github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"log"
    35  	"math"
    36  	"sort"
    37  )
    38  
    39  // instruction layout.
    40  const (
    41  	funcAlign = 16
    42  )
    43  
    44  type Optab struct {
    45  	as    obj.As // opcode
    46  	a1    uint8  // From
    47  	a2    uint8  // Reg
    48  	a3    uint8  // From3
    49  	a4    uint8  // To
    50  	type_ int8
    51  	param int16 // REGSP for auto variables
    52  }
    53  
    54  var optab = []Optab{
    55  	// instruction,  From,   Reg,    From3,  To, type, param
    56  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    57  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    58  
    59  	// move register
    60  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    61  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    62  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    63  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    64  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    65  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    66  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    67  
    68  	// load constant
    69  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    70  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    71  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    72  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    73  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    74  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    75  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    76  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    77  
    78  	// store constant
    79  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    80  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    81  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    82  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    83  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    84  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    85  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    86  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    87  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    88  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    89  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    90  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    91  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    92  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    93  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    94  
    95  	// store
    96  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    97  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    98  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    99  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   100  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   101  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   102  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   103  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   104  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   105  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   106  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   107  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   108  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   109  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   110  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   111  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   112  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   113  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   114  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   115  
   116  	// load
   117  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   118  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   119  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   120  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   121  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   122  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   123  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   124  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   125  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   126  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   127  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   128  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   129  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   130  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   131  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   132  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   133  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   134  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   135  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   136  
   137  	// interlocked load and op
   138  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   139  
   140  	// integer arithmetic
   141  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   142  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   143  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   144  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   145  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   146  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   147  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   148  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   149  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   150  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   151  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   152  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   153  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   154  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   155  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   156  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   157  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   158  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   159  
   160  	// integer logical
   161  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   162  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   163  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   164  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   165  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   166  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   167  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   168  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   169  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   170  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   171  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   172  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   173  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   174  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   175  
   176  	// compare and swap
   177  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   178  
   179  	// floating point
   180  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 2, 0},
   181  	Optab{AFADD, C_FREG, C_FREG, C_NONE, C_FREG, 2, 0},
   182  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   183  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   184  	Optab{AFMADD, C_FREG, C_FREG, C_FREG, C_FREG, 34, 0},
   185  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   186  	Optab{AFMUL, C_FREG, C_FREG, C_NONE, C_FREG, 32, 0},
   187  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   188  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   189  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   190  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   191  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   192  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   193  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   194  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   195  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   196  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   197  
   198  	// load symbol address (plus offset)
   199  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   200  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   201  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   202  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   203  
   204  	// system call
   205  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   206  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   207  
   208  	// branch
   209  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   210  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   211  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   212  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   213  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   214  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   215  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   216  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   217  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   218  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   219  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   220  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   221  
   222  	// move on condition
   223  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   224  
   225  	// find leftmost one
   226  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   227  
   228  	// compare
   229  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   230  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   231  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   232  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   233  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   234  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   235  
   236  	// 32-bit access registers
   237  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   238  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   239  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   240  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   241  
   242  	// macros
   243  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   244  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   245  
   246  	// load/store multiple
   247  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   248  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   249  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   250  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   251  
   252  	// bytes
   253  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   254  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   255  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   256  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   257  
   258  	// fast synchronization
   259  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 81, 0},
   260  
   261  	// store clock
   262  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   263  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   264  
   265  	// storage and storage
   266  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LOREG, 84, 0},
   267  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   268  	Optab{AMVC, C_LAUTO, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   269  
   270  	// address
   271  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   272  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   273  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   274  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   275  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   276  
   277  	// misc
   278  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   279  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   280  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   281  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   282  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   283  
   284  	// vector instructions
   285  
   286  	// VRX store
   287  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   288  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   289  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SOREG, 100, 0},
   290  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 100, REGSP},
   291  
   292  	// VRX load
   293  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   294  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   295  	Optab{AVLEG, C_SOREG, C_NONE, C_SCON, C_VREG, 101, 0},
   296  	Optab{AVLEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 101, REGSP},
   297  
   298  	// VRV scatter
   299  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SOREG, 102, 0},
   300  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 102, REGSP},
   301  
   302  	// VRV gather
   303  	Optab{AVGEG, C_SOREG, C_NONE, C_SCON, C_VREG, 103, 0},
   304  	Optab{AVGEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 103, REGSP},
   305  
   306  	// VRS element shift/rotate and load gr to/from vr element
   307  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   308  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   309  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   310  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   311  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   312  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   313  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   314  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   315  
   316  	// VRS store multiple
   317  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   318  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   319  
   320  	// VRS load multiple
   321  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   322  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   323  
   324  	// VRS store with length
   325  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SOREG, 107, 0},
   326  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SAUTO, 107, REGSP},
   327  
   328  	// VRS load with length
   329  	Optab{AVLL, C_SOREG, C_NONE, C_REG, C_VREG, 108, 0},
   330  	Optab{AVLL, C_SAUTO, C_NONE, C_REG, C_VREG, 108, REGSP},
   331  
   332  	// VRI-a
   333  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   334  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   335  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   336  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   337  	Optab{AVLEIG, C_ADDCON, C_NONE, C_SCON, C_VREG, 109, 0},
   338  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   339  
   340  	// VRI-b generate mask
   341  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   342  
   343  	// VRI-c replicate
   344  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   345  
   346  	// VRI-d element rotate and insert under mask and
   347  	// shift left double by byte
   348  	Optab{AVERIMG, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   349  	Optab{AVSLDB, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   350  
   351  	// VRI-d fp test data class immediate
   352  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   353  
   354  	// VRR-a load reg
   355  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   356  
   357  	// VRR-a compare
   358  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   359  
   360  	// VRR-b
   361  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   362  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   363  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   364  
   365  	// VRR-c
   366  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   367  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   368  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   369  	Optab{AVPDI, C_VREG, C_VREG, C_SCON, C_VREG, 123, 0},
   370  
   371  	// VRR-c shifts
   372  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   373  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   374  
   375  	// VRR-d
   376  	//             2       3       1       4
   377  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   378  
   379  	// VRR-e
   380  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   381  
   382  	// VRR-f
   383  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   384  }
   385  
   386  var oprange [ALAST & obj.AMask][]Optab
   387  
   388  var xcmp [C_NCLASS][C_NCLASS]bool
   389  
   390  func spanz(ctxt *obj.Link, cursym *obj.LSym) {
   391  	p := cursym.Text
   392  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   393  		return
   394  	}
   395  	ctxt.Cursym = cursym
   396  	ctxt.Autosize = int32(p.To.Offset)
   397  
   398  	if oprange[AORW&obj.AMask] == nil {
   399  		buildop(ctxt)
   400  	}
   401  
   402  	buffer := make([]byte, 0)
   403  	changed := true
   404  	loop := 0
   405  	for changed {
   406  		if loop > 10 {
   407  			ctxt.Diag("stuck in spanz loop")
   408  			break
   409  		}
   410  		changed = false
   411  		buffer = buffer[:0]
   412  		ctxt.Cursym.R = make([]obj.Reloc, 0)
   413  		for p := cursym.Text; p != nil; p = p.Link {
   414  			pc := int64(len(buffer))
   415  			if pc != p.Pc {
   416  				changed = true
   417  			}
   418  			p.Pc = pc
   419  			ctxt.Pc = p.Pc
   420  			ctxt.Curp = p
   421  			asmout(ctxt, &buffer)
   422  			if pc == int64(len(buffer)) {
   423  				switch p.As {
   424  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   425  					// ok
   426  				default:
   427  					ctxt.Diag("zero-width instruction\n%v", p)
   428  				}
   429  			}
   430  		}
   431  		loop++
   432  	}
   433  
   434  	cursym.Size = int64(len(buffer))
   435  	if cursym.Size%funcAlign != 0 {
   436  		cursym.Size += funcAlign - (cursym.Size % funcAlign)
   437  	}
   438  	cursym.Grow(cursym.Size)
   439  	copy(cursym.P, buffer)
   440  }
   441  
   442  func isint32(v int64) bool {
   443  	return int64(int32(v)) == v
   444  }
   445  
   446  func isuint32(v uint64) bool {
   447  	return uint64(uint32(v)) == v
   448  }
   449  
   450  func aclass(ctxt *obj.Link, a *obj.Addr) int {
   451  	switch a.Type {
   452  	case obj.TYPE_NONE:
   453  		return C_NONE
   454  
   455  	case obj.TYPE_REG:
   456  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   457  			return C_REG
   458  		}
   459  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   460  			return C_FREG
   461  		}
   462  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   463  			return C_AREG
   464  		}
   465  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   466  			return C_VREG
   467  		}
   468  		return C_GOK
   469  
   470  	case obj.TYPE_MEM:
   471  		switch a.Name {
   472  		case obj.NAME_EXTERN,
   473  			obj.NAME_STATIC:
   474  			if a.Sym == nil {
   475  				// must have a symbol
   476  				break
   477  			}
   478  			ctxt.Instoffset = a.Offset
   479  			if a.Sym.Type == obj.STLSBSS {
   480  				if ctxt.Flag_shared {
   481  					return C_TLS_IE // initial exec model
   482  				}
   483  				return C_TLS_LE // local exec model
   484  			}
   485  			return C_ADDR
   486  
   487  		case obj.NAME_GOTREF:
   488  			return C_GOTADDR
   489  
   490  		case obj.NAME_AUTO:
   491  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   492  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   493  				return C_SAUTO
   494  			}
   495  			return C_LAUTO
   496  
   497  		case obj.NAME_PARAM:
   498  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   499  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   500  				return C_SAUTO
   501  			}
   502  			return C_LAUTO
   503  
   504  		case obj.NAME_NONE:
   505  			ctxt.Instoffset = a.Offset
   506  			if ctxt.Instoffset == 0 {
   507  				return C_ZOREG
   508  			}
   509  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   510  				return C_SOREG
   511  			}
   512  			return C_LOREG
   513  		}
   514  
   515  		return C_GOK
   516  
   517  	case obj.TYPE_TEXTSIZE:
   518  		return C_TEXTSIZE
   519  
   520  	case obj.TYPE_FCONST:
   521  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   522  			return C_ZCON
   523  		}
   524  		ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   525  
   526  	case obj.TYPE_CONST,
   527  		obj.TYPE_ADDR:
   528  		switch a.Name {
   529  		case obj.NAME_NONE:
   530  			ctxt.Instoffset = a.Offset
   531  			if a.Reg != 0 {
   532  				if -BIG <= ctxt.Instoffset && ctxt.Instoffset <= BIG {
   533  					return C_SACON
   534  				}
   535  				if isint32(ctxt.Instoffset) {
   536  					return C_LACON
   537  				}
   538  				return C_DACON
   539  			}
   540  			goto consize
   541  
   542  		case obj.NAME_EXTERN,
   543  			obj.NAME_STATIC:
   544  			s := a.Sym
   545  			if s == nil {
   546  				break
   547  			}
   548  			ctxt.Instoffset = a.Offset
   549  			if s.Type == obj.SCONST {
   550  				goto consize
   551  			}
   552  
   553  			return C_SYMADDR
   554  
   555  		case obj.NAME_AUTO:
   556  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   557  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   558  				return C_SACON
   559  			}
   560  			return C_LACON
   561  
   562  		case obj.NAME_PARAM:
   563  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   564  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   565  				return C_SACON
   566  			}
   567  			return C_LACON
   568  		}
   569  
   570  		return C_GOK
   571  
   572  	consize:
   573  		if ctxt.Instoffset == 0 {
   574  			return C_ZCON
   575  		}
   576  		if ctxt.Instoffset >= 0 {
   577  			if ctxt.Instoffset <= 0x7fff {
   578  				return C_SCON
   579  			}
   580  			if ctxt.Instoffset <= 0xffff {
   581  				return C_ANDCON
   582  			}
   583  			if ctxt.Instoffset&0xffff == 0 && isuint32(uint64(ctxt.Instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   584  				return C_UCON
   585  			}
   586  			if isint32(ctxt.Instoffset) || isuint32(uint64(ctxt.Instoffset)) {
   587  				return C_LCON
   588  			}
   589  			return C_DCON
   590  		}
   591  
   592  		if ctxt.Instoffset >= -0x8000 {
   593  			return C_ADDCON
   594  		}
   595  		if ctxt.Instoffset&0xffff == 0 && isint32(ctxt.Instoffset) {
   596  			return C_UCON
   597  		}
   598  		if isint32(ctxt.Instoffset) {
   599  			return C_LCON
   600  		}
   601  		return C_DCON
   602  
   603  	case obj.TYPE_BRANCH:
   604  		return C_SBRA
   605  	}
   606  
   607  	return C_GOK
   608  }
   609  
   610  func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
   611  	a1 := int(p.Optab)
   612  	if a1 != 0 {
   613  		return &optab[a1-1]
   614  	}
   615  	a1 = int(p.From.Class)
   616  	if a1 == 0 {
   617  		a1 = aclass(ctxt, &p.From) + 1
   618  		p.From.Class = int8(a1)
   619  	}
   620  
   621  	a1--
   622  	a3 := C_NONE + 1
   623  	if p.From3 != nil {
   624  		a3 = int(p.From3.Class)
   625  		if a3 == 0 {
   626  			a3 = aclass(ctxt, p.From3) + 1
   627  			p.From3.Class = int8(a3)
   628  		}
   629  	}
   630  
   631  	a3--
   632  	a4 := int(p.To.Class)
   633  	if a4 == 0 {
   634  		a4 = aclass(ctxt, &p.To) + 1
   635  		p.To.Class = int8(a4)
   636  	}
   637  
   638  	a4--
   639  	a2 := C_NONE
   640  	if p.Reg != 0 {
   641  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   642  			a2 = C_REG
   643  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   644  			a2 = C_VREG
   645  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   646  			a2 = C_FREG
   647  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   648  			a2 = C_AREG
   649  		}
   650  	}
   651  
   652  	ops := oprange[p.As&obj.AMask]
   653  	c1 := &xcmp[a1]
   654  	c2 := &xcmp[a2]
   655  	c3 := &xcmp[a3]
   656  	c4 := &xcmp[a4]
   657  	for i := range ops {
   658  		op := &ops[i]
   659  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   660  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   661  			return op
   662  		}
   663  	}
   664  
   665  	// cannot find a case; abort
   666  	ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   667  	ctxt.Diag("prog: %v\n", p)
   668  	return nil
   669  }
   670  
   671  func cmp(a int, b int) bool {
   672  	if a == b {
   673  		return true
   674  	}
   675  	switch a {
   676  	case C_DCON:
   677  		if b == C_LCON {
   678  			return true
   679  		}
   680  		fallthrough
   681  	case C_LCON:
   682  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   683  			return true
   684  		}
   685  
   686  	case C_ADDCON:
   687  		if b == C_ZCON || b == C_SCON {
   688  			return true
   689  		}
   690  
   691  	case C_ANDCON:
   692  		if b == C_ZCON || b == C_SCON {
   693  			return true
   694  		}
   695  
   696  	case C_UCON:
   697  		if b == C_ZCON || b == C_SCON {
   698  			return true
   699  		}
   700  
   701  	case C_SCON:
   702  		if b == C_ZCON {
   703  			return true
   704  		}
   705  
   706  	case C_LACON:
   707  		if b == C_SACON {
   708  			return true
   709  		}
   710  
   711  	case C_LBRA:
   712  		if b == C_SBRA {
   713  			return true
   714  		}
   715  
   716  	case C_LAUTO:
   717  		if b == C_SAUTO {
   718  			return true
   719  		}
   720  
   721  	case C_LOREG:
   722  		if b == C_ZOREG || b == C_SOREG {
   723  			return true
   724  		}
   725  
   726  	case C_SOREG:
   727  		if b == C_ZOREG {
   728  			return true
   729  		}
   730  
   731  	case C_ANY:
   732  		return true
   733  	}
   734  
   735  	return false
   736  }
   737  
   738  type ocmp []Optab
   739  
   740  func (x ocmp) Len() int {
   741  	return len(x)
   742  }
   743  
   744  func (x ocmp) Swap(i, j int) {
   745  	x[i], x[j] = x[j], x[i]
   746  }
   747  
   748  func (x ocmp) Less(i, j int) bool {
   749  	p1 := &x[i]
   750  	p2 := &x[j]
   751  	n := int(p1.as) - int(p2.as)
   752  	if n != 0 {
   753  		return n < 0
   754  	}
   755  	n = int(p1.a1) - int(p2.a1)
   756  	if n != 0 {
   757  		return n < 0
   758  	}
   759  	n = int(p1.a2) - int(p2.a2)
   760  	if n != 0 {
   761  		return n < 0
   762  	}
   763  	n = int(p1.a3) - int(p2.a3)
   764  	if n != 0 {
   765  		return n < 0
   766  	}
   767  	n = int(p1.a4) - int(p2.a4)
   768  	if n != 0 {
   769  		return n < 0
   770  	}
   771  	return false
   772  }
   773  func opset(a, b obj.As) {
   774  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   775  }
   776  
   777  func buildop(ctxt *obj.Link) {
   778  	for i := 0; i < C_NCLASS; i++ {
   779  		for n := 0; n < C_NCLASS; n++ {
   780  			if cmp(n, i) {
   781  				xcmp[i][n] = true
   782  			}
   783  		}
   784  	}
   785  	sort.Sort(ocmp(optab))
   786  	for i := 0; i < len(optab); i++ {
   787  		r := optab[i].as
   788  		start := i
   789  		for ; i+1 < len(optab); i++ {
   790  			if optab[i+1].as != r {
   791  				break
   792  			}
   793  		}
   794  		oprange[r&obj.AMask] = optab[start : i+1]
   795  
   796  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   797  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   798  		switch r {
   799  		case AADD:
   800  			opset(AADDC, r)
   801  			opset(AADDW, r)
   802  			opset(AMULLD, r)
   803  			opset(AMULLW, r)
   804  		case ADIVW:
   805  			opset(AADDE, r)
   806  			opset(ADIVD, r)
   807  			opset(ADIVDU, r)
   808  			opset(ADIVWU, r)
   809  			opset(AMODD, r)
   810  			opset(AMODDU, r)
   811  			opset(AMODW, r)
   812  			opset(AMODWU, r)
   813  		case AMULHD:
   814  			opset(AMULHDU, r)
   815  		case AMOVBZ:
   816  			opset(AMOVH, r)
   817  			opset(AMOVHZ, r)
   818  		case ALA:
   819  			opset(ALAY, r)
   820  		case AMVC:
   821  			opset(ACLC, r)
   822  			opset(AXC, r)
   823  			opset(AOC, r)
   824  			opset(ANC, r)
   825  		case ASTCK:
   826  			opset(ASTCKC, r)
   827  			opset(ASTCKE, r)
   828  			opset(ASTCKF, r)
   829  		case ALAAG:
   830  			opset(ALAA, r)
   831  			opset(ALAAL, r)
   832  			opset(ALAALG, r)
   833  			opset(ALAN, r)
   834  			opset(ALANG, r)
   835  			opset(ALAX, r)
   836  			opset(ALAXG, r)
   837  			opset(ALAO, r)
   838  			opset(ALAOG, r)
   839  		case ASTMG:
   840  			opset(ASTMY, r)
   841  		case ALMG:
   842  			opset(ALMY, r)
   843  		case ABEQ:
   844  			opset(ABGE, r)
   845  			opset(ABGT, r)
   846  			opset(ABLE, r)
   847  			opset(ABLT, r)
   848  			opset(ABNE, r)
   849  			opset(ABVC, r)
   850  			opset(ABVS, r)
   851  			opset(ABLEU, r)
   852  			opset(ABLTU, r)
   853  		case ABR:
   854  			opset(ABL, r)
   855  		case ABC:
   856  			opset(ABCL, r)
   857  		case AFABS:
   858  			opset(AFNABS, r)
   859  			opset(AFNEG, r)
   860  			opset(AFNEGS, r)
   861  			opset(ALEDBR, r)
   862  			opset(ALDEBR, r)
   863  			opset(AFSQRT, r)
   864  			opset(AFSQRTS, r)
   865  		case AFADD:
   866  			opset(AFADDS, r)
   867  			opset(AFDIV, r)
   868  			opset(AFDIVS, r)
   869  			opset(AFSUB, r)
   870  			opset(AFSUBS, r)
   871  		case AFMADD:
   872  			opset(AFMADDS, r)
   873  			opset(AFMSUB, r)
   874  			opset(AFMSUBS, r)
   875  			opset(AFNMADD, r)
   876  			opset(AFNMADDS, r)
   877  			opset(AFNMSUB, r)
   878  			opset(AFNMSUBS, r)
   879  		case AFMUL:
   880  			opset(AFMULS, r)
   881  		case AFCMPO:
   882  			opset(AFCMPU, r)
   883  			opset(ACEBR, r)
   884  		case AAND:
   885  			opset(AOR, r)
   886  			opset(AXOR, r)
   887  		case AANDW:
   888  			opset(AORW, r)
   889  			opset(AXORW, r)
   890  		case ASLD:
   891  			opset(ASRD, r)
   892  			opset(ASLW, r)
   893  			opset(ASRW, r)
   894  			opset(ASRAD, r)
   895  			opset(ASRAW, r)
   896  			opset(ARLL, r)
   897  			opset(ARLLG, r)
   898  		case ACSG:
   899  			opset(ACS, r)
   900  		case ASUB:
   901  			opset(ASUBC, r)
   902  			opset(ASUBE, r)
   903  			opset(ASUBW, r)
   904  		case ANEG:
   905  			opset(ANEGW, r)
   906  		case AFMOVD:
   907  			opset(AFMOVS, r)
   908  		case AMOVDBR:
   909  			opset(AMOVWBR, r)
   910  		case ACMP:
   911  			opset(ACMPW, r)
   912  		case ACMPU:
   913  			opset(ACMPWU, r)
   914  		case ACEFBRA:
   915  			opset(ACDFBRA, r)
   916  			opset(ACEGBRA, r)
   917  			opset(ACDGBRA, r)
   918  			opset(ACELFBR, r)
   919  			opset(ACDLFBR, r)
   920  			opset(ACELGBR, r)
   921  			opset(ACDLGBR, r)
   922  		case ACFEBRA:
   923  			opset(ACFDBRA, r)
   924  			opset(ACGEBRA, r)
   925  			opset(ACGDBRA, r)
   926  			opset(ACLFEBR, r)
   927  			opset(ACLFDBR, r)
   928  			opset(ACLGEBR, r)
   929  			opset(ACLGDBR, r)
   930  		case AFIEBR:
   931  			opset(AFIDBR, r)
   932  		case ACMPBEQ:
   933  			opset(ACMPBGE, r)
   934  			opset(ACMPBGT, r)
   935  			opset(ACMPBLE, r)
   936  			opset(ACMPBLT, r)
   937  			opset(ACMPBNE, r)
   938  		case ACMPUBEQ:
   939  			opset(ACMPUBGE, r)
   940  			opset(ACMPUBGT, r)
   941  			opset(ACMPUBLE, r)
   942  			opset(ACMPUBLT, r)
   943  			opset(ACMPUBNE, r)
   944  		case AMOVDEQ:
   945  			opset(AMOVDGE, r)
   946  			opset(AMOVDGT, r)
   947  			opset(AMOVDLE, r)
   948  			opset(AMOVDLT, r)
   949  			opset(AMOVDNE, r)
   950  		case AVL:
   951  			opset(AVLLEZB, r)
   952  			opset(AVLLEZH, r)
   953  			opset(AVLLEZF, r)
   954  			opset(AVLLEZG, r)
   955  			opset(AVLREPB, r)
   956  			opset(AVLREPH, r)
   957  			opset(AVLREPF, r)
   958  			opset(AVLREPG, r)
   959  		case AVLEG:
   960  			opset(AVLBB, r)
   961  			opset(AVLEB, r)
   962  			opset(AVLEH, r)
   963  			opset(AVLEF, r)
   964  			opset(AVLEG, r)
   965  			opset(AVLREP, r)
   966  		case AVSTEG:
   967  			opset(AVSTEB, r)
   968  			opset(AVSTEH, r)
   969  			opset(AVSTEF, r)
   970  		case AVSCEG:
   971  			opset(AVSCEF, r)
   972  		case AVGEG:
   973  			opset(AVGEF, r)
   974  		case AVESLG:
   975  			opset(AVESLB, r)
   976  			opset(AVESLH, r)
   977  			opset(AVESLF, r)
   978  			opset(AVERLLB, r)
   979  			opset(AVERLLH, r)
   980  			opset(AVERLLF, r)
   981  			opset(AVERLLG, r)
   982  			opset(AVESRAB, r)
   983  			opset(AVESRAH, r)
   984  			opset(AVESRAF, r)
   985  			opset(AVESRAG, r)
   986  			opset(AVESRLB, r)
   987  			opset(AVESRLH, r)
   988  			opset(AVESRLF, r)
   989  			opset(AVESRLG, r)
   990  		case AVLGVG:
   991  			opset(AVLGVB, r)
   992  			opset(AVLGVH, r)
   993  			opset(AVLGVF, r)
   994  		case AVLVGG:
   995  			opset(AVLVGB, r)
   996  			opset(AVLVGH, r)
   997  			opset(AVLVGF, r)
   998  		case AVZERO:
   999  			opset(AVONE, r)
  1000  		case AVREPIG:
  1001  			opset(AVREPIB, r)
  1002  			opset(AVREPIH, r)
  1003  			opset(AVREPIF, r)
  1004  		case AVLEIG:
  1005  			opset(AVLEIB, r)
  1006  			opset(AVLEIH, r)
  1007  			opset(AVLEIF, r)
  1008  		case AVGMG:
  1009  			opset(AVGMB, r)
  1010  			opset(AVGMH, r)
  1011  			opset(AVGMF, r)
  1012  		case AVREPG:
  1013  			opset(AVREPB, r)
  1014  			opset(AVREPH, r)
  1015  			opset(AVREPF, r)
  1016  		case AVERIMG:
  1017  			opset(AVERIMB, r)
  1018  			opset(AVERIMH, r)
  1019  			opset(AVERIMF, r)
  1020  		case AVFTCIDB:
  1021  			opset(AWFTCIDB, r)
  1022  		case AVLR:
  1023  			opset(AVUPHB, r)
  1024  			opset(AVUPHH, r)
  1025  			opset(AVUPHF, r)
  1026  			opset(AVUPLHB, r)
  1027  			opset(AVUPLHH, r)
  1028  			opset(AVUPLHF, r)
  1029  			opset(AVUPLB, r)
  1030  			opset(AVUPLHW, r)
  1031  			opset(AVUPLF, r)
  1032  			opset(AVUPLLB, r)
  1033  			opset(AVUPLLH, r)
  1034  			opset(AVUPLLF, r)
  1035  			opset(AVCLZB, r)
  1036  			opset(AVCLZH, r)
  1037  			opset(AVCLZF, r)
  1038  			opset(AVCLZG, r)
  1039  			opset(AVCTZB, r)
  1040  			opset(AVCTZH, r)
  1041  			opset(AVCTZF, r)
  1042  			opset(AVCTZG, r)
  1043  			opset(AVLDEB, r)
  1044  			opset(AWLDEB, r)
  1045  			opset(AVFLCDB, r)
  1046  			opset(AWFLCDB, r)
  1047  			opset(AVFLNDB, r)
  1048  			opset(AWFLNDB, r)
  1049  			opset(AVFLPDB, r)
  1050  			opset(AWFLPDB, r)
  1051  			opset(AVFSQDB, r)
  1052  			opset(AWFSQDB, r)
  1053  			opset(AVISTRB, r)
  1054  			opset(AVISTRH, r)
  1055  			opset(AVISTRF, r)
  1056  			opset(AVISTRBS, r)
  1057  			opset(AVISTRHS, r)
  1058  			opset(AVISTRFS, r)
  1059  			opset(AVLCB, r)
  1060  			opset(AVLCH, r)
  1061  			opset(AVLCF, r)
  1062  			opset(AVLCG, r)
  1063  			opset(AVLPB, r)
  1064  			opset(AVLPH, r)
  1065  			opset(AVLPF, r)
  1066  			opset(AVLPG, r)
  1067  			opset(AVPOPCT, r)
  1068  			opset(AVSEGB, r)
  1069  			opset(AVSEGH, r)
  1070  			opset(AVSEGF, r)
  1071  		case AVECG:
  1072  			opset(AVECB, r)
  1073  			opset(AVECH, r)
  1074  			opset(AVECF, r)
  1075  			opset(AVECLB, r)
  1076  			opset(AVECLH, r)
  1077  			opset(AVECLF, r)
  1078  			opset(AVECLG, r)
  1079  			opset(AWFCDB, r)
  1080  			opset(AWFKDB, r)
  1081  		case AVCEQG:
  1082  			opset(AVCEQB, r)
  1083  			opset(AVCEQH, r)
  1084  			opset(AVCEQF, r)
  1085  			opset(AVCEQBS, r)
  1086  			opset(AVCEQHS, r)
  1087  			opset(AVCEQFS, r)
  1088  			opset(AVCEQGS, r)
  1089  			opset(AVCHB, r)
  1090  			opset(AVCHH, r)
  1091  			opset(AVCHF, r)
  1092  			opset(AVCHG, r)
  1093  			opset(AVCHBS, r)
  1094  			opset(AVCHHS, r)
  1095  			opset(AVCHFS, r)
  1096  			opset(AVCHGS, r)
  1097  			opset(AVCHLB, r)
  1098  			opset(AVCHLH, r)
  1099  			opset(AVCHLF, r)
  1100  			opset(AVCHLG, r)
  1101  			opset(AVCHLBS, r)
  1102  			opset(AVCHLHS, r)
  1103  			opset(AVCHLFS, r)
  1104  			opset(AVCHLGS, r)
  1105  		case AVFAEF:
  1106  			opset(AVFAEB, r)
  1107  			opset(AVFAEH, r)
  1108  			opset(AVFAEBS, r)
  1109  			opset(AVFAEHS, r)
  1110  			opset(AVFAEFS, r)
  1111  			opset(AVFAEZB, r)
  1112  			opset(AVFAEZH, r)
  1113  			opset(AVFAEZF, r)
  1114  			opset(AVFAEZBS, r)
  1115  			opset(AVFAEZHS, r)
  1116  			opset(AVFAEZFS, r)
  1117  			opset(AVFEEB, r)
  1118  			opset(AVFEEH, r)
  1119  			opset(AVFEEF, r)
  1120  			opset(AVFEEBS, r)
  1121  			opset(AVFEEHS, r)
  1122  			opset(AVFEEFS, r)
  1123  			opset(AVFEEZB, r)
  1124  			opset(AVFEEZH, r)
  1125  			opset(AVFEEZF, r)
  1126  			opset(AVFEEZBS, r)
  1127  			opset(AVFEEZHS, r)
  1128  			opset(AVFEEZFS, r)
  1129  			opset(AVFENEB, r)
  1130  			opset(AVFENEH, r)
  1131  			opset(AVFENEF, r)
  1132  			opset(AVFENEBS, r)
  1133  			opset(AVFENEHS, r)
  1134  			opset(AVFENEFS, r)
  1135  			opset(AVFENEZB, r)
  1136  			opset(AVFENEZH, r)
  1137  			opset(AVFENEZF, r)
  1138  			opset(AVFENEZBS, r)
  1139  			opset(AVFENEZHS, r)
  1140  			opset(AVFENEZFS, r)
  1141  		case AVPKSG:
  1142  			opset(AVPKSH, r)
  1143  			opset(AVPKSF, r)
  1144  			opset(AVPKSHS, r)
  1145  			opset(AVPKSFS, r)
  1146  			opset(AVPKSGS, r)
  1147  			opset(AVPKLSH, r)
  1148  			opset(AVPKLSF, r)
  1149  			opset(AVPKLSG, r)
  1150  			opset(AVPKLSHS, r)
  1151  			opset(AVPKLSFS, r)
  1152  			opset(AVPKLSGS, r)
  1153  		case AVAQ:
  1154  			opset(AVAB, r)
  1155  			opset(AVAH, r)
  1156  			opset(AVAF, r)
  1157  			opset(AVAG, r)
  1158  			opset(AVACCB, r)
  1159  			opset(AVACCH, r)
  1160  			opset(AVACCF, r)
  1161  			opset(AVACCG, r)
  1162  			opset(AVACCQ, r)
  1163  			opset(AVN, r)
  1164  			opset(AVNC, r)
  1165  			opset(AVAVGB, r)
  1166  			opset(AVAVGH, r)
  1167  			opset(AVAVGF, r)
  1168  			opset(AVAVGG, r)
  1169  			opset(AVAVGLB, r)
  1170  			opset(AVAVGLH, r)
  1171  			opset(AVAVGLF, r)
  1172  			opset(AVAVGLG, r)
  1173  			opset(AVCKSM, r)
  1174  			opset(AVX, r)
  1175  			opset(AVFADB, r)
  1176  			opset(AWFADB, r)
  1177  			opset(AVFCEDB, r)
  1178  			opset(AVFCEDBS, r)
  1179  			opset(AWFCEDB, r)
  1180  			opset(AWFCEDBS, r)
  1181  			opset(AVFCHDB, r)
  1182  			opset(AVFCHDBS, r)
  1183  			opset(AWFCHDB, r)
  1184  			opset(AWFCHDBS, r)
  1185  			opset(AVFCHEDB, r)
  1186  			opset(AVFCHEDBS, r)
  1187  			opset(AWFCHEDB, r)
  1188  			opset(AWFCHEDBS, r)
  1189  			opset(AVFMDB, r)
  1190  			opset(AWFMDB, r)
  1191  			opset(AVGFMB, r)
  1192  			opset(AVGFMH, r)
  1193  			opset(AVGFMF, r)
  1194  			opset(AVGFMG, r)
  1195  			opset(AVMXB, r)
  1196  			opset(AVMXH, r)
  1197  			opset(AVMXF, r)
  1198  			opset(AVMXG, r)
  1199  			opset(AVMXLB, r)
  1200  			opset(AVMXLH, r)
  1201  			opset(AVMXLF, r)
  1202  			opset(AVMXLG, r)
  1203  			opset(AVMNB, r)
  1204  			opset(AVMNH, r)
  1205  			opset(AVMNF, r)
  1206  			opset(AVMNG, r)
  1207  			opset(AVMNLB, r)
  1208  			opset(AVMNLH, r)
  1209  			opset(AVMNLF, r)
  1210  			opset(AVMNLG, r)
  1211  			opset(AVMRHB, r)
  1212  			opset(AVMRHH, r)
  1213  			opset(AVMRHF, r)
  1214  			opset(AVMRHG, r)
  1215  			opset(AVMRLB, r)
  1216  			opset(AVMRLH, r)
  1217  			opset(AVMRLF, r)
  1218  			opset(AVMRLG, r)
  1219  			opset(AVMEB, r)
  1220  			opset(AVMEH, r)
  1221  			opset(AVMEF, r)
  1222  			opset(AVMLEB, r)
  1223  			opset(AVMLEH, r)
  1224  			opset(AVMLEF, r)
  1225  			opset(AVMOB, r)
  1226  			opset(AVMOH, r)
  1227  			opset(AVMOF, r)
  1228  			opset(AVMLOB, r)
  1229  			opset(AVMLOH, r)
  1230  			opset(AVMLOF, r)
  1231  			opset(AVMHB, r)
  1232  			opset(AVMHH, r)
  1233  			opset(AVMHF, r)
  1234  			opset(AVMLHB, r)
  1235  			opset(AVMLHH, r)
  1236  			opset(AVMLHF, r)
  1237  			opset(AVMLH, r)
  1238  			opset(AVMLHW, r)
  1239  			opset(AVMLF, r)
  1240  			opset(AVNO, r)
  1241  			opset(AVO, r)
  1242  			opset(AVPKH, r)
  1243  			opset(AVPKF, r)
  1244  			opset(AVPKG, r)
  1245  			opset(AVSUMGH, r)
  1246  			opset(AVSUMGF, r)
  1247  			opset(AVSUMQF, r)
  1248  			opset(AVSUMQG, r)
  1249  			opset(AVSUMB, r)
  1250  			opset(AVSUMH, r)
  1251  		case AVERLLVG:
  1252  			opset(AVERLLVB, r)
  1253  			opset(AVERLLVH, r)
  1254  			opset(AVERLLVF, r)
  1255  			opset(AVESLVB, r)
  1256  			opset(AVESLVH, r)
  1257  			opset(AVESLVF, r)
  1258  			opset(AVESLVG, r)
  1259  			opset(AVESRAVB, r)
  1260  			opset(AVESRAVH, r)
  1261  			opset(AVESRAVF, r)
  1262  			opset(AVESRAVG, r)
  1263  			opset(AVESRLVB, r)
  1264  			opset(AVESRLVH, r)
  1265  			opset(AVESRLVF, r)
  1266  			opset(AVESRLVG, r)
  1267  			opset(AVFDDB, r)
  1268  			opset(AWFDDB, r)
  1269  			opset(AVFSDB, r)
  1270  			opset(AWFSDB, r)
  1271  			opset(AVSL, r)
  1272  			opset(AVSLB, r)
  1273  			opset(AVSRA, r)
  1274  			opset(AVSRAB, r)
  1275  			opset(AVSRL, r)
  1276  			opset(AVSRLB, r)
  1277  			opset(AVSF, r)
  1278  			opset(AVSG, r)
  1279  			opset(AVSQ, r)
  1280  			opset(AVSCBIB, r)
  1281  			opset(AVSCBIH, r)
  1282  			opset(AVSCBIF, r)
  1283  			opset(AVSCBIG, r)
  1284  			opset(AVSCBIQ, r)
  1285  		case AVACQ:
  1286  			opset(AVACCCQ, r)
  1287  			opset(AVGFMAB, r)
  1288  			opset(AVGFMAH, r)
  1289  			opset(AVGFMAF, r)
  1290  			opset(AVGFMAG, r)
  1291  			opset(AVMALB, r)
  1292  			opset(AVMALHW, r)
  1293  			opset(AVMALF, r)
  1294  			opset(AVMAHB, r)
  1295  			opset(AVMAHH, r)
  1296  			opset(AVMAHF, r)
  1297  			opset(AVMALHB, r)
  1298  			opset(AVMALHH, r)
  1299  			opset(AVMALHF, r)
  1300  			opset(AVMAEB, r)
  1301  			opset(AVMAEH, r)
  1302  			opset(AVMAEF, r)
  1303  			opset(AVMALEB, r)
  1304  			opset(AVMALEH, r)
  1305  			opset(AVMALEF, r)
  1306  			opset(AVMAOB, r)
  1307  			opset(AVMAOH, r)
  1308  			opset(AVMAOF, r)
  1309  			opset(AVMALOB, r)
  1310  			opset(AVMALOH, r)
  1311  			opset(AVMALOF, r)
  1312  			opset(AVSTRCB, r)
  1313  			opset(AVSTRCH, r)
  1314  			opset(AVSTRCF, r)
  1315  			opset(AVSTRCBS, r)
  1316  			opset(AVSTRCHS, r)
  1317  			opset(AVSTRCFS, r)
  1318  			opset(AVSTRCZB, r)
  1319  			opset(AVSTRCZH, r)
  1320  			opset(AVSTRCZF, r)
  1321  			opset(AVSTRCZBS, r)
  1322  			opset(AVSTRCZHS, r)
  1323  			opset(AVSTRCZFS, r)
  1324  			opset(AVSBCBIQ, r)
  1325  			opset(AVSBIQ, r)
  1326  		case AVSEL:
  1327  			opset(AVFMADB, r)
  1328  			opset(AWFMADB, r)
  1329  			opset(AVFMSDB, r)
  1330  			opset(AWFMSDB, r)
  1331  			opset(AVPERM, r)
  1332  		}
  1333  	}
  1334  }
  1335  
  1336  const (
  1337  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1338  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1339  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1340  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1341  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1342  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1343  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1344  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1345  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1346  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1347  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1348  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1349  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1350  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1351  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1352  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1353  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1354  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1355  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1356  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1357  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1358  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1359  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1360  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1361  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1362  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1363  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1364  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1365  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1366  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1367  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1368  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1369  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1370  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1371  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1372  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1373  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1374  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1375  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1376  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1377  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1378  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1379  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1380  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1381  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1382  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1383  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1384  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1385  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1386  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1387  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1388  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1389  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1390  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1391  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1392  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1393  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1394  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1395  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1396  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1397  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1398  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1399  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1400  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1401  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1402  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1403  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1404  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1405  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1406  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1407  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1408  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1409  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1410  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1411  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1412  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1413  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1414  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1415  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1416  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1417  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1418  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1419  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1420  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1421  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1422  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1423  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1424  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1425  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1426  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1427  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1428  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1429  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1430  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1431  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1432  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1433  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1434  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1435  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1436  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1437  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1438  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1439  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1440  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1441  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1442  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1443  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1444  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1445  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1446  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1447  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1448  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1449  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1450  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1451  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1452  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1453  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1454  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1455  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1456  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1457  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1458  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1459  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1460  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1461  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1462  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1463  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1464  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1465  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1466  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1467  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1468  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1469  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1470  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1471  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1472  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1473  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1474  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1475  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1476  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1477  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1478  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1479  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1480  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1481  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1482  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1483  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1484  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1485  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1486  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1487  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1488  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1489  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1490  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1491  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1492  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1493  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1494  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1495  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1496  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1497  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1498  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1499  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1500  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1501  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1502  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1503  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1504  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1505  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1506  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1507  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1508  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1509  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1510  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1511  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1512  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1513  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1514  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1515  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1516  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1517  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1518  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1519  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1520  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1521  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1522  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1523  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1524  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1525  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1526  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1527  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1528  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1529  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1530  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1531  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1532  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1533  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1534  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1535  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1536  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1537  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1538  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1539  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1540  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1541  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1542  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1543  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1544  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1545  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1546  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1547  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1548  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1549  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1550  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1551  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1552  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1553  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1554  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1555  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1556  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1557  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1558  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1559  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1560  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1561  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1562  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1563  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1564  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1565  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1566  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1567  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1568  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1569  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1570  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1571  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1572  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1573  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1574  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1575  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1576  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1577  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1578  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1579  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1580  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1581  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1582  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1583  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1584  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1585  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1586  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1587  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1588  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1589  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1590  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1591  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1592  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1593  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1594  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1595  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1596  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1597  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1598  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1599  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1600  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1601  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1602  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1603  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1604  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1605  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1606  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1607  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1608  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1609  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1610  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1611  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1612  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1613  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1614  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1615  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1616  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1617  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1618  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1619  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1620  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1621  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1622  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1623  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1624  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1625  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1626  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1627  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1628  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1629  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1630  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1631  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1632  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1633  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1634  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1635  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1636  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1637  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1638  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1639  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1640  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1641  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1642  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1643  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1644  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1645  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1646  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1647  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1648  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1649  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1650  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1651  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1652  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1653  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1654  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1655  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1656  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1657  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1658  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1659  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1660  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1661  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1662  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1663  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1664  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1665  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1666  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1667  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1668  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1669  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1670  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1671  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1672  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1673  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1674  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1675  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1676  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1677  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1678  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1679  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1680  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1681  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1682  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1683  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1684  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1685  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1686  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1687  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1688  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1689  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1690  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1691  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1692  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1693  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1694  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1695  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1696  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1697  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1698  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1699  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1700  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1701  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1702  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1703  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1704  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1705  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1706  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1707  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1708  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1709  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1710  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1711  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1712  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1713  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1714  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1715  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1716  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1717  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1718  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1719  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1720  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1721  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1722  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1723  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1724  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1725  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1726  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1727  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1728  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1729  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1730  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1731  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1732  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1733  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1734  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1735  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1736  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1737  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1738  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1739  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1740  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1741  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1742  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1743  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1744  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1745  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1746  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1747  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1748  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1749  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1750  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1751  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1752  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1753  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1754  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1755  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1756  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1757  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1758  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1759  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1760  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1761  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1762  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1763  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1764  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1765  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1766  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1767  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1768  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1769  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1770  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1771  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1772  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1773  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1774  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1775  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1776  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1777  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1778  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1779  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1780  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1781  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1782  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1783  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1784  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1785  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1786  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1787  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1788  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1789  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1790  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1791  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1792  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1793  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1794  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1795  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1796  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1797  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1798  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1799  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1800  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1801  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1802  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1803  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1804  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1805  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1806  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1807  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1808  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1809  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1810  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1811  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1812  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1813  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1814  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1815  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1816  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1817  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1818  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1819  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1820  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1821  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1822  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1823  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1824  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1825  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1826  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1827  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1828  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1829  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1830  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1831  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1832  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1833  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1834  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1835  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1836  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1837  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1838  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1839  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1840  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1841  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1842  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1843  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1844  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1845  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1846  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1847  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1848  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1849  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1850  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1851  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1852  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1853  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1854  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1855  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1856  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1857  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1858  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1859  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1860  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1861  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1862  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1863  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1864  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1865  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1866  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1867  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1868  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1869  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1870  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1871  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1872  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1873  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1874  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1875  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1876  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1877  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1878  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1879  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1880  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1881  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1882  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1883  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1884  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1885  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1886  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1887  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1888  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1889  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1890  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1891  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1892  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1893  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1894  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1895  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1896  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1897  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1898  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1899  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1900  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1901  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1902  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1903  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1904  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1905  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1906  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1907  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1908  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1909  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1910  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1911  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1912  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1913  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1914  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1915  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1916  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1917  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1918  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1919  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1920  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1921  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1922  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1923  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1924  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1925  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1926  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1927  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1928  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1929  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1930  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1931  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1932  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1933  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1934  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1935  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1936  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1937  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1938  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1939  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1940  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1941  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1942  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1943  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1944  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1945  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1946  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1947  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1948  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1949  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1950  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1951  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1952  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1953  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1954  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1955  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1956  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1957  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1958  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1959  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1960  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1961  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1962  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1963  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1964  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1965  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1966  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1967  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1968  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1969  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1970  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1971  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1972  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1973  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1974  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1975  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1976  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1977  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1978  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1979  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1980  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1981  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1982  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1983  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1984  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  1985  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  1986  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  1987  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  1988  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  1989  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  1990  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  1991  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  1992  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  1993  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  1994  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  1995  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  1996  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  1997  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  1998  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  1999  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2000  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2001  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2002  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2003  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2004  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2005  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2006  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2007  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2008  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2009  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2010  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2011  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2012  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2013  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2014  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2015  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2016  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2017  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2018  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2019  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2020  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2021  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2022  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2023  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2024  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2025  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2026  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2027  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2028  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2029  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2030  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2031  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2032  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2033  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2034  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2035  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2036  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2037  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2038  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2039  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2040  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2041  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2042  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2043  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2044  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2045  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2046  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2047  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2048  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2049  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2050  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2051  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2052  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2053  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2054  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2055  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2056  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2057  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2058  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2059  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2060  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2061  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2062  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2063  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2064  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2065  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2066  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2067  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2068  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2069  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2070  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2071  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2072  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2073  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2074  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2075  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2076  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2077  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2078  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2079  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2080  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2081  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2082  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2083  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2084  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2085  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2086  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2087  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2088  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2089  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2090  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2091  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2092  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2093  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2094  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2095  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2096  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2097  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2098  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2099  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2100  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2101  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2102  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2103  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2104  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2105  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2106  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2107  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2108  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2109  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2110  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2111  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2112  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2113  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2114  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2115  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2116  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2117  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2118  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2119  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2120  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2121  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2122  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2123  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2124  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2125  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2126  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2127  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2128  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2129  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2130  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2131  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2132  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2133  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2134  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2135  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2136  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2137  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2138  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2139  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2140  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2141  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2142  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2143  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2144  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2145  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2146  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2147  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2148  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2149  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2150  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2151  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2152  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2153  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2154  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2155  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2156  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2157  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2158  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2159  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2160  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2161  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2162  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2163  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2164  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2165  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2166  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2167  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2168  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2169  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2170  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2171  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2172  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2173  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2174  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2175  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2176  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2177  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2178  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2179  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2180  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2181  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2182  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2183  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2184  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2185  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2186  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2187  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2188  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2189  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2190  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2191  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2192  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2193  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2194  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2195  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2196  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2197  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2198  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2199  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2200  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2201  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2202  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2203  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2204  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2205  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2206  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2207  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2208  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2209  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2210  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2211  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2212  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2213  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2214  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2215  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2216  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2217  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2218  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2219  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2220  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2221  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2222  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2223  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2224  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2225  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2226  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2227  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2228  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2229  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2230  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2231  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2232  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2233  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2234  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2235  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2236  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2237  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2238  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2239  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2240  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2241  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2242  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2243  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2244  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2245  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2246  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2247  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2248  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2249  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2250  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2251  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2252  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2253  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2254  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2255  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2256  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2257  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2258  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2259  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2260  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2261  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2262  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2263  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2264  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2265  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2266  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2267  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2268  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2269  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2270  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2271  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2272  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2273  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2274  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2275  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2276  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2277  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2278  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2279  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2280  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2281  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2282  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2283  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2284  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2285  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2286  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2287  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2288  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2289  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2290  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2291  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2292  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2293  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2294  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2295  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2296  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2297  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2298  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2299  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2300  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2301  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2302  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2303  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2304  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2305  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2306  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2307  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2308  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2309  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2310  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2311  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2312  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2313  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2314  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2315  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2316  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2317  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2318  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2319  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2320  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2321  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2322  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2323  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2324  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2325  
  2326  	// added in z13
  2327  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2328  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2329  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2330  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2331  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2332  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2333  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2334  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2335  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2336  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2337  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2338  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2339  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2340  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2341  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2342  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2343  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2344  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2345  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2346  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2347  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2348  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2349  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2350  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2351  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2352  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2353  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2354  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2355  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2356  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2357  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2358  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2359  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2360  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2361  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2362  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2363  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2364  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2365  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2366  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2367  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2368  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2369  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2370  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2371  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2372  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2373  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2374  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2375  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2376  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2377  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2378  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2379  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2380  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2381  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2382  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2383  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2384  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2385  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2386  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2387  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2388  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2389  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2390  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2391  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2392  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2393  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2394  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2395  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2396  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2397  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2398  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2399  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2400  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2401  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2402  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2403  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2404  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2405  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2406  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2407  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2408  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2409  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2410  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2411  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2412  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2413  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2414  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2415  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2416  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2417  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2418  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2419  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2420  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2421  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2422  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2423  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2424  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2425  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2426  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2427  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2428  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2429  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2430  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2431  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2432  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2433  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2434  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2435  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2436  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2437  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2438  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2439  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2440  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2441  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2442  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2443  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2444  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2445  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2446  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2447  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2448  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2449  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2450  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2451  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2452  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2453  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2454  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2455  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2456  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2457  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2458  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2459  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2460  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2461  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2462  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2463  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2464  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2465  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2466  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2467  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2468  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2469  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2470  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2471  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2472  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2473  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2474  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2475  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2476  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2477  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2478  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2479  )
  2480  
  2481  func oclass(a *obj.Addr) int {
  2482  	return int(a.Class) - 1
  2483  }
  2484  
  2485  // Add a relocation for the immediate in a RIL style instruction.
  2486  // The addend will be adjusted as required.
  2487  func addrilreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2488  	if sym == nil {
  2489  		ctxt.Diag("require symbol to apply relocation")
  2490  	}
  2491  	offset := int64(2) // relocation offset from start of instruction
  2492  	rel := obj.Addrel(ctxt.Cursym)
  2493  	rel.Off = int32(ctxt.Pc + offset)
  2494  	rel.Siz = 4
  2495  	rel.Sym = sym
  2496  	rel.Add = add + offset + int64(rel.Siz)
  2497  	rel.Type = obj.R_PCRELDBL
  2498  	return rel
  2499  }
  2500  
  2501  func addrilrelocoffset(ctxt *obj.Link, sym *obj.LSym, add, offset int64) *obj.Reloc {
  2502  	if sym == nil {
  2503  		ctxt.Diag("require symbol to apply relocation")
  2504  	}
  2505  	offset += int64(2) // relocation offset from start of instruction
  2506  	rel := obj.Addrel(ctxt.Cursym)
  2507  	rel.Off = int32(ctxt.Pc + offset)
  2508  	rel.Siz = 4
  2509  	rel.Sym = sym
  2510  	rel.Add = add + offset + int64(rel.Siz)
  2511  	rel.Type = obj.R_PCRELDBL
  2512  	return rel
  2513  }
  2514  
  2515  // Add a CALL relocation for the immediate in a RIL style instruction.
  2516  // The addend will be adjusted as required.
  2517  func addcallreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2518  	if sym == nil {
  2519  		ctxt.Diag("require symbol to apply relocation")
  2520  	}
  2521  	offset := int64(2) // relocation offset from start of instruction
  2522  	rel := obj.Addrel(ctxt.Cursym)
  2523  	rel.Off = int32(ctxt.Pc + offset)
  2524  	rel.Siz = 4
  2525  	rel.Sym = sym
  2526  	rel.Add = add + offset + int64(rel.Siz)
  2527  	rel.Type = obj.R_CALL
  2528  	return rel
  2529  }
  2530  
  2531  func branchMask(ctxt *obj.Link, p *obj.Prog) uint32 {
  2532  	switch p.As {
  2533  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2534  		return 0x8
  2535  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2536  		return 0xA
  2537  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2538  		return 0x2
  2539  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2540  		return 0xC
  2541  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2542  		return 0x4
  2543  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2544  		return 0x7
  2545  	case ABLEU: // LE or unordered
  2546  		return 0xD
  2547  	case ABLTU: // LT or unordered
  2548  		return 0x5
  2549  	case ABVC:
  2550  		return 0x0 // needs extra instruction
  2551  	case ABVS:
  2552  		return 0x1 // unordered
  2553  	}
  2554  	ctxt.Diag("unknown conditional branch %v", p.As)
  2555  	return 0xF
  2556  }
  2557  
  2558  func asmout(ctxt *obj.Link, asm *[]byte) {
  2559  	p := ctxt.Curp
  2560  	o := oplook(ctxt, p)
  2561  	ctxt.Printp = p
  2562  
  2563  	switch o.type_ {
  2564  	default:
  2565  		ctxt.Diag("unknown type %d", o.type_)
  2566  
  2567  	case 0: // PSEUDO OPS
  2568  		break
  2569  
  2570  	case 1: // mov reg reg
  2571  		switch p.As {
  2572  		default:
  2573  			ctxt.Diag("unhandled operation: %v", p.As)
  2574  		case AMOVD:
  2575  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2576  		// sign extend
  2577  		case AMOVW:
  2578  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2579  		case AMOVH:
  2580  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2581  		case AMOVB:
  2582  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2583  		// zero extend
  2584  		case AMOVWZ:
  2585  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2586  		case AMOVHZ:
  2587  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2588  		case AMOVBZ:
  2589  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2590  		// reverse bytes
  2591  		case AMOVDBR:
  2592  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2593  		case AMOVWBR:
  2594  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2595  		// floating point
  2596  		case AFMOVD, AFMOVS:
  2597  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2598  		}
  2599  
  2600  	case 2: // arithmetic op reg [reg] reg
  2601  		r := p.Reg
  2602  		if r == 0 {
  2603  			r = p.To.Reg
  2604  		}
  2605  
  2606  		var opcode uint32
  2607  
  2608  		switch p.As {
  2609  		default:
  2610  			ctxt.Diag("invalid opcode")
  2611  		case AADD:
  2612  			opcode = op_AGRK
  2613  		case AADDC:
  2614  			opcode = op_ALGRK
  2615  		case AADDE:
  2616  			opcode = op_ALCGR
  2617  		case AADDW:
  2618  			opcode = op_ARK
  2619  		case AMULLW:
  2620  			opcode = op_MSGFR
  2621  		case AMULLD:
  2622  			opcode = op_MSGR
  2623  		case ADIVW, AMODW:
  2624  			opcode = op_DSGFR
  2625  		case ADIVWU, AMODWU:
  2626  			opcode = op_DLR
  2627  		case ADIVD, AMODD:
  2628  			opcode = op_DSGR
  2629  		case ADIVDU, AMODDU:
  2630  			opcode = op_DLGR
  2631  		case AFADD:
  2632  			opcode = op_ADBR
  2633  		case AFADDS:
  2634  			opcode = op_AEBR
  2635  		case AFSUB:
  2636  			opcode = op_SDBR
  2637  		case AFSUBS:
  2638  			opcode = op_SEBR
  2639  		case AFDIV:
  2640  			opcode = op_DDBR
  2641  		case AFDIVS:
  2642  			opcode = op_DEBR
  2643  		}
  2644  
  2645  		switch p.As {
  2646  		default:
  2647  
  2648  		case AADD, AADDC, AADDW:
  2649  			if p.As == AADDW && r == p.To.Reg {
  2650  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2651  			} else {
  2652  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2653  			}
  2654  
  2655  		case AADDE, AMULLW, AMULLD:
  2656  			if r == p.To.Reg {
  2657  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2658  			} else if p.From.Reg == p.To.Reg {
  2659  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2660  			} else {
  2661  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2662  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2663  			}
  2664  
  2665  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2666  			if p.As == ADIVWU || p.As == ADIVDU {
  2667  				zRI(op_LGHI, REGTMP, 0, asm)
  2668  			}
  2669  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2670  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2671  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2672  
  2673  		case AMODW, AMODWU, AMODD, AMODDU:
  2674  			if p.As == AMODWU || p.As == AMODDU {
  2675  				zRI(op_LGHI, REGTMP, 0, asm)
  2676  			}
  2677  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2678  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2679  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2680  
  2681  		case AFADD, AFADDS:
  2682  			if r == p.To.Reg {
  2683  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2684  			} else if p.From.Reg == p.To.Reg {
  2685  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2686  			} else {
  2687  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2688  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2689  			}
  2690  
  2691  		case AFSUB, AFSUBS, AFDIV, AFDIVS:
  2692  			if r == p.To.Reg {
  2693  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2694  			} else if p.From.Reg == p.To.Reg {
  2695  				zRRE(op_LGDR, REGTMP, uint32(r), asm)
  2696  				zRRE(opcode, uint32(r), uint32(p.From.Reg), asm)
  2697  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2698  				zRRE(op_LDGR, uint32(r), REGTMP, asm)
  2699  			} else {
  2700  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2701  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2702  			}
  2703  
  2704  		}
  2705  
  2706  	case 3: // mov $constant reg
  2707  		v := vregoff(ctxt, &p.From)
  2708  		switch p.As {
  2709  		case AMOVBZ:
  2710  			v = int64(uint8(v))
  2711  		case AMOVHZ:
  2712  			v = int64(uint16(v))
  2713  		case AMOVWZ:
  2714  			v = int64(uint32(v))
  2715  		case AMOVB:
  2716  			v = int64(int8(v))
  2717  		case AMOVH:
  2718  			v = int64(int16(v))
  2719  		case AMOVW:
  2720  			v = int64(int32(v))
  2721  		}
  2722  		if int64(int16(v)) == v {
  2723  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2724  		} else if v&0xffff0000 == v {
  2725  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2726  		} else if v&0xffff00000000 == v {
  2727  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2728  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2729  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2730  		} else if int64(int32(v)) == v {
  2731  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2732  		} else if int64(uint32(v)) == v {
  2733  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2734  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2735  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2736  		} else {
  2737  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2738  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2739  		}
  2740  
  2741  	case 4: // multiply high (a*b)>>64
  2742  		r := p.Reg
  2743  		if r == 0 {
  2744  			r = p.To.Reg
  2745  		}
  2746  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2747  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2748  		switch p.As {
  2749  		case AMULHDU:
  2750  			// Unsigned: move result into correct register.
  2751  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2752  		case AMULHD:
  2753  			// Signed: need to convert result.
  2754  			// See Hacker's Delight 8-3.
  2755  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2756  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2757  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2758  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2759  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2760  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2761  		}
  2762  
  2763  	case 5: // syscall
  2764  		zI(op_SVC, 0, asm)
  2765  
  2766  	case 6: // logical op reg [reg] reg
  2767  		var oprr, oprre, oprrf uint32
  2768  		switch p.As {
  2769  		case AAND:
  2770  			oprre = op_NGR
  2771  			oprrf = op_NGRK
  2772  		case AANDW:
  2773  			oprr = op_NR
  2774  			oprrf = op_NRK
  2775  		case AOR:
  2776  			oprre = op_OGR
  2777  			oprrf = op_OGRK
  2778  		case AORW:
  2779  			oprr = op_OR
  2780  			oprrf = op_ORK
  2781  		case AXOR:
  2782  			oprre = op_XGR
  2783  			oprrf = op_XGRK
  2784  		case AXORW:
  2785  			oprr = op_XR
  2786  			oprrf = op_XRK
  2787  		}
  2788  		if p.Reg == 0 {
  2789  			if oprr != 0 {
  2790  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2791  			} else {
  2792  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2793  			}
  2794  		} else {
  2795  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2796  		}
  2797  
  2798  	case 7: // shift/rotate reg [reg] reg
  2799  		d2 := vregoff(ctxt, &p.From)
  2800  		b2 := p.From.Reg
  2801  		r3 := p.Reg
  2802  		if r3 == 0 {
  2803  			r3 = p.To.Reg
  2804  		}
  2805  		r1 := p.To.Reg
  2806  		var opcode uint32
  2807  		switch p.As {
  2808  		default:
  2809  		case ASLD:
  2810  			opcode = op_SLLG
  2811  		case ASRD:
  2812  			opcode = op_SRLG
  2813  		case ASLW:
  2814  			opcode = op_SLLK
  2815  		case ASRW:
  2816  			opcode = op_SRLK
  2817  		case ARLL:
  2818  			opcode = op_RLL
  2819  		case ARLLG:
  2820  			opcode = op_RLLG
  2821  		case ASRAW:
  2822  			opcode = op_SRAK
  2823  		case ASRAD:
  2824  			opcode = op_SRAG
  2825  		}
  2826  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2827  
  2828  	case 8: // find leftmost one
  2829  		if p.To.Reg&1 != 0 {
  2830  			ctxt.Diag("target must be an even-numbered register")
  2831  		}
  2832  		// FLOGR also writes a mask to p.To.Reg+1.
  2833  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2834  
  2835  	case 10: // subtract reg [reg] reg
  2836  		r := int(p.Reg)
  2837  
  2838  		switch p.As {
  2839  		default:
  2840  		case ASUB:
  2841  			if r == 0 {
  2842  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2843  			} else {
  2844  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2845  			}
  2846  		case ASUBC:
  2847  			if r == 0 {
  2848  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2849  			} else {
  2850  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2851  			}
  2852  		case ASUBE:
  2853  			if r == 0 {
  2854  				r = int(p.To.Reg)
  2855  			}
  2856  			if r == int(p.To.Reg) {
  2857  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2858  			} else if p.From.Reg == p.To.Reg {
  2859  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2860  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2861  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2862  			} else {
  2863  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2864  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2865  			}
  2866  		case ASUBW:
  2867  			if r == 0 {
  2868  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2869  			} else {
  2870  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2871  			}
  2872  		}
  2873  
  2874  	case 11: // br/bl
  2875  		v := int32(0)
  2876  
  2877  		if p.Pcond != nil {
  2878  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2879  		}
  2880  
  2881  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2882  			zRI(op_BRC, 0xF, uint32(v), asm)
  2883  		} else {
  2884  			if p.As == ABL {
  2885  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2886  			} else {
  2887  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2888  			}
  2889  			if p.To.Sym != nil {
  2890  				addcallreloc(ctxt, p.To.Sym, p.To.Offset)
  2891  			}
  2892  		}
  2893  
  2894  	case 12:
  2895  		r1 := p.To.Reg
  2896  		d2 := vregoff(ctxt, &p.From)
  2897  		b2 := p.From.Reg
  2898  		if b2 == 0 {
  2899  			b2 = o.param
  2900  		}
  2901  		x2 := p.From.Index
  2902  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2903  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2904  			if x2 != 0 {
  2905  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2906  			}
  2907  			x2 = REGTMP
  2908  			d2 = 0
  2909  		}
  2910  		var opx, opxy uint32
  2911  		switch p.As {
  2912  		case AADD:
  2913  			opxy = op_AG
  2914  		case AADDC:
  2915  			opxy = op_ALG
  2916  		case AADDW:
  2917  			opx = op_A
  2918  			opxy = op_AY
  2919  		case AMULLW:
  2920  			opx = op_MS
  2921  			opxy = op_MSY
  2922  		case AMULLD:
  2923  			opxy = op_MSG
  2924  		case ASUB:
  2925  			opxy = op_SG
  2926  		case ASUBC:
  2927  			opxy = op_SLG
  2928  		case ASUBE:
  2929  			opxy = op_SLBG
  2930  		case ASUBW:
  2931  			opx = op_S
  2932  			opxy = op_SY
  2933  		case AAND:
  2934  			opxy = op_NG
  2935  		case AANDW:
  2936  			opx = op_N
  2937  			opxy = op_NY
  2938  		case AOR:
  2939  			opxy = op_OG
  2940  		case AORW:
  2941  			opx = op_O
  2942  			opxy = op_OY
  2943  		case AXOR:
  2944  			opxy = op_XG
  2945  		case AXORW:
  2946  			opx = op_X
  2947  			opxy = op_XY
  2948  		}
  2949  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2950  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2951  		} else {
  2952  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2953  		}
  2954  
  2955  	case 15: // br/bl (reg)
  2956  		r := p.To.Reg
  2957  		if p.As == ABCL || p.As == ABL {
  2958  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2959  		} else {
  2960  			zRR(op_BCR, 0xF, uint32(r), asm)
  2961  		}
  2962  
  2963  	case 16: // conditional branch
  2964  		v := int32(0)
  2965  		if p.Pcond != nil {
  2966  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2967  		}
  2968  		mask := branchMask(ctxt, p)
  2969  		if p.To.Sym == nil && int32(int16(v)) == v {
  2970  			zRI(op_BRC, mask, uint32(v), asm)
  2971  		} else {
  2972  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2973  		}
  2974  		if p.To.Sym != nil {
  2975  			addrilreloc(ctxt, p.To.Sym, p.To.Offset)
  2976  		}
  2977  
  2978  	case 17: // move on condition
  2979  		m3 := branchMask(ctxt, p)
  2980  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2981  
  2982  	case 18: // br/bl reg
  2983  		if p.As == ABL {
  2984  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2985  		} else {
  2986  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2987  		}
  2988  
  2989  	case 19: // mov $sym+n(SB) reg
  2990  		d := vregoff(ctxt, &p.From)
  2991  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2992  		if d&1 != 0 {
  2993  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2994  			d -= 1
  2995  		}
  2996  		addrilreloc(ctxt, p.From.Sym, d)
  2997  
  2998  	case 21: // subtract $constant [reg] reg
  2999  		v := vregoff(ctxt, &p.From)
  3000  		r := p.Reg
  3001  		if r == 0 {
  3002  			r = p.To.Reg
  3003  		}
  3004  		switch p.As {
  3005  		case ASUB:
  3006  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  3007  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  3008  		case ASUBC:
  3009  			if r != p.To.Reg {
  3010  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3011  			}
  3012  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3013  		case ASUBW:
  3014  			if r != p.To.Reg {
  3015  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3016  			}
  3017  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3018  		}
  3019  
  3020  	case 22: // add/multiply $constant [reg] reg
  3021  		v := vregoff(ctxt, &p.From)
  3022  		r := p.Reg
  3023  		if r == 0 {
  3024  			r = p.To.Reg
  3025  		}
  3026  		var opri, opril, oprie uint32
  3027  		switch p.As {
  3028  		case AADD:
  3029  			opri = op_AGHI
  3030  			opril = op_AGFI
  3031  			oprie = op_AGHIK
  3032  		case AADDC:
  3033  			opril = op_ALGFI
  3034  			oprie = op_ALGHSIK
  3035  		case AADDW:
  3036  			opri = op_AHI
  3037  			opril = op_AFI
  3038  			oprie = op_AHIK
  3039  		case AMULLW:
  3040  			opri = op_MHI
  3041  			opril = op_MSFI
  3042  		case AMULLD:
  3043  			opri = op_MGHI
  3044  			opril = op_MSGFI
  3045  		}
  3046  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3047  			switch p.As {
  3048  			case AADD, AADDC, AMULLD:
  3049  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3050  			case AADDW, AMULLW:
  3051  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3052  			}
  3053  			r = p.To.Reg
  3054  		}
  3055  		if r == p.To.Reg {
  3056  			if opri != 0 && int64(int16(v)) == v {
  3057  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3058  			} else {
  3059  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3060  			}
  3061  		} else {
  3062  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3063  		}
  3064  
  3065  	case 23: // 64-bit logical op $constant reg
  3066  		// TODO(mundaym): merge with case 24.
  3067  		v := vregoff(ctxt, &p.From)
  3068  		switch p.As {
  3069  		default:
  3070  			ctxt.Diag("%v is not supported", p)
  3071  		case AAND:
  3072  			if v >= 0 { // needs zero extend
  3073  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3074  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3075  			} else if int64(int16(v)) == v {
  3076  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3077  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3078  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3079  			}
  3080  		case AOR:
  3081  			if int64(uint32(v)) != v { // needs sign extend
  3082  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3083  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3084  			} else if int64(uint16(v)) == v {
  3085  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3086  			} else {
  3087  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3088  			}
  3089  		case AXOR:
  3090  			if int64(uint32(v)) != v { // needs sign extend
  3091  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3092  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3093  			} else {
  3094  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3095  			}
  3096  		}
  3097  
  3098  	case 24: // 32-bit logical op $constant reg
  3099  		v := vregoff(ctxt, &p.From)
  3100  		switch p.As {
  3101  		case AANDW:
  3102  			if uint32(v&0xffff0000) == 0xffff0000 {
  3103  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3104  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3105  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3106  			} else {
  3107  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3108  			}
  3109  		case AORW:
  3110  			if uint32(v&0xffff0000) == 0 {
  3111  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3112  			} else if uint32(v&0x0000ffff) == 0 {
  3113  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3114  			} else {
  3115  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3116  			}
  3117  		case AXORW:
  3118  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3119  		}
  3120  
  3121  	case 26: // MOVD $offset(base)(index), reg
  3122  		v := regoff(ctxt, &p.From)
  3123  		r := p.From.Reg
  3124  		if r == 0 {
  3125  			r = o.param
  3126  		}
  3127  		i := p.From.Index
  3128  		if v >= 0 && v < DISP12 {
  3129  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3130  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3131  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3132  		} else {
  3133  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3134  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3135  		}
  3136  
  3137  	case 31: // dword
  3138  		wd := uint64(vregoff(ctxt, &p.From))
  3139  		*asm = append(*asm,
  3140  			uint8(wd>>56),
  3141  			uint8(wd>>48),
  3142  			uint8(wd>>40),
  3143  			uint8(wd>>32),
  3144  			uint8(wd>>24),
  3145  			uint8(wd>>16),
  3146  			uint8(wd>>8),
  3147  			uint8(wd))
  3148  
  3149  	case 32: // fmul freg [freg] freg
  3150  		r := int(p.Reg)
  3151  		if r == 0 {
  3152  			r = int(p.To.Reg)
  3153  		}
  3154  
  3155  		var opcode uint32
  3156  
  3157  		switch p.As {
  3158  		default:
  3159  			ctxt.Diag("invalid opcode")
  3160  		case AFMUL:
  3161  			opcode = op_MDBR
  3162  		case AFMULS:
  3163  			opcode = op_MEEBR
  3164  		}
  3165  
  3166  		if r == int(p.To.Reg) {
  3167  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3168  		} else if p.From.Reg == p.To.Reg {
  3169  			zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3170  		} else {
  3171  			zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  3172  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3173  		}
  3174  
  3175  	case 33: // float op [freg] freg
  3176  		r := p.From.Reg
  3177  		if oclass(&p.From) == C_NONE {
  3178  			r = p.To.Reg
  3179  		}
  3180  		var opcode uint32
  3181  		switch p.As {
  3182  		default:
  3183  		case AFABS:
  3184  			opcode = op_LPDBR
  3185  		case AFNABS:
  3186  			opcode = op_LNDBR
  3187  		case AFNEG:
  3188  			opcode = op_LCDFR
  3189  		case AFNEGS:
  3190  			opcode = op_LCEBR
  3191  		case ALEDBR:
  3192  			opcode = op_LEDBR
  3193  		case ALDEBR:
  3194  			opcode = op_LDEBR
  3195  		case AFSQRT:
  3196  			opcode = op_SQDBR
  3197  		case AFSQRTS:
  3198  			opcode = op_SQEBR
  3199  		}
  3200  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3201  
  3202  	case 34: // float multiply-add freg freg freg freg
  3203  		var opcode uint32
  3204  
  3205  		switch p.As {
  3206  		default:
  3207  			ctxt.Diag("invalid opcode")
  3208  		case AFMADD:
  3209  			opcode = op_MADBR
  3210  		case AFMADDS:
  3211  			opcode = op_MAEBR
  3212  		case AFMSUB:
  3213  			opcode = op_MSDBR
  3214  		case AFMSUBS:
  3215  			opcode = op_MSEBR
  3216  		case AFNMADD:
  3217  			opcode = op_MADBR
  3218  		case AFNMADDS:
  3219  			opcode = op_MAEBR
  3220  		case AFNMSUB:
  3221  			opcode = op_MSDBR
  3222  		case AFNMSUBS:
  3223  			opcode = op_MSEBR
  3224  		}
  3225  
  3226  		zRR(op_LDR, uint32(p.To.Reg), uint32(p.Reg), asm)
  3227  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.From3.Reg), asm)
  3228  
  3229  		if p.As == AFNMADD || p.As == AFNMADDS || p.As == AFNMSUB || p.As == AFNMSUBS {
  3230  			zRRE(op_LCDFR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  3231  		}
  3232  
  3233  	case 35: // mov reg mem (no relocation)
  3234  		d2 := regoff(ctxt, &p.To)
  3235  		b2 := p.To.Reg
  3236  		if b2 == 0 {
  3237  			b2 = o.param
  3238  		}
  3239  		x2 := p.To.Index
  3240  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3241  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3242  			if x2 != 0 {
  3243  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3244  			}
  3245  			x2 = REGTMP
  3246  			d2 = 0
  3247  		}
  3248  		zRXY(zopstore(ctxt, p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3249  
  3250  	case 36: // mov mem reg (no relocation)
  3251  		d2 := regoff(ctxt, &p.From)
  3252  		b2 := p.From.Reg
  3253  		if b2 == 0 {
  3254  			b2 = o.param
  3255  		}
  3256  		x2 := p.From.Index
  3257  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3258  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3259  			if x2 != 0 {
  3260  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3261  			}
  3262  			x2 = REGTMP
  3263  			d2 = 0
  3264  		}
  3265  		zRXY(zopload(ctxt, p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3266  
  3267  	case 40: // word/byte
  3268  		wd := uint32(regoff(ctxt, &p.From))
  3269  		if p.As == AWORD { //WORD
  3270  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3271  		} else { //BYTE
  3272  			*asm = append(*asm, uint8(wd))
  3273  		}
  3274  
  3275  	case 47: // negate [reg] reg
  3276  		r := p.From.Reg
  3277  		if r == 0 {
  3278  			r = p.To.Reg
  3279  		}
  3280  		switch p.As {
  3281  		case ANEG:
  3282  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3283  		case ANEGW:
  3284  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3285  		}
  3286  
  3287  	case 48: // floating-point round to integer
  3288  		m3 := vregoff(ctxt, &p.From)
  3289  		if 0 > m3 || m3 > 7 {
  3290  			ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3291  		}
  3292  		var opcode uint32
  3293  		switch p.As {
  3294  		case AFIEBR:
  3295  			opcode = op_FIEBR
  3296  		case AFIDBR:
  3297  			opcode = op_FIDBR
  3298  		}
  3299  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3300  
  3301  	case 67: // fmov $0 freg
  3302  		var opcode uint32
  3303  		switch p.As {
  3304  		case AFMOVS:
  3305  			opcode = op_LZER
  3306  		case AFMOVD:
  3307  			opcode = op_LZDR
  3308  		}
  3309  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3310  
  3311  	case 68: // movw areg reg
  3312  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3313  
  3314  	case 69: // movw reg areg
  3315  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3316  
  3317  	case 70: // cmp reg reg
  3318  		if p.As == ACMPW || p.As == ACMPWU {
  3319  			zRR(zoprr(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3320  		} else {
  3321  			zRRE(zoprre(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3322  		}
  3323  
  3324  	case 71: // cmp reg $constant
  3325  		v := vregoff(ctxt, &p.To)
  3326  		switch p.As {
  3327  		case ACMP, ACMPW:
  3328  			if int64(int32(v)) != v {
  3329  				ctxt.Diag("%v overflows an int32", v)
  3330  			}
  3331  		case ACMPU, ACMPWU:
  3332  			if int64(uint32(v)) != v {
  3333  				ctxt.Diag("%v overflows a uint32", v)
  3334  			}
  3335  		}
  3336  		if p.As == ACMP && int64(int16(v)) == v {
  3337  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3338  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3339  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3340  		} else {
  3341  			zRIL(_a, zopril(ctxt, p.As), uint32(p.From.Reg), uint32(v), asm)
  3342  		}
  3343  
  3344  	case 72: // mov $constant mem
  3345  		v := regoff(ctxt, &p.From)
  3346  		d := regoff(ctxt, &p.To)
  3347  		r := p.To.Reg
  3348  		x := p.To.Index
  3349  		if r == 0 {
  3350  			r = o.param
  3351  		}
  3352  		if int32(int16(v)) == v && x == 0 {
  3353  			if d < 0 || d >= DISP12 {
  3354  				if r == REGTMP || r == REGTMP2 {
  3355  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3356  				} else {
  3357  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3358  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3359  					r = REGTMP
  3360  				}
  3361  				d = 0
  3362  			}
  3363  			var opcode uint32
  3364  			switch p.As {
  3365  			case AMOVD:
  3366  				opcode = op_MVGHI
  3367  			case AMOVW, AMOVWZ:
  3368  				opcode = op_MVHI
  3369  			case AMOVH, AMOVHZ:
  3370  				opcode = op_MVHHI
  3371  			case AMOVB, AMOVBZ:
  3372  				opcode = op_MVI
  3373  			}
  3374  			if opcode == op_MVI {
  3375  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3376  			} else {
  3377  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3378  			}
  3379  		} else {
  3380  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3381  			if d < -DISP20/2 || d >= DISP20/2 {
  3382  				if r == REGTMP {
  3383  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3384  				} else {
  3385  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3386  					if x != 0 {
  3387  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3388  					}
  3389  					x = REGTMP
  3390  				}
  3391  				d = 0
  3392  			}
  3393  			zRXY(zopstore(ctxt, p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3394  		}
  3395  
  3396  	case 73: // mov $constant addr (including relocation)
  3397  		v := regoff(ctxt, &p.From)
  3398  		d := regoff(ctxt, &p.To)
  3399  		a := uint32(0)
  3400  		if d&1 != 0 {
  3401  			d -= 1
  3402  			a = 1
  3403  		}
  3404  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3405  		addrilreloc(ctxt, p.To.Sym, int64(d))
  3406  		if int32(int16(v)) == v {
  3407  			var opcode uint32
  3408  			switch p.As {
  3409  			case AMOVD:
  3410  				opcode = op_MVGHI
  3411  			case AMOVW, AMOVWZ:
  3412  				opcode = op_MVHI
  3413  			case AMOVH, AMOVHZ:
  3414  				opcode = op_MVHHI
  3415  			case AMOVB, AMOVBZ:
  3416  				opcode = op_MVI
  3417  			}
  3418  			if opcode == op_MVI {
  3419  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3420  			} else {
  3421  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3422  			}
  3423  		} else {
  3424  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3425  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3426  		}
  3427  
  3428  	case 74: // mov reg addr (including relocation)
  3429  		i2 := regoff(ctxt, &p.To)
  3430  		switch p.As {
  3431  		case AMOVD:
  3432  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3433  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3434  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3435  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3436  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3437  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3438  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3439  			adj := uint32(0) // adjustment needed for odd addresses
  3440  			if i2&1 != 0 {
  3441  				i2 -= 1
  3442  				adj = 1
  3443  			}
  3444  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3445  		case AFMOVD:
  3446  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3447  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3448  		case AFMOVS:
  3449  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3450  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3451  		}
  3452  		addrilreloc(ctxt, p.To.Sym, int64(i2))
  3453  
  3454  	case 75: // mov addr reg (including relocation)
  3455  		i2 := regoff(ctxt, &p.From)
  3456  		switch p.As {
  3457  		case AMOVD:
  3458  			if i2&1 != 0 {
  3459  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3460  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3461  				i2 -= 1
  3462  			} else {
  3463  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3464  			}
  3465  		case AMOVW:
  3466  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3467  		case AMOVWZ:
  3468  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3469  		case AMOVH:
  3470  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3471  		case AMOVHZ:
  3472  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3473  		case AMOVB, AMOVBZ:
  3474  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3475  			adj := uint32(0) // adjustment needed for odd addresses
  3476  			if i2&1 != 0 {
  3477  				i2 -= 1
  3478  				adj = 1
  3479  			}
  3480  			switch p.As {
  3481  			case AMOVB:
  3482  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3483  			case AMOVBZ:
  3484  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3485  			}
  3486  		case AFMOVD:
  3487  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3488  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3489  		case AFMOVS:
  3490  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3491  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3492  		}
  3493  		addrilreloc(ctxt, p.From.Sym, int64(i2))
  3494  
  3495  	case 77: // syscall $constant
  3496  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3497  			ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3498  			zE(op_TRAP2, asm) // trap always
  3499  		} else {
  3500  			zI(op_SVC, uint32(p.From.Offset), asm)
  3501  		}
  3502  
  3503  	case 78: // undef
  3504  		// "An instruction consisting entirely of binary 0s is guaranteed
  3505  		// always to be an illegal instruction."
  3506  		*asm = append(*asm, 0, 0, 0, 0)
  3507  
  3508  	case 79: // compare and swap reg reg reg
  3509  		v := regoff(ctxt, &p.To)
  3510  		if v < 0 {
  3511  			v = 0
  3512  		}
  3513  		if p.As == ACS {
  3514  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3515  		} else if p.As == ACSG {
  3516  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3517  		}
  3518  
  3519  	case 81: // sync
  3520  		zRR(op_BCR, 0xE, 0, asm)
  3521  
  3522  	case 82: // fixed to float conversion
  3523  		var opcode uint32
  3524  		switch p.As {
  3525  		default:
  3526  			log.Fatalf("unexpected opcode %v", p.As)
  3527  		case ACEFBRA:
  3528  			opcode = op_CEFBRA
  3529  		case ACDFBRA:
  3530  			opcode = op_CDFBRA
  3531  		case ACEGBRA:
  3532  			opcode = op_CEGBRA
  3533  		case ACDGBRA:
  3534  			opcode = op_CDGBRA
  3535  		case ACELFBR:
  3536  			opcode = op_CELFBR
  3537  		case ACDLFBR:
  3538  			opcode = op_CDLFBR
  3539  		case ACELGBR:
  3540  			opcode = op_CELGBR
  3541  		case ACDLGBR:
  3542  			opcode = op_CDLGBR
  3543  		}
  3544  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3545  		// (usually round to nearest, ties to even)
  3546  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3547  		// M4 is reserved and must be 0
  3548  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3549  
  3550  	case 83: // float to fixed conversion
  3551  		var opcode uint32
  3552  		switch p.As {
  3553  		default:
  3554  			log.Fatalf("unexpected opcode %v", p.As)
  3555  		case ACFEBRA:
  3556  			opcode = op_CFEBRA
  3557  		case ACFDBRA:
  3558  			opcode = op_CFDBRA
  3559  		case ACGEBRA:
  3560  			opcode = op_CGEBRA
  3561  		case ACGDBRA:
  3562  			opcode = op_CGDBRA
  3563  		case ACLFEBR:
  3564  			opcode = op_CLFEBR
  3565  		case ACLFDBR:
  3566  			opcode = op_CLFDBR
  3567  		case ACLGEBR:
  3568  			opcode = op_CLGEBR
  3569  		case ACLGDBR:
  3570  			opcode = op_CLGDBR
  3571  		}
  3572  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3573  		// M4 is reserved and must be 0
  3574  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3575  
  3576  	case 84: // storage-and-storage operations $length mem mem (length in From3)
  3577  		l := regoff(ctxt, p.From3)
  3578  		if l < 1 || l > 256 {
  3579  			ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3580  		}
  3581  		if p.From.Index != 0 || p.To.Index != 0 {
  3582  			ctxt.Diag("cannot use index reg")
  3583  		}
  3584  		b1 := p.To.Reg
  3585  		b2 := p.From.Reg
  3586  		if b1 == 0 {
  3587  			b1 = o.param
  3588  		}
  3589  		if b2 == 0 {
  3590  			b2 = o.param
  3591  		}
  3592  		d1 := regoff(ctxt, &p.To)
  3593  		d2 := regoff(ctxt, &p.From)
  3594  		if d1 < 0 || d1 >= DISP12 {
  3595  			if b2 == REGTMP {
  3596  				ctxt.Diag("REGTMP conflict")
  3597  			}
  3598  			if b1 != REGTMP {
  3599  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3600  			}
  3601  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3602  			if d1 == d2 && b1 == b2 {
  3603  				d2 = 0
  3604  				b2 = REGTMP
  3605  			}
  3606  			d1 = 0
  3607  			b1 = REGTMP
  3608  		}
  3609  		if d2 < 0 || d2 >= DISP12 {
  3610  			if b1 == REGTMP2 {
  3611  				ctxt.Diag("REGTMP2 conflict")
  3612  			}
  3613  			if b2 != REGTMP2 {
  3614  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3615  			}
  3616  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3617  			d2 = 0
  3618  			b2 = REGTMP2
  3619  		}
  3620  		var opcode uint32
  3621  		switch p.As {
  3622  		default:
  3623  			ctxt.Diag("unexpected opcode %v", p.As)
  3624  		case AMVC:
  3625  			opcode = op_MVC
  3626  		case ACLC:
  3627  			opcode = op_CLC
  3628  			// swap operand order for CLC so that it matches CMP
  3629  			b1, b2 = b2, b1
  3630  			d1, d2 = d2, d1
  3631  		case AXC:
  3632  			opcode = op_XC
  3633  		case AOC:
  3634  			opcode = op_OC
  3635  		case ANC:
  3636  			opcode = op_NC
  3637  		}
  3638  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3639  
  3640  	case 85: // load address relative long
  3641  		v := regoff(ctxt, &p.From)
  3642  		if p.From.Sym == nil {
  3643  			if (v & 1) != 0 {
  3644  				ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3645  			}
  3646  		} else {
  3647  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3648  			v = 0
  3649  		}
  3650  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3651  
  3652  	case 86: // load address
  3653  		d := vregoff(ctxt, &p.From)
  3654  		x := p.From.Index
  3655  		b := p.From.Reg
  3656  		if b == 0 {
  3657  			b = o.param
  3658  		}
  3659  		switch p.As {
  3660  		case ALA:
  3661  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3662  		case ALAY:
  3663  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3664  		}
  3665  
  3666  	case 87: // execute relative long
  3667  		v := vregoff(ctxt, &p.From)
  3668  		if p.From.Sym == nil {
  3669  			if v&1 != 0 {
  3670  				ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3671  			}
  3672  		} else {
  3673  			addrilreloc(ctxt, p.From.Sym, v)
  3674  			v = 0
  3675  		}
  3676  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3677  
  3678  	case 88: // store clock
  3679  		var opcode uint32
  3680  		switch p.As {
  3681  		case ASTCK:
  3682  			opcode = op_STCK
  3683  		case ASTCKC:
  3684  			opcode = op_STCKC
  3685  		case ASTCKE:
  3686  			opcode = op_STCKE
  3687  		case ASTCKF:
  3688  			opcode = op_STCKF
  3689  		}
  3690  		v := vregoff(ctxt, &p.To)
  3691  		r := int(p.To.Reg)
  3692  		if r == 0 {
  3693  			r = int(o.param)
  3694  		}
  3695  		zS(opcode, uint32(r), uint32(v), asm)
  3696  
  3697  	case 89: // compare and branch reg reg
  3698  		var v int32
  3699  		if p.Pcond != nil {
  3700  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3701  		}
  3702  		var opcode, opcode2 uint32
  3703  		switch p.As {
  3704  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3705  			opcode = op_CGRJ
  3706  			opcode2 = op_CGR
  3707  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3708  			opcode = op_CLGRJ
  3709  			opcode2 = op_CLGR
  3710  		}
  3711  		mask := branchMask(ctxt, p)
  3712  		if int32(int16(v)) != v {
  3713  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3714  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3715  		} else {
  3716  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3717  		}
  3718  
  3719  	case 90: // compare and branch reg $constant
  3720  		var v int32
  3721  		if p.Pcond != nil {
  3722  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3723  		}
  3724  		var opcode, opcode2 uint32
  3725  		switch p.As {
  3726  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3727  			opcode = op_CGIJ
  3728  			opcode2 = op_CGFI
  3729  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3730  			opcode = op_CLGIJ
  3731  			opcode2 = op_CLGFI
  3732  		}
  3733  		mask := branchMask(ctxt, p)
  3734  		if int32(int16(v)) != v {
  3735  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(regoff(ctxt, p.From3)), asm)
  3736  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3737  		} else {
  3738  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(regoff(ctxt, p.From3)), asm)
  3739  		}
  3740  
  3741  	case 93: // GOT lookup
  3742  		v := vregoff(ctxt, &p.To)
  3743  		if v != 0 {
  3744  			ctxt.Diag("invalid offset against GOT slot %v", p)
  3745  		}
  3746  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3747  		rel := obj.Addrel(ctxt.Cursym)
  3748  		rel.Off = int32(ctxt.Pc + 2)
  3749  		rel.Siz = 4
  3750  		rel.Sym = p.From.Sym
  3751  		rel.Type = obj.R_GOTPCREL
  3752  		rel.Add = 2 + int64(rel.Siz)
  3753  
  3754  	case 94: // TLS local exec model
  3755  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3756  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3757  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3758  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3759  		rel := obj.Addrel(ctxt.Cursym)
  3760  		rel.Off = int32(ctxt.Pc + sizeRIL + sizeRXY + sizeRI)
  3761  		rel.Siz = 8
  3762  		rel.Sym = p.From.Sym
  3763  		rel.Type = obj.R_TLS_LE
  3764  		rel.Add = 0
  3765  
  3766  	case 95: // TLS initial exec model
  3767  		// Assembly                   | Relocation symbol    | Done Here?
  3768  		// --------------------------------------------------------------
  3769  		// ear  %r11, %a0             |                      |
  3770  		// sllg %r11, %r11, 32        |                      |
  3771  		// ear  %r11, %a1             |                      |
  3772  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3773  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3774  		// la   %r10, 0(%r10, %r11)   |                      |
  3775  		// --------------------------------------------------------------
  3776  
  3777  		// R_390_TLS_IEENT
  3778  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3779  		ieent := obj.Addrel(ctxt.Cursym)
  3780  		ieent.Off = int32(ctxt.Pc + 2)
  3781  		ieent.Siz = 4
  3782  		ieent.Sym = p.From.Sym
  3783  		ieent.Type = obj.R_TLS_IE
  3784  		ieent.Add = 2 + int64(ieent.Siz)
  3785  
  3786  		// R_390_TLS_LOAD
  3787  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3788  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3789  		// not strictly required but might allow the linker to optimize
  3790  
  3791  	case 96: // clear macro
  3792  		length := vregoff(ctxt, &p.From)
  3793  		offset := vregoff(ctxt, &p.To)
  3794  		reg := p.To.Reg
  3795  		if reg == 0 {
  3796  			reg = o.param
  3797  		}
  3798  		if length <= 0 {
  3799  			ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3800  		}
  3801  		for length > 0 {
  3802  			if offset < 0 || offset >= DISP12 {
  3803  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3804  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3805  				} else {
  3806  					if reg != REGTMP {
  3807  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3808  					}
  3809  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3810  				}
  3811  				reg = REGTMP
  3812  				offset = 0
  3813  			}
  3814  			size := length
  3815  			if size > 256 {
  3816  				size = 256
  3817  			}
  3818  
  3819  			switch size {
  3820  			case 1:
  3821  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3822  			case 2:
  3823  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3824  			case 4:
  3825  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3826  			case 8:
  3827  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3828  			default:
  3829  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3830  			}
  3831  
  3832  			length -= size
  3833  			offset += size
  3834  		}
  3835  
  3836  	case 97: // store multiple
  3837  		rstart := p.From.Reg
  3838  		rend := p.Reg
  3839  		offset := regoff(ctxt, &p.To)
  3840  		reg := p.To.Reg
  3841  		if reg == 0 {
  3842  			reg = o.param
  3843  		}
  3844  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3845  			if reg != REGTMP {
  3846  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3847  			}
  3848  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3849  			reg = REGTMP
  3850  			offset = 0
  3851  		}
  3852  		switch p.As {
  3853  		case ASTMY:
  3854  			if offset >= 0 && offset < DISP12 {
  3855  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3856  			} else {
  3857  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3858  			}
  3859  		case ASTMG:
  3860  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3861  		}
  3862  
  3863  	case 98: // load multiple
  3864  		rstart := p.Reg
  3865  		rend := p.To.Reg
  3866  		offset := regoff(ctxt, &p.From)
  3867  		reg := p.From.Reg
  3868  		if reg == 0 {
  3869  			reg = o.param
  3870  		}
  3871  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3872  			if reg != REGTMP {
  3873  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3874  			}
  3875  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3876  			reg = REGTMP
  3877  			offset = 0
  3878  		}
  3879  		switch p.As {
  3880  		case ALMY:
  3881  			if offset >= 0 && offset < DISP12 {
  3882  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3883  			} else {
  3884  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3885  			}
  3886  		case ALMG:
  3887  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3888  		}
  3889  
  3890  	case 99: // interlocked load and op
  3891  		if p.To.Index != 0 {
  3892  			ctxt.Diag("cannot use indexed address")
  3893  		}
  3894  		offset := regoff(ctxt, &p.To)
  3895  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3896  			ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3897  		}
  3898  		var opcode uint32
  3899  		switch p.As {
  3900  		case ALAA:
  3901  			opcode = op_LAA
  3902  		case ALAAG:
  3903  			opcode = op_LAAG
  3904  		case ALAAL:
  3905  			opcode = op_LAAL
  3906  		case ALAALG:
  3907  			opcode = op_LAALG
  3908  		case ALAN:
  3909  			opcode = op_LAN
  3910  		case ALANG:
  3911  			opcode = op_LANG
  3912  		case ALAX:
  3913  			opcode = op_LAX
  3914  		case ALAXG:
  3915  			opcode = op_LAXG
  3916  		case ALAO:
  3917  			opcode = op_LAO
  3918  		case ALAOG:
  3919  			opcode = op_LAOG
  3920  		}
  3921  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3922  
  3923  	case 100: // VRX STORE
  3924  		op, m3, _ := vop(p.As)
  3925  		if p.From3 != nil {
  3926  			m3 = uint32(vregoff(ctxt, p.From3))
  3927  		}
  3928  		b2 := p.To.Reg
  3929  		if b2 == 0 {
  3930  			b2 = o.param
  3931  		}
  3932  		d2 := uint32(vregoff(ctxt, &p.To))
  3933  		zVRX(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3934  
  3935  	case 101: // VRX LOAD
  3936  		op, m3, _ := vop(p.As)
  3937  		if p.From3 != nil {
  3938  			m3 = uint32(vregoff(ctxt, p.From3))
  3939  		}
  3940  		b2 := p.From.Reg
  3941  		if b2 == 0 {
  3942  			b2 = o.param
  3943  		}
  3944  		d2 := uint32(vregoff(ctxt, &p.From))
  3945  		zVRX(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3946  
  3947  	case 102: // VRV SCATTER
  3948  		op, m3, _ := vop(p.As)
  3949  		if p.From3 != nil {
  3950  			m3 = uint32(vregoff(ctxt, p.From3))
  3951  		}
  3952  		b2 := p.To.Reg
  3953  		if b2 == 0 {
  3954  			b2 = o.param
  3955  		}
  3956  		d2 := uint32(vregoff(ctxt, &p.To))
  3957  		zVRV(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3958  
  3959  	case 103: // VRV GATHER
  3960  		op, m3, _ := vop(p.As)
  3961  		if p.From3 != nil {
  3962  			m3 = uint32(vregoff(ctxt, p.From3))
  3963  		}
  3964  		b2 := p.From.Reg
  3965  		if b2 == 0 {
  3966  			b2 = o.param
  3967  		}
  3968  		d2 := uint32(vregoff(ctxt, &p.From))
  3969  		zVRV(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3970  
  3971  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3972  		op, m4, _ := vop(p.As)
  3973  		fr := p.Reg
  3974  		if fr == 0 {
  3975  			fr = p.To.Reg
  3976  		}
  3977  		bits := uint32(vregoff(ctxt, &p.From))
  3978  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3979  
  3980  	case 105: // VRS STORE MULTIPLE
  3981  		op, _, _ := vop(p.As)
  3982  		offset := uint32(vregoff(ctxt, &p.To))
  3983  		reg := p.To.Reg
  3984  		if reg == 0 {
  3985  			reg = o.param
  3986  		}
  3987  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3988  
  3989  	case 106: // VRS LOAD MULTIPLE
  3990  		op, _, _ := vop(p.As)
  3991  		offset := uint32(vregoff(ctxt, &p.From))
  3992  		reg := p.From.Reg
  3993  		if reg == 0 {
  3994  			reg = o.param
  3995  		}
  3996  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3997  
  3998  	case 107: // VRS STORE WITH LENGTH
  3999  		op, _, _ := vop(p.As)
  4000  		offset := uint32(vregoff(ctxt, &p.To))
  4001  		reg := p.To.Reg
  4002  		if reg == 0 {
  4003  			reg = o.param
  4004  		}
  4005  		zVRS(op, uint32(p.From.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  4006  
  4007  	case 108: // VRS LOAD WITH LENGTH
  4008  		op, _, _ := vop(p.As)
  4009  		offset := uint32(vregoff(ctxt, &p.From))
  4010  		reg := p.From.Reg
  4011  		if reg == 0 {
  4012  			reg = o.param
  4013  		}
  4014  		zVRS(op, uint32(p.To.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  4015  
  4016  	case 109: // VRI-a
  4017  		op, _, _ := vop(p.As)
  4018  		i2 := uint32(vregoff(ctxt, &p.From))
  4019  		switch p.As {
  4020  		case AVZERO:
  4021  			i2 = 0
  4022  		case AVONE:
  4023  			i2 = 0xffff
  4024  		}
  4025  		m3 := uint32(0)
  4026  		if p.From3 != nil {
  4027  			m3 = uint32(vregoff(ctxt, p.From3))
  4028  		}
  4029  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4030  
  4031  	case 110:
  4032  		op, m4, _ := vop(p.As)
  4033  		i2 := uint32(vregoff(ctxt, p.From3))
  4034  		i3 := uint32(vregoff(ctxt, &p.From))
  4035  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4036  
  4037  	case 111:
  4038  		op, m4, _ := vop(p.As)
  4039  		i2 := uint32(vregoff(ctxt, &p.From))
  4040  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4041  
  4042  	case 112:
  4043  		op, m5, _ := vop(p.As)
  4044  		i4 := uint32(vregoff(ctxt, p.From3))
  4045  		zVRId(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), i4, m5, asm)
  4046  
  4047  	case 113:
  4048  		op, m4, _ := vop(p.As)
  4049  		m5 := singleElementMask(p.As)
  4050  		i3 := uint32(vregoff(ctxt, &p.From))
  4051  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4052  
  4053  	case 114: // VRR-a
  4054  		op, m3, m5 := vop(p.As)
  4055  		m4 := singleElementMask(p.As)
  4056  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4057  
  4058  	case 115: // VRR-a COMPARE
  4059  		op, m3, m5 := vop(p.As)
  4060  		m4 := singleElementMask(p.As)
  4061  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4062  
  4063  	case 116: // VRR-a
  4064  
  4065  	case 117: // VRR-b
  4066  		op, m4, m5 := vop(p.As)
  4067  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4068  
  4069  	case 118: // VRR-c
  4070  		op, m4, m6 := vop(p.As)
  4071  		m5 := singleElementMask(p.As)
  4072  		v3 := p.Reg
  4073  		if v3 == 0 {
  4074  			v3 = p.To.Reg
  4075  		}
  4076  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4077  
  4078  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4079  		op, m4, m6 := vop(p.As)
  4080  		m5 := singleElementMask(p.As)
  4081  		v2 := p.Reg
  4082  		if v2 == 0 {
  4083  			v2 = p.To.Reg
  4084  		}
  4085  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4086  
  4087  	case 120: // VRR-d
  4088  		op, m6, _ := vop(p.As)
  4089  		m5 := singleElementMask(p.As)
  4090  		v1 := uint32(p.To.Reg)
  4091  		v2 := uint32(p.From3.Reg)
  4092  		v3 := uint32(p.From.Reg)
  4093  		v4 := uint32(p.Reg)
  4094  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4095  
  4096  	case 121: // VRR-e
  4097  		op, m6, _ := vop(p.As)
  4098  		m5 := singleElementMask(p.As)
  4099  		v1 := uint32(p.To.Reg)
  4100  		v2 := uint32(p.From3.Reg)
  4101  		v3 := uint32(p.From.Reg)
  4102  		v4 := uint32(p.Reg)
  4103  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4104  
  4105  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4106  		op, _, _ := vop(p.As)
  4107  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4108  
  4109  	case 123: // VPDI $m4, V2, V3, V1
  4110  		op, _, _ := vop(p.As)
  4111  		m4 := regoff(ctxt, p.From3)
  4112  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), 0, 0, uint32(m4), asm)
  4113  	}
  4114  }
  4115  
  4116  func vregoff(ctxt *obj.Link, a *obj.Addr) int64 {
  4117  	ctxt.Instoffset = 0
  4118  	if a != nil {
  4119  		aclass(ctxt, a)
  4120  	}
  4121  	return ctxt.Instoffset
  4122  }
  4123  
  4124  func regoff(ctxt *obj.Link, a *obj.Addr) int32 {
  4125  	return int32(vregoff(ctxt, a))
  4126  }
  4127  
  4128  // zopload returns the RXY op for the given load
  4129  func zopload(ctxt *obj.Link, a obj.As) uint32 {
  4130  	switch a {
  4131  	// fixed point load
  4132  	case AMOVD:
  4133  		return op_LG
  4134  	case AMOVW:
  4135  		return op_LGF
  4136  	case AMOVWZ:
  4137  		return op_LLGF
  4138  	case AMOVH:
  4139  		return op_LGH
  4140  	case AMOVHZ:
  4141  		return op_LLGH
  4142  	case AMOVB:
  4143  		return op_LGB
  4144  	case AMOVBZ:
  4145  		return op_LLGC
  4146  
  4147  	// floating point load
  4148  	case AFMOVD:
  4149  		return op_LDY
  4150  	case AFMOVS:
  4151  		return op_LEY
  4152  
  4153  	// byte reversed load
  4154  	case AMOVDBR:
  4155  		return op_LRVG
  4156  	case AMOVWBR:
  4157  		return op_LRV
  4158  	case AMOVHBR:
  4159  		return op_LRVH
  4160  	}
  4161  
  4162  	ctxt.Diag("unknown store opcode %v", a)
  4163  	return 0
  4164  }
  4165  
  4166  // zopstore returns the RXY op for the given store
  4167  func zopstore(ctxt *obj.Link, a obj.As) uint32 {
  4168  	switch a {
  4169  	// fixed point store
  4170  	case AMOVD:
  4171  		return op_STG
  4172  	case AMOVW, AMOVWZ:
  4173  		return op_STY
  4174  	case AMOVH, AMOVHZ:
  4175  		return op_STHY
  4176  	case AMOVB, AMOVBZ:
  4177  		return op_STCY
  4178  
  4179  	// floating point store
  4180  	case AFMOVD:
  4181  		return op_STDY
  4182  	case AFMOVS:
  4183  		return op_STEY
  4184  
  4185  	// byte reversed store
  4186  	case AMOVDBR:
  4187  		return op_STRVG
  4188  	case AMOVWBR:
  4189  		return op_STRV
  4190  	case AMOVHBR:
  4191  		return op_STRVH
  4192  	}
  4193  
  4194  	ctxt.Diag("unknown store opcode %v", a)
  4195  	return 0
  4196  }
  4197  
  4198  // zoprre returns the RRE op for the given a
  4199  func zoprre(ctxt *obj.Link, a obj.As) uint32 {
  4200  	switch a {
  4201  	case ACMP:
  4202  		return op_CGR
  4203  	case ACMPU:
  4204  		return op_CLGR
  4205  	case AFCMPO: //ordered
  4206  		return op_KDBR
  4207  	case AFCMPU: //unordered
  4208  		return op_CDBR
  4209  	case ACEBR:
  4210  		return op_CEBR
  4211  	}
  4212  	ctxt.Diag("unknown rre opcode %v", a)
  4213  	return 0
  4214  }
  4215  
  4216  // zoprr returns the RR op for the given a
  4217  func zoprr(ctxt *obj.Link, a obj.As) uint32 {
  4218  	switch a {
  4219  	case ACMPW:
  4220  		return op_CR
  4221  	case ACMPWU:
  4222  		return op_CLR
  4223  	}
  4224  	ctxt.Diag("unknown rr opcode %v", a)
  4225  	return 0
  4226  }
  4227  
  4228  // zopril returns the RIL op for the given a
  4229  func zopril(ctxt *obj.Link, a obj.As) uint32 {
  4230  	switch a {
  4231  	case ACMP:
  4232  		return op_CGFI
  4233  	case ACMPU:
  4234  		return op_CLGFI
  4235  	case ACMPW:
  4236  		return op_CFI
  4237  	case ACMPWU:
  4238  		return op_CLFI
  4239  	}
  4240  	ctxt.Diag("unknown ril opcode %v", a)
  4241  	return 0
  4242  }
  4243  
  4244  // z instructions sizes
  4245  const (
  4246  	sizeE    = 2
  4247  	sizeI    = 2
  4248  	sizeIE   = 4
  4249  	sizeMII  = 6
  4250  	sizeRI   = 4
  4251  	sizeRI1  = 4
  4252  	sizeRI2  = 4
  4253  	sizeRI3  = 4
  4254  	sizeRIE  = 6
  4255  	sizeRIE1 = 6
  4256  	sizeRIE2 = 6
  4257  	sizeRIE3 = 6
  4258  	sizeRIE4 = 6
  4259  	sizeRIE5 = 6
  4260  	sizeRIE6 = 6
  4261  	sizeRIL  = 6
  4262  	sizeRIL1 = 6
  4263  	sizeRIL2 = 6
  4264  	sizeRIL3 = 6
  4265  	sizeRIS  = 6
  4266  	sizeRR   = 2
  4267  	sizeRRD  = 4
  4268  	sizeRRE  = 4
  4269  	sizeRRF  = 4
  4270  	sizeRRF1 = 4
  4271  	sizeRRF2 = 4
  4272  	sizeRRF3 = 4
  4273  	sizeRRF4 = 4
  4274  	sizeRRF5 = 4
  4275  	sizeRRR  = 2
  4276  	sizeRRS  = 6
  4277  	sizeRS   = 4
  4278  	sizeRS1  = 4
  4279  	sizeRS2  = 4
  4280  	sizeRSI  = 4
  4281  	sizeRSL  = 6
  4282  	sizeRSY  = 6
  4283  	sizeRSY1 = 6
  4284  	sizeRSY2 = 6
  4285  	sizeRX   = 4
  4286  	sizeRX1  = 4
  4287  	sizeRX2  = 4
  4288  	sizeRXE  = 6
  4289  	sizeRXF  = 6
  4290  	sizeRXY  = 6
  4291  	sizeRXY1 = 6
  4292  	sizeRXY2 = 6
  4293  	sizeS    = 4
  4294  	sizeSI   = 4
  4295  	sizeSIL  = 6
  4296  	sizeSIY  = 6
  4297  	sizeSMI  = 6
  4298  	sizeSS   = 6
  4299  	sizeSS1  = 6
  4300  	sizeSS2  = 6
  4301  	sizeSS3  = 6
  4302  	sizeSS4  = 6
  4303  	sizeSS5  = 6
  4304  	sizeSS6  = 6
  4305  	sizeSSE  = 6
  4306  	sizeSSF  = 6
  4307  )
  4308  
  4309  // instruction format variations
  4310  type form int
  4311  
  4312  const (
  4313  	_a form = iota
  4314  	_b
  4315  	_c
  4316  	_d
  4317  	_e
  4318  	_f
  4319  )
  4320  
  4321  func zE(op uint32, asm *[]byte) {
  4322  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4323  }
  4324  
  4325  func zI(op, i1 uint32, asm *[]byte) {
  4326  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4327  }
  4328  
  4329  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4330  	*asm = append(*asm,
  4331  		uint8(op>>8),
  4332  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4333  		uint8(ri2),
  4334  		uint8(ri3>>16),
  4335  		uint8(ri3>>8),
  4336  		uint8(ri3))
  4337  }
  4338  
  4339  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4340  	*asm = append(*asm,
  4341  		uint8(op>>8),
  4342  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4343  		uint8(i2_ri2>>8),
  4344  		uint8(i2_ri2))
  4345  }
  4346  
  4347  // Expected argument values for the instruction formats.
  4348  //
  4349  // Format    a1  a2   a3  a4  a5  a6  a7
  4350  // ------------------------------------
  4351  // a         r1,  0,  i2,  0,  0, m3,  0
  4352  // b         r1, r2, ri4,  0,  0, m3,  0
  4353  // c         r1, m3, ri4,  0,  0,  0, i2
  4354  // d         r1, r3,  i2,  0,  0,  0,  0
  4355  // e         r1, r3, ri2,  0,  0,  0,  0
  4356  // f         r1, r2,   0, i3, i4,  0, i5
  4357  // g         r1, m3,  i2,  0,  0,  0,  0
  4358  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4359  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4360  
  4361  	switch f {
  4362  	default:
  4363  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4364  	case _f:
  4365  		*asm = append(*asm, uint8(i3), uint8(i4))
  4366  	}
  4367  
  4368  	switch f {
  4369  	case _a, _b:
  4370  		*asm = append(*asm, uint8(m3)<<4)
  4371  	default:
  4372  		*asm = append(*asm, uint8(i2_i5))
  4373  	}
  4374  
  4375  	*asm = append(*asm, uint8(op))
  4376  }
  4377  
  4378  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4379  	if f == _a || f == _b {
  4380  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4381  	}
  4382  	*asm = append(*asm,
  4383  		uint8(op>>8),
  4384  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4385  		uint8(i2_ri2>>24),
  4386  		uint8(i2_ri2>>16),
  4387  		uint8(i2_ri2>>8),
  4388  		uint8(i2_ri2))
  4389  }
  4390  
  4391  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4392  	*asm = append(*asm,
  4393  		uint8(op>>8),
  4394  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4395  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4396  		uint8(d4),
  4397  		uint8(i2),
  4398  		uint8(op))
  4399  }
  4400  
  4401  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4402  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4403  }
  4404  
  4405  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4406  	*asm = append(*asm,
  4407  		uint8(op>>8),
  4408  		uint8(op),
  4409  		uint8(r1)<<4,
  4410  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4411  }
  4412  
  4413  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4414  	*asm = append(*asm,
  4415  		uint8(op>>8),
  4416  		uint8(op),
  4417  		0,
  4418  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4419  }
  4420  
  4421  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4422  	*asm = append(*asm,
  4423  		uint8(op>>8),
  4424  		uint8(op),
  4425  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4426  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4427  }
  4428  
  4429  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4430  	*asm = append(*asm,
  4431  		uint8(op>>8),
  4432  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4433  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4434  		uint8(d4),
  4435  		uint8(m3)<<4,
  4436  		uint8(op))
  4437  }
  4438  
  4439  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4440  	*asm = append(*asm,
  4441  		uint8(op>>8),
  4442  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4443  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4444  		uint8(d2))
  4445  }
  4446  
  4447  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4448  	*asm = append(*asm,
  4449  		uint8(op>>8),
  4450  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4451  		uint8(ri2>>8),
  4452  		uint8(ri2))
  4453  }
  4454  
  4455  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4456  	*asm = append(*asm,
  4457  		uint8(op>>8),
  4458  		uint8(l1),
  4459  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4460  		uint8(d2),
  4461  		uint8(op))
  4462  }
  4463  
  4464  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4465  	dl2 := uint16(d2) & 0x0FFF
  4466  	*asm = append(*asm,
  4467  		uint8(op>>8),
  4468  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4469  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4470  		uint8(dl2),
  4471  		uint8(d2>>12),
  4472  		uint8(op))
  4473  }
  4474  
  4475  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4476  	*asm = append(*asm,
  4477  		uint8(op>>8),
  4478  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4479  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4480  		uint8(d2))
  4481  }
  4482  
  4483  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4484  	*asm = append(*asm,
  4485  		uint8(op>>8),
  4486  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4487  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4488  		uint8(d2),
  4489  		uint8(m3)<<4,
  4490  		uint8(op))
  4491  }
  4492  
  4493  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4494  	*asm = append(*asm,
  4495  		uint8(op>>8),
  4496  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4497  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4498  		uint8(d2),
  4499  		uint8(m1)<<4,
  4500  		uint8(op))
  4501  }
  4502  
  4503  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4504  	dl2 := uint16(d2) & 0x0FFF
  4505  	*asm = append(*asm,
  4506  		uint8(op>>8),
  4507  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4508  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4509  		uint8(dl2),
  4510  		uint8(d2>>12),
  4511  		uint8(op))
  4512  }
  4513  
  4514  func zS(op, b2, d2 uint32, asm *[]byte) {
  4515  	*asm = append(*asm,
  4516  		uint8(op>>8),
  4517  		uint8(op),
  4518  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4519  		uint8(d2))
  4520  }
  4521  
  4522  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4523  	*asm = append(*asm,
  4524  		uint8(op>>8),
  4525  		uint8(i2),
  4526  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4527  		uint8(d1))
  4528  }
  4529  
  4530  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4531  	*asm = append(*asm,
  4532  		uint8(op>>8),
  4533  		uint8(op),
  4534  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4535  		uint8(d1),
  4536  		uint8(i2>>8),
  4537  		uint8(i2))
  4538  }
  4539  
  4540  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4541  	dl1 := uint16(d1) & 0x0FFF
  4542  	*asm = append(*asm,
  4543  		uint8(op>>8),
  4544  		uint8(i2),
  4545  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4546  		uint8(dl1),
  4547  		uint8(d1>>12),
  4548  		uint8(op))
  4549  }
  4550  
  4551  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4552  	*asm = append(*asm,
  4553  		uint8(op>>8),
  4554  		uint8(m1)<<4,
  4555  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4556  		uint8(d3),
  4557  		uint8(ri2>>8),
  4558  		uint8(ri2))
  4559  }
  4560  
  4561  // Expected argument values for the instruction formats.
  4562  //
  4563  // Format    a1  a2  a3  a4  a5  a6
  4564  // -------------------------------
  4565  // a         l1,  0, b1, d1, b2, d2
  4566  // b         l1, l2, b1, d1, b2, d2
  4567  // c         l1, i3, b1, d1, b2, d2
  4568  // d         r1, r3, b1, d1, b2, d2
  4569  // e         r1, r3, b2, d2, b4, d4
  4570  // f          0, l2, b1, d1, b2, d2
  4571  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4572  	*asm = append(*asm, uint8(op>>8))
  4573  
  4574  	switch f {
  4575  	case _a:
  4576  		*asm = append(*asm, uint8(l1_r1))
  4577  	case _b, _c, _d, _e:
  4578  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4579  	case _f:
  4580  		*asm = append(*asm, uint8(l2_i3_r3))
  4581  	}
  4582  
  4583  	*asm = append(*asm,
  4584  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4585  		uint8(d1_d2),
  4586  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4587  		uint8(d2_d4))
  4588  }
  4589  
  4590  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4591  	*asm = append(*asm,
  4592  		uint8(op>>8),
  4593  		uint8(op),
  4594  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4595  		uint8(d1),
  4596  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4597  		uint8(d2))
  4598  }
  4599  
  4600  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4601  	*asm = append(*asm,
  4602  		uint8(op>>8),
  4603  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4604  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4605  		uint8(d1),
  4606  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4607  		uint8(d2))
  4608  }
  4609  
  4610  func rxb(va, vb, vc, vd uint32) uint8 {
  4611  	mask := uint8(0)
  4612  	if va >= REG_V16 && va <= REG_V31 {
  4613  		mask |= 0x8
  4614  	}
  4615  	if vb >= REG_V16 && vb <= REG_V31 {
  4616  		mask |= 0x4
  4617  	}
  4618  	if vc >= REG_V16 && vc <= REG_V31 {
  4619  		mask |= 0x2
  4620  	}
  4621  	if vd >= REG_V16 && vd <= REG_V31 {
  4622  		mask |= 0x1
  4623  	}
  4624  	return mask
  4625  }
  4626  
  4627  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4628  	*asm = append(*asm,
  4629  		uint8(op>>8),
  4630  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4631  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4632  		uint8(d2),
  4633  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4634  		uint8(op))
  4635  }
  4636  
  4637  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4638  	*asm = append(*asm,
  4639  		uint8(op>>8),
  4640  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4641  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4642  		uint8(d2),
  4643  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4644  		uint8(op))
  4645  }
  4646  
  4647  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4648  	*asm = append(*asm,
  4649  		uint8(op>>8),
  4650  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4651  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4652  		uint8(d2),
  4653  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4654  		uint8(op))
  4655  }
  4656  
  4657  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4658  	*asm = append(*asm,
  4659  		uint8(op>>8),
  4660  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4661  		0,
  4662  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4663  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4664  		uint8(op))
  4665  }
  4666  
  4667  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4668  	*asm = append(*asm,
  4669  		uint8(op>>8),
  4670  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4671  		uint8(v3)<<4,
  4672  		uint8(m5)<<4,
  4673  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4674  		uint8(op))
  4675  }
  4676  
  4677  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4678  	*asm = append(*asm,
  4679  		uint8(op>>8),
  4680  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4681  		uint8(v3)<<4,
  4682  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4683  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4684  		uint8(op))
  4685  }
  4686  
  4687  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4688  	*asm = append(*asm,
  4689  		uint8(op>>8),
  4690  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4691  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4692  		uint8(m6)<<4,
  4693  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4694  		uint8(op))
  4695  }
  4696  
  4697  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4698  	*asm = append(*asm,
  4699  		uint8(op>>8),
  4700  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4701  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4702  		uint8(m5),
  4703  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4704  		uint8(op))
  4705  }
  4706  
  4707  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4708  	*asm = append(*asm,
  4709  		uint8(op>>8),
  4710  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4711  		uint8(r3)<<4,
  4712  		0,
  4713  		rxb(v1, 0, 0, 0),
  4714  		uint8(op))
  4715  }
  4716  
  4717  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4718  	*asm = append(*asm,
  4719  		uint8(op>>8),
  4720  		uint8(v1)<<4,
  4721  		uint8(i2>>8),
  4722  		uint8(i2),
  4723  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4724  		uint8(op))
  4725  }
  4726  
  4727  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4728  	*asm = append(*asm,
  4729  		uint8(op>>8),
  4730  		uint8(v1)<<4,
  4731  		uint8(i2),
  4732  		uint8(i3),
  4733  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4734  		uint8(op))
  4735  }
  4736  
  4737  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4738  	*asm = append(*asm,
  4739  		uint8(op>>8),
  4740  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4741  		uint8(i2>>8),
  4742  		uint8(i2),
  4743  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4744  		uint8(op))
  4745  }
  4746  
  4747  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4748  	*asm = append(*asm,
  4749  		uint8(op>>8),
  4750  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4751  		uint8(v3)<<4,
  4752  		uint8(i4),
  4753  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4754  		uint8(op))
  4755  }
  4756  
  4757  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4758  	*asm = append(*asm,
  4759  		uint8(op>>8),
  4760  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4761  		uint8(i3>>4),
  4762  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4763  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4764  		uint8(op))
  4765  }