github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/compile/internal/ssa/nilcheck.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // nilcheckelim eliminates unnecessary nil checks.
     8  // runs on machine-independent code.
     9  func nilcheckelim(f *Func) {
    10  	// A nil check is redundant if the same nil check was successful in a
    11  	// dominating block. The efficacy of this pass depends heavily on the
    12  	// efficacy of the cse pass.
    13  	sdom := f.sdom()
    14  
    15  	// TODO: Eliminate more nil checks.
    16  	// We can recursively remove any chain of fixed offset calculations,
    17  	// i.e. struct fields and array elements, even with non-constant
    18  	// indices: x is non-nil iff x.a.b[i].c is.
    19  
    20  	type walkState int
    21  	const (
    22  		Work     walkState = iota // process nil checks and traverse to dominees
    23  		ClearPtr                  // forget the fact that ptr is nil
    24  	)
    25  
    26  	type bp struct {
    27  		block *Block // block, or nil in ClearPtr state
    28  		ptr   *Value // if non-nil, ptr that is to be cleared in ClearPtr state
    29  		op    walkState
    30  	}
    31  
    32  	work := make([]bp, 0, 256)
    33  	work = append(work, bp{block: f.Entry})
    34  
    35  	// map from value ID to bool indicating if value is known to be non-nil
    36  	// in the current dominator path being walked. This slice is updated by
    37  	// walkStates to maintain the known non-nil values.
    38  	nonNilValues := make([]bool, f.NumValues())
    39  
    40  	// make an initial pass identifying any non-nil values
    41  	for _, b := range f.Blocks {
    42  		// a value resulting from taking the address of a
    43  		// value, or a value constructed from an offset of a
    44  		// non-nil ptr (OpAddPtr) implies it is non-nil
    45  		for _, v := range b.Values {
    46  			if v.Op == OpAddr || v.Op == OpAddPtr {
    47  				nonNilValues[v.ID] = true
    48  			} else if v.Op == OpPhi {
    49  				// phis whose arguments are all non-nil
    50  				// are non-nil
    51  				argsNonNil := true
    52  				for _, a := range v.Args {
    53  					if !nonNilValues[a.ID] {
    54  						argsNonNil = false
    55  					}
    56  				}
    57  				if argsNonNil {
    58  					nonNilValues[v.ID] = true
    59  				}
    60  			}
    61  		}
    62  	}
    63  
    64  	// perform a depth first walk of the dominee tree
    65  	for len(work) > 0 {
    66  		node := work[len(work)-1]
    67  		work = work[:len(work)-1]
    68  
    69  		switch node.op {
    70  		case Work:
    71  			b := node.block
    72  
    73  			// First, see if we're dominated by an explicit nil check.
    74  			if len(b.Preds) == 1 {
    75  				p := b.Preds[0].b
    76  				if p.Kind == BlockIf && p.Control.Op == OpIsNonNil && p.Succs[0].b == b {
    77  					ptr := p.Control.Args[0]
    78  					if !nonNilValues[ptr.ID] {
    79  						nonNilValues[ptr.ID] = true
    80  						work = append(work, bp{op: ClearPtr, ptr: ptr})
    81  					}
    82  				}
    83  			}
    84  
    85  			// Next, eliminate any redundant nil checks in this block.
    86  			i := 0
    87  			for _, v := range b.Values {
    88  				b.Values[i] = v
    89  				i++
    90  				switch v.Op {
    91  				case OpIsNonNil:
    92  					ptr := v.Args[0]
    93  					if nonNilValues[ptr.ID] {
    94  						// This is a redundant explicit nil check.
    95  						v.reset(OpConstBool)
    96  						v.AuxInt = 1 // true
    97  					}
    98  				case OpNilCheck:
    99  					ptr := v.Args[0]
   100  					if nonNilValues[ptr.ID] {
   101  						// This is a redundant implicit nil check.
   102  						// Logging in the style of the former compiler -- and omit line 1,
   103  						// which is usually in generated code.
   104  						if f.Config.Debug_checknil() && v.Line > 1 {
   105  							f.Config.Warnl(v.Line, "removed nil check")
   106  						}
   107  						v.reset(OpUnknown)
   108  						// TODO: f.freeValue(v)
   109  						i--
   110  						continue
   111  					}
   112  				}
   113  			}
   114  			for j := i; j < len(b.Values); j++ {
   115  				b.Values[j] = nil
   116  			}
   117  			b.Values = b.Values[:i]
   118  
   119  			// Finally, find redundant nil checks for subsequent blocks.
   120  			// Note that we can't add these until the loop above is done, as the
   121  			// values in the block are not ordered in any way when this pass runs.
   122  			// This was the cause of issue #18725.
   123  			for _, v := range b.Values {
   124  				if v.Op != OpNilCheck {
   125  					continue
   126  				}
   127  				ptr := v.Args[0]
   128  				// Record the fact that we know ptr is non nil, and remember to
   129  				// undo that information when this dominator subtree is done.
   130  				nonNilValues[ptr.ID] = true
   131  				work = append(work, bp{op: ClearPtr, ptr: ptr})
   132  			}
   133  
   134  			// Add all dominated blocks to the work list.
   135  			for w := sdom[node.block.ID].child; w != nil; w = sdom[w.ID].sibling {
   136  				work = append(work, bp{op: Work, block: w})
   137  			}
   138  
   139  		case ClearPtr:
   140  			nonNilValues[node.ptr.ID] = false
   141  			continue
   142  		}
   143  	}
   144  }
   145  
   146  // All platforms are guaranteed to fault if we load/store to anything smaller than this address.
   147  //
   148  // This should agree with minLegalPointer in the runtime.
   149  const minZeroPage = 4096
   150  
   151  // nilcheckelim2 eliminates unnecessary nil checks.
   152  // Runs after lowering and scheduling.
   153  func nilcheckelim2(f *Func) {
   154  	unnecessary := f.newSparseSet(f.NumValues())
   155  	defer f.retSparseSet(unnecessary)
   156  	for _, b := range f.Blocks {
   157  		// Walk the block backwards. Find instructions that will fault if their
   158  		// input pointer is nil. Remove nil checks on those pointers, as the
   159  		// faulting instruction effectively does the nil check for free.
   160  		unnecessary.clear()
   161  		for i := len(b.Values) - 1; i >= 0; i-- {
   162  			v := b.Values[i]
   163  			if opcodeTable[v.Op].nilCheck && unnecessary.contains(v.Args[0].ID) {
   164  				if f.Config.Debug_checknil() && int(v.Line) > 1 {
   165  					f.Config.Warnl(v.Line, "removed nil check")
   166  				}
   167  				v.reset(OpUnknown)
   168  				continue
   169  			}
   170  			if v.Type.IsMemory() || v.Type.IsTuple() && v.Type.FieldType(1).IsMemory() {
   171  				if v.Op == OpVarDef || v.Op == OpVarKill || v.Op == OpVarLive {
   172  					// These ops don't really change memory.
   173  					continue
   174  				}
   175  				// This op changes memory.  Any faulting instruction after v that
   176  				// we've recorded in the unnecessary map is now obsolete.
   177  				unnecessary.clear()
   178  			}
   179  
   180  			// Find any pointers that this op is guaranteed to fault on if nil.
   181  			var ptrstore [2]*Value
   182  			ptrs := ptrstore[:0]
   183  			if opcodeTable[v.Op].faultOnNilArg0 {
   184  				ptrs = append(ptrs, v.Args[0])
   185  			}
   186  			if opcodeTable[v.Op].faultOnNilArg1 {
   187  				ptrs = append(ptrs, v.Args[1])
   188  			}
   189  			for _, ptr := range ptrs {
   190  				// Check to make sure the offset is small.
   191  				switch opcodeTable[v.Op].auxType {
   192  				case auxSymOff:
   193  					if v.Aux != nil || v.AuxInt < 0 || v.AuxInt >= minZeroPage {
   194  						continue
   195  					}
   196  				case auxSymValAndOff:
   197  					off := ValAndOff(v.AuxInt).Off()
   198  					if v.Aux != nil || off < 0 || off >= minZeroPage {
   199  						continue
   200  					}
   201  				case auxInt32:
   202  					// Mips uses this auxType for atomic add constant. It does not affect the effective address.
   203  				case auxInt64:
   204  					// ARM uses this auxType for duffcopy/duffzero/alignment info.
   205  					// It does not affect the effective address.
   206  				case auxNone:
   207  					// offset is zero.
   208  				default:
   209  					v.Fatalf("can't handle aux %s (type %d) yet\n", v.auxString(), int(opcodeTable[v.Op].auxType))
   210  				}
   211  				// This instruction is guaranteed to fault if ptr is nil.
   212  				// Any previous nil check op is unnecessary.
   213  				unnecessary.add(ptr.ID)
   214  			}
   215  		}
   216  		// Remove values we've clobbered with OpUnknown.
   217  		i := 0
   218  		for _, v := range b.Values {
   219  			if v.Op != OpUnknown {
   220  				b.Values[i] = v
   221  				i++
   222  			}
   223  		}
   224  		for j := i; j < len(b.Values); j++ {
   225  			b.Values[j] = nil
   226  		}
   227  		b.Values = b.Values[:i]
   228  
   229  		// TODO: if b.Kind == BlockPlain, start the analysis in the subsequent block to find
   230  		// more unnecessary nil checks.  Would fix test/nilptr3_ssa.go:157.
   231  	}
   232  }