for k, a := range v.Args {
   106  					b := w.Args[k]
   107  					if valueEqClass[a.ID] != valueEqClass[b.ID] {
   108  						eqArgs = false
   109  						break
   110  					}
   111  				}
   112  				if !eqArgs {
   113  					splitPoints = append(splitPoints, j)
   114  				}
   115  			}
   116  			if len(splitPoints) == 1 {
   117  				continue // no splits, leave equivalence class alone.
   118  			}
   119  
   120  			// Move another equivalence class down in place of e.
   121  			partition[i] = partition[len(partition)-1]
   122  			partition = partition[:len(partition)-1]
   123  			i--
   124  
   125  			// Add new equivalence classes for the parts of e we found.
   126  			splitPoints = append(splitPoints, len(e))
   127  			for j := 0; j < len(splitPoints)-1; j++ {
   128  				f := e[splitPoints[j]:splitPoints[j+1]]
   129  				if len(f) == 1 {
   130  					// Don't add singletons.
   131  					valueEqClass[f[0].ID] = -f[0].ID
   132  					continue
   133  				}
   134  				for _, v := range f {
   135  					valueEqClass[v.ID] = pNum
   136  				}
   137  				pNum++
   138  				partition = append(partition, f)
   139  			}
   140  			changed = true
   141  		}
   142  
   143  		if !changed {
   144  			break
   145  		}
   146  	}
   147  
   148  	sdom := f.sdom()
   149  
   150  	// Compute substitutions we would like to do. We substitute v for w
   151  	// if v and w are in the same equivalence class and v dominates w.
   152  	rewrite := make([]*Value, f.NumValues())
   153  	byDom := new(partitionByDom) // reusable partitionByDom to reduce allocs
   154  	for _, e := range partition {
   155  		byDom.a = e
   156  		byDom.sdom = sdom
   157  		sort.Sort(byDom)
   158  		for i := 0; i < len(e)-1; i++ {
   159  			// e is sorted by domorder, so a maximal dominant element is first in the slice
   160  			v := e[i]
   161  			if v == nil {
   162  				continue
   163  			}
   164  
   165  			e[i] = nil
   166  			// Replace all elements of e which v dominates
   167  			for j := i + 1; j < len(e); j++ {
   168  				w := e[j]
   169  				if w == nil {
   170  					continue
   171  				}
   172  				if sdom.isAncestorEq(v.Block, w.Block) {
   173  					rewrite[w.ID] = v
   174  					e[j] = nil
   175  				} else {
   176  					// e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e
   177  					break
   178  				}
   179  			}
   180  		}
   181  	}
   182  
   183  	// if we rewrite a tuple generator to a new one in a different block,
   184  	// copy its selectors to the new generator's block, so tuple generator
   185  	// and selectors stay together.
   186  	// be careful not to copy same selectors more than once (issue 16741).
   187  	copiedSelects := make(map[ID][]*Value)
   188  	for _, b := range f.Blocks {
   189  	out:
   190  		for _, v := range b.Values {
   191  			// New values are created when selectors are copied to
   192  			// a new block. We can safely ignore those new values,
   193  			// since they have already been copied (issue 17918).
   194  			if int(v.ID) >= len(rewrite) || rewrite[v.ID] != nil {
   195  				continue
   196  			}
   197  			if v.Op != OpSelect0 && v.Op != OpSelect1 {
   198  				continue
   199  			}
   200  			if !v.Args[0].Type.IsTuple() {
   201  				f.Fatalf("arg of tuple selector %s is not a tuple: %s", v.String(), v.Args[0].LongString())
   202  			}
   203  			t := rewrite[v.Args[0].ID]
   204  			if t != nil && t.Block != b {
   205  				// v.Args[0] is tuple generator, CSE'd into a different block as t, v is left behind
   206  				for _, c := range copiedSelects[t.ID] {
   207  					if v.Op == c.Op {
   208  						// an equivalent selector is already copied
   209  						rewrite[v.ID] = c
   210  						continue out
   211  					}
   212  				}
   213  				c := v.copyInto(t.Block)
   214  				rewrite[v.ID] = c
   215  				copiedSelects[t.ID] = append(copiedSelects[t.ID], c)
   216  			}
   217  		}
   218  	}
   219  
   220  	rewrites := int64(0)
   221  
   222  	// Apply substitutions
   223  	for _, b := range f.Blocks {
   224  		for _, v := range b.Values {
   225  			for i, w := range v.Args {
   226  				if x := rewrite[w.ID]; x != nil {
   227  					v.SetArg(i, x)
   228  					rewrites++
   229  				}
   230  			}
   231  		}
   232  		if v := b.Control; v != nil {
   233  			if x := rewrite[v.ID]; x != nil {
   234  				if v.Op == OpNilCheck {
   235  					// nilcheck pass will remove the nil checks and log
   236  					// them appropriately, so don't mess with them here.
   237  					continue
   238  				}
   239  				b.SetControl(x)
   240  			}
   241  		}
   242  	}
   243  	if f.pass.stats > 0 {
   244  		f.LogStat("CSE REWRITES", rewrites)
   245  	}
   246  }
   247  
   248  // An eqclass approximates an equivalence class. During the
   249  // algorithm it may represent the union of several of the
   250  // final equivalence classes.
   251  type eqclass []*Value
   252  
   253  // partitionValues partitions the values into equivalence classes
   254  // based on having all the following features match:
   255  //  - opcode
   256  //  - type
   257  //  - auxint
   258  //  - aux
   259  //  - nargs
   260  //  - block # if a phi op
   261  //  - first two arg's opcodes and auxint
   262  //  - NOT first two arg's aux; that can break CSE.
   263  // partitionValues returns a list of equivalence classes, each
   264  // being a sorted by ID list of *Values. The eqclass slices are
   265  // backed by the same storage as the input slice.
   266  // Equivalence classes of size 1 are ignored.
   267  func partitionValues(a []*Value, auxIDs auxmap) []eqclass {
   268  	sort.Sort(sortvalues{a, auxIDs})
   269  
   270  	var partition []eqclass
   271  	for len(a) > 0 {
   272  		v := a[0]
   273  		j := 1
   274  		for ; j < len(a); j++ {
   275  			w := a[j]
   276  			if cmpVal(v, w, auxIDs) != CMPeq {
   277  				break
   278  			}
   279  		}
   280  		if j > 1 {
   281  			partition = append(partition, a[:j])
   282  		}
   283  		a = a[j:]
   284  	}
   285  
   286  	return partition
   287  }
   288  func lt2Cmp(isLt bool) Cmp {
   289  	if isLt {
   290  		return CMPlt
   291  	}
   292  	return CMPgt
   293  }
   294  
   295  type auxmap map[interface{}]int32
   296  
   297  func cmpVal(v, w *Value, auxIDs auxmap) Cmp {
   298  	// Try to order these comparison by cost (cheaper first)
   299  	if v.Op != w.Op {
   300  		return lt2Cmp(v.Op < w.Op)
   301  	}
   302  	if v.AuxInt != w.AuxInt {
   303  		return lt2Cmp(v.AuxInt < w.AuxInt)
   304  	}
   305  	if len(v.Args) != len(w.Args) {
   306  		return lt2Cmp(len(v.Args) < len(w.Args))
   307  	}
   308  	if v.Op == OpPhi && v.Block != w.Block {
   309  		return lt2Cmp(v.Block.ID < w.Block.ID)
   310  	}
   311  	if v.Type.IsMemory() {
   312  		// We will never be able to CSE two values
   313  		// that generate memory.
   314  		return lt2Cmp(v.ID < w.ID)
   315  	}
   316  
   317  	if tc := v.Type.Compare(w.Type); tc != CMPeq {
   318  		return tc
   319  	}
   320  
   321  	if v.Aux != w.Aux {
   322  		if v.Aux == nil {
   323  			return CMPlt
   324  		}
   325  		if w.Aux == nil {
   326  			return CMPgt
   327  		}
   328  		return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux])
   329  	}
   330  
   331  	return CMPeq
   332  }
   333  
   334  // Sort values to make the initial partition.
   335  type sortvalues struct {
   336  	a      []*Value // array of values
   337  	auxIDs auxmap   // aux -> aux ID map
   338  }
   339  
   340  func (sv sortvalues) Len() int      { return len(sv.a) }
   341  func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   342  func (sv sortvalues) Less(i, j int) bool {
   343  	v := sv.a[i]
   344  	w := sv.a[j]
   345  	if cmp := cmpVal(v, w, sv.auxIDs); cmp != CMPeq {
   346  		return cmp == CMPlt
   347  	}
   348  
   349  	// Sort by value ID last to keep the sort result deterministic.
   350  	return v.ID < w.ID
   351  }
   352  
   353  type partitionByDom struct {
   354  	a    []*Value // array of values
   355  	sdom SparseTree
   356  }
   357  
   358  func (sv partitionByDom) Len() int      { return len(sv.a) }
   359  func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   360  func (sv partitionByDom) Less(i, j int) bool {
   361  	v := sv.a[i]
   362  	w := sv.a[j]
   363  	return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block)
   364  }
   365  
   366  type partitionByArgClass struct {
   367  	a       []*Value // array of values
   368  	eqClass []ID     // equivalence class IDs of values
   369  }
   370  
   371  func (sv partitionByArgClass) Len() int      { return len(sv.a) }
   372  func (sv partitionByArgClass) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   373  func (sv partitionByArgClass) Less(i, j int) bool {
   374  	v := sv.a[i]
   375  	w := sv.a[j]
   376  	for i, a := range v.Args {
   377  		b := w.Args[i]
   378  		if sv.eqClass[a.ID] < sv.eqClass[b.ID] {
   379  			return true
   380  		}
   381  		if sv.eqClass[a.ID] > sv.eqClass[b.ID] {
   382  			return false
   383  		}
   384  	}
   385  	return false
   386  }