github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/link/internal/ld/data.go (about) 1 // Derived from Inferno utils/6l/obj.c and utils/6l/span.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c 3 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c 4 // 5 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 6 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 7 // Portions Copyright © 1997-1999 Vita Nuova Limited 8 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 9 // Portions Copyright © 2004,2006 Bruce Ellis 10 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 11 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 12 // Portions Copyright © 2009 The Go Authors. All rights reserved. 13 // 14 // Permission is hereby granted, free of charge, to any person obtaining a copy 15 // of this software and associated documentation files (the "Software"), to deal 16 // in the Software without restriction, including without limitation the rights 17 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 // copies of the Software, and to permit persons to whom the Software is 19 // furnished to do so, subject to the following conditions: 20 // 21 // The above copyright notice and this permission notice shall be included in 22 // all copies or substantial portions of the Software. 23 // 24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 30 // THE SOFTWARE. 31 32 package ld 33 34 import ( 35 "cmd/internal/gcprog" 36 "cmd/internal/obj" 37 "cmd/internal/sys" 38 "fmt" 39 "log" 40 "os" 41 "sort" 42 "strconv" 43 "strings" 44 "sync" 45 ) 46 47 func Symgrow(s *Symbol, siz int64) { 48 if int64(int(siz)) != siz { 49 log.Fatalf("symgrow size %d too long", siz) 50 } 51 if int64(len(s.P)) >= siz { 52 return 53 } 54 if cap(s.P) < int(siz) { 55 p := make([]byte, 2*(siz+1)) 56 s.P = append(p[:0], s.P...) 57 } 58 s.P = s.P[:siz] 59 } 60 61 func Addrel(s *Symbol) *Reloc { 62 s.R = append(s.R, Reloc{}) 63 return &s.R[len(s.R)-1] 64 } 65 66 func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { 67 if s.Type == 0 { 68 s.Type = obj.SDATA 69 } 70 s.Attr |= AttrReachable 71 if s.Size < off+wid { 72 s.Size = off + wid 73 Symgrow(s, s.Size) 74 } 75 76 switch wid { 77 case 1: 78 s.P[off] = uint8(v) 79 case 2: 80 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) 81 case 4: 82 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) 83 case 8: 84 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) 85 } 86 87 return off + wid 88 } 89 90 func Addbytes(s *Symbol, bytes []byte) int64 { 91 if s.Type == 0 { 92 s.Type = obj.SDATA 93 } 94 s.Attr |= AttrReachable 95 s.P = append(s.P, bytes...) 96 s.Size = int64(len(s.P)) 97 98 return s.Size 99 } 100 101 func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { 102 off := s.Size 103 setuintxx(ctxt, s, off, v, int64(wid)) 104 return off 105 } 106 107 func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { 108 off := s.Size 109 if s.Type == 0 { 110 s.Type = obj.SDATA 111 } 112 s.Attr |= AttrReachable 113 s.Size++ 114 s.P = append(s.P, v) 115 116 return off 117 } 118 119 func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { 120 return adduintxx(ctxt, s, uint64(v), 2) 121 } 122 123 func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { 124 return adduintxx(ctxt, s, uint64(v), 4) 125 } 126 127 func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { 128 return adduintxx(ctxt, s, v, 8) 129 } 130 131 func adduint(ctxt *Link, s *Symbol, v uint64) int64 { 132 return adduintxx(ctxt, s, v, SysArch.IntSize) 133 } 134 135 func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { 136 return setuintxx(ctxt, s, r, uint64(v), 1) 137 } 138 139 func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { 140 return setuintxx(ctxt, s, r, uint64(v), 4) 141 } 142 143 func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 144 if s.Type == 0 { 145 s.Type = obj.SDATA 146 } 147 s.Attr |= AttrReachable 148 i := s.Size 149 s.Size += int64(ctxt.Arch.PtrSize) 150 Symgrow(s, s.Size) 151 r := Addrel(s) 152 r.Sym = t 153 r.Off = int32(i) 154 r.Siz = uint8(ctxt.Arch.PtrSize) 155 r.Type = obj.R_ADDR 156 r.Add = add 157 return i + int64(r.Siz) 158 } 159 160 func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 161 if s.Type == 0 { 162 s.Type = obj.SDATA 163 } 164 s.Attr |= AttrReachable 165 i := s.Size 166 s.Size += 4 167 Symgrow(s, s.Size) 168 r := Addrel(s) 169 r.Sym = t 170 r.Off = int32(i) 171 r.Add = add 172 r.Type = obj.R_PCREL 173 r.Siz = 4 174 if SysArch.Family == sys.S390X { 175 r.Variant = RV_390_DBL 176 } 177 return i + int64(r.Siz) 178 } 179 180 func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { 181 return Addaddrplus(ctxt, s, t, 0) 182 } 183 184 func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { 185 if s.Type == 0 { 186 s.Type = obj.SDATA 187 } 188 s.Attr |= AttrReachable 189 if off+int64(ctxt.Arch.PtrSize) > s.Size { 190 s.Size = off + int64(ctxt.Arch.PtrSize) 191 Symgrow(s, s.Size) 192 } 193 194 r := Addrel(s) 195 r.Sym = t 196 r.Off = int32(off) 197 r.Siz = uint8(ctxt.Arch.PtrSize) 198 r.Type = obj.R_ADDR 199 r.Add = add 200 return off + int64(r.Siz) 201 } 202 203 func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { 204 return setaddrplus(ctxt, s, off, t, 0) 205 } 206 207 func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { 208 if s.Type == 0 { 209 s.Type = obj.SDATA 210 } 211 s.Attr |= AttrReachable 212 i := s.Size 213 s.Size += int64(ctxt.Arch.PtrSize) 214 Symgrow(s, s.Size) 215 r := Addrel(s) 216 r.Sym = t 217 r.Off = int32(i) 218 r.Siz = uint8(ctxt.Arch.PtrSize) 219 r.Type = obj.R_SIZE 220 return i + int64(r.Siz) 221 } 222 223 func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 224 if s.Type == 0 { 225 s.Type = obj.SDATA 226 } 227 s.Attr |= AttrReachable 228 i := s.Size 229 s.Size += 4 230 Symgrow(s, s.Size) 231 r := Addrel(s) 232 r.Sym = t 233 r.Off = int32(i) 234 r.Siz = 4 235 r.Type = obj.R_ADDR 236 r.Add = add 237 return i + int64(r.Siz) 238 } 239 240 /* 241 * divide-and-conquer list-link (by Sub) sort of Symbol* by Value. 242 * Used for sub-symbols when loading host objects (see e.g. ldelf.go). 243 */ 244 245 func listsort(l *Symbol) *Symbol { 246 if l == nil || l.Sub == nil { 247 return l 248 } 249 250 l1 := l 251 l2 := l 252 for { 253 l2 = l2.Sub 254 if l2 == nil { 255 break 256 } 257 l2 = l2.Sub 258 if l2 == nil { 259 break 260 } 261 l1 = l1.Sub 262 } 263 264 l2 = l1.Sub 265 l1.Sub = nil 266 l1 = listsort(l) 267 l2 = listsort(l2) 268 269 /* set up lead element */ 270 if l1.Value < l2.Value { 271 l = l1 272 l1 = l1.Sub 273 } else { 274 l = l2 275 l2 = l2.Sub 276 } 277 278 le := l 279 280 for { 281 if l1 == nil { 282 for l2 != nil { 283 le.Sub = l2 284 le = l2 285 l2 = l2.Sub 286 } 287 288 le.Sub = nil 289 break 290 } 291 292 if l2 == nil { 293 for l1 != nil { 294 le.Sub = l1 295 le = l1 296 l1 = l1.Sub 297 } 298 299 break 300 } 301 302 if l1.Value < l2.Value { 303 le.Sub = l1 304 le = l1 305 l1 = l1.Sub 306 } else { 307 le.Sub = l2 308 le = l2 309 l2 = l2.Sub 310 } 311 } 312 313 le.Sub = nil 314 return l 315 } 316 317 // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency 318 func isRuntimeDepPkg(pkg string) bool { 319 switch pkg { 320 case "runtime", 321 "sync/atomic": // runtime may call to sync/atomic, due to go:linkname 322 return true 323 } 324 return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") 325 } 326 327 // detect too-far jumps in function s, and add trampolines if necessary 328 // ARM supports trampoline insertion for internal and external linking 329 // PPC64 & PPC64LE support trampoline insertion for internal linking only 330 func trampoline(ctxt *Link, s *Symbol) { 331 if Thearch.Trampoline == nil { 332 return // no need or no support of trampolines on this arch 333 } 334 335 if Linkmode == LinkExternal && SysArch.Family == sys.PPC64 { 336 return 337 } 338 339 for ri := range s.R { 340 r := &s.R[ri] 341 if !r.Type.IsDirectJump() { 342 continue 343 } 344 if Symaddr(r.Sym) == 0 && r.Sym.Type != obj.SDYNIMPORT { 345 if r.Sym.File != s.File { 346 if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { 347 Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) 348 } 349 // runtime and its dependent packages may call to each other. 350 // they are fine, as they will be laid down together. 351 } 352 continue 353 } 354 355 Thearch.Trampoline(ctxt, r, s) 356 } 357 358 } 359 360 // resolve relocations in s. 361 func relocsym(ctxt *Link, s *Symbol) { 362 var r *Reloc 363 var rs *Symbol 364 var i16 int16 365 var off int32 366 var siz int32 367 var fl int32 368 var o int64 369 370 for ri := int32(0); ri < int32(len(s.R)); ri++ { 371 r = &s.R[ri] 372 373 r.Done = 1 374 off = r.Off 375 siz = int32(r.Siz) 376 if off < 0 || off+siz > int32(len(s.P)) { 377 rname := "" 378 if r.Sym != nil { 379 rname = r.Sym.Name 380 } 381 Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) 382 continue 383 } 384 385 if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) { 386 // When putting the runtime but not main into a shared library 387 // these symbols are undefined and that's OK. 388 if Buildmode == BuildmodeShared { 389 if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { 390 r.Sym.Type = obj.SDYNIMPORT 391 } else if strings.HasPrefix(r.Sym.Name, "go.info.") { 392 // Skip go.info symbols. They are only needed to communicate 393 // DWARF info between the compiler and linker. 394 continue 395 } 396 } else { 397 Errorf(s, "relocation target %s not defined", r.Sym.Name) 398 continue 399 } 400 } 401 402 if r.Type >= 256 { 403 continue 404 } 405 if r.Siz == 0 { // informational relocation - no work to do 406 continue 407 } 408 409 // We need to be able to reference dynimport symbols when linking against 410 // shared libraries, and Solaris needs it always 411 if Headtype != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !ctxt.DynlinkingGo() { 412 if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { 413 Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) 414 } 415 } 416 if r.Sym != nil && r.Sym.Type != obj.STLSBSS && r.Type != obj.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { 417 Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) 418 } 419 420 // TODO(mundaym): remove this special case - see issue 14218. 421 if SysArch.Family == sys.S390X { 422 switch r.Type { 423 case obj.R_PCRELDBL: 424 r.Type = obj.R_PCREL 425 r.Variant = RV_390_DBL 426 case obj.R_CALL: 427 r.Variant = RV_390_DBL 428 } 429 } 430 431 switch r.Type { 432 default: 433 switch siz { 434 default: 435 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 436 case 1: 437 o = int64(s.P[off]) 438 case 2: 439 o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) 440 case 4: 441 o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) 442 case 8: 443 o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) 444 } 445 if Thearch.Archreloc(ctxt, r, s, &o) < 0 { 446 Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type) 447 } 448 449 case obj.R_TLS_LE: 450 isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 451 452 if Linkmode == LinkExternal && Iself && Headtype != obj.Hopenbsd && !isAndroidX86 { 453 r.Done = 0 454 if r.Sym == nil { 455 r.Sym = ctxt.Tlsg 456 } 457 r.Xsym = r.Sym 458 r.Xadd = r.Add 459 o = 0 460 if SysArch.Family != sys.AMD64 { 461 o = r.Add 462 } 463 break 464 } 465 466 if Iself && SysArch.Family == sys.ARM { 467 // On ELF ARM, the thread pointer is 8 bytes before 468 // the start of the thread-local data block, so add 8 469 // to the actual TLS offset (r->sym->value). 470 // This 8 seems to be a fundamental constant of 471 // ELF on ARM (or maybe Glibc on ARM); it is not 472 // related to the fact that our own TLS storage happens 473 // to take up 8 bytes. 474 o = 8 + r.Sym.Value 475 } else if Iself || Headtype == obj.Hplan9 || Headtype == obj.Hdarwin || isAndroidX86 { 476 o = int64(ctxt.Tlsoffset) + r.Add 477 } else if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 478 o = r.Add 479 } else { 480 log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype) 481 } 482 483 case obj.R_TLS_IE: 484 isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 485 486 if Linkmode == LinkExternal && Iself && Headtype != obj.Hopenbsd && !isAndroidX86 { 487 r.Done = 0 488 if r.Sym == nil { 489 r.Sym = ctxt.Tlsg 490 } 491 r.Xsym = r.Sym 492 r.Xadd = r.Add 493 o = 0 494 if SysArch.Family != sys.AMD64 { 495 o = r.Add 496 } 497 break 498 } 499 if Buildmode == BuildmodePIE && Iself { 500 // We are linking the final executable, so we 501 // can optimize any TLS IE relocation to LE. 502 if Thearch.TLSIEtoLE == nil { 503 log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family) 504 } 505 Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) 506 o = int64(ctxt.Tlsoffset) 507 // TODO: o += r.Add when SysArch.Family != sys.AMD64? 508 // Why do we treat r.Add differently on AMD64? 509 // Is the external linker using Xadd at all? 510 } else { 511 log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) 512 } 513 514 case obj.R_ADDR: 515 if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST { 516 r.Done = 0 517 518 // set up addend for eventual relocation via outer symbol. 519 rs = r.Sym 520 521 r.Xadd = r.Add 522 for rs.Outer != nil { 523 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 524 rs = rs.Outer 525 } 526 527 if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { 528 Errorf(s, "missing section for relocation target %s", rs.Name) 529 } 530 r.Xsym = rs 531 532 o = r.Xadd 533 if Iself { 534 if SysArch.Family == sys.AMD64 { 535 o = 0 536 } 537 } else if Headtype == obj.Hdarwin { 538 // ld64 for arm64 has a bug where if the address pointed to by o exists in the 539 // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol 540 // table, then it will add o twice into the relocated value. 541 // The workaround is that on arm64 don't ever add symaddr to o and always use 542 // extern relocation by requiring rs->dynid >= 0. 543 if rs.Type != obj.SHOSTOBJ { 544 if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { 545 Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) 546 } 547 if SysArch.Family != sys.ARM64 { 548 o += Symaddr(rs) 549 } 550 } 551 } else if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 552 // nothing to do 553 } else { 554 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 555 } 556 557 break 558 } 559 560 o = Symaddr(r.Sym) + r.Add 561 562 // On amd64, 4-byte offsets will be sign-extended, so it is impossible to 563 // access more than 2GB of static data; fail at link time is better than 564 // fail at runtime. See https://golang.org/issue/7980. 565 // Instead of special casing only amd64, we treat this as an error on all 566 // 64-bit architectures so as to be future-proof. 567 if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { 568 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) 569 errorexit() 570 } 571 572 case obj.R_DWARFREF: 573 if r.Sym.Sect == nil { 574 Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) 575 } 576 if Linkmode == LinkExternal { 577 r.Done = 0 578 r.Type = obj.R_ADDR 579 580 r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0) 581 r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) 582 o = r.Xadd 583 rs = r.Xsym 584 if Iself && SysArch.Family == sys.AMD64 { 585 o = 0 586 } 587 break 588 } 589 o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) 590 591 case obj.R_WEAKADDROFF: 592 if !r.Sym.Attr.Reachable() { 593 continue 594 } 595 fallthrough 596 case obj.R_ADDROFF: 597 // The method offset tables using this relocation expect the offset to be relative 598 // to the start of the first text section, even if there are multiple. 599 600 if r.Sym.Sect.Name == ".text" { 601 o = Symaddr(r.Sym) - int64(Segtext.Sect.Vaddr) + r.Add 602 } else { 603 o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add 604 } 605 606 // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. 607 case obj.R_GOTPCREL: 608 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin && r.Sym != nil && r.Sym.Type != obj.SCONST { 609 r.Done = 0 610 r.Xadd = r.Add 611 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 612 r.Xsym = r.Sym 613 614 o = r.Xadd 615 o += int64(r.Siz) 616 break 617 } 618 fallthrough 619 case obj.R_CALL, obj.R_PCREL: 620 if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != s.Sect || r.Type == obj.R_GOTPCREL) { 621 r.Done = 0 622 623 // set up addend for eventual relocation via outer symbol. 624 rs = r.Sym 625 626 r.Xadd = r.Add 627 for rs.Outer != nil { 628 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 629 rs = rs.Outer 630 } 631 632 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 633 if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { 634 Errorf(s, "missing section for relocation target %s", rs.Name) 635 } 636 r.Xsym = rs 637 638 o = r.Xadd 639 if Iself { 640 if SysArch.Family == sys.AMD64 { 641 o = 0 642 } 643 } else if Headtype == obj.Hdarwin { 644 if r.Type == obj.R_CALL { 645 if rs.Type != obj.SHOSTOBJ { 646 o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) 647 } 648 o -= int64(r.Off) // relative to section offset, not symbol 649 } else if SysArch.Family == sys.ARM { 650 // see ../arm/asm.go:/machoreloc1 651 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) 652 } else { 653 o += int64(r.Siz) 654 } 655 } else if (Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui) && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL 656 // PE/COFF's PC32 relocation uses the address after the relocated 657 // bytes as the base. Compensate by skewing the addend. 658 o += int64(r.Siz) 659 // GNU ld always add VirtualAddress of the .text section to the 660 // relocated address, compensate that. 661 o -= int64(s.Sect.Vaddr - PEBASE) 662 } else { 663 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 664 } 665 666 break 667 } 668 669 o = 0 670 if r.Sym != nil { 671 o += Symaddr(r.Sym) 672 } 673 674 o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) 675 676 case obj.R_SIZE: 677 o = r.Sym.Size + r.Add 678 } 679 680 if r.Variant != RV_NONE { 681 o = Thearch.Archrelocvariant(ctxt, r, s, o) 682 } 683 684 if false { 685 nam := "<nil>" 686 if r.Sym != nil { 687 nam = r.Sym.Name 688 } 689 fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) 690 } 691 switch siz { 692 default: 693 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 694 fallthrough 695 696 // TODO(rsc): Remove. 697 case 1: 698 s.P[off] = byte(int8(o)) 699 700 case 2: 701 if o != int64(int16(o)) { 702 Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) 703 } 704 i16 = int16(o) 705 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) 706 707 case 4: 708 if r.Type == obj.R_PCREL || r.Type == obj.R_CALL { 709 if o != int64(int32(o)) { 710 Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) 711 } 712 } else { 713 if o != int64(int32(o)) && o != int64(uint32(o)) { 714 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) 715 } 716 } 717 718 fl = int32(o) 719 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) 720 721 case 8: 722 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) 723 } 724 } 725 } 726 727 func (ctxt *Link) reloc() { 728 if ctxt.Debugvlog != 0 { 729 ctxt.Logf("%5.2f reloc\n", obj.Cputime()) 730 } 731 732 for _, s := range ctxt.Textp { 733 relocsym(ctxt, s) 734 } 735 for _, sym := range datap { 736 relocsym(ctxt, sym) 737 } 738 for _, s := range dwarfp { 739 relocsym(ctxt, s) 740 } 741 } 742 743 func dynrelocsym(ctxt *Link, s *Symbol) { 744 if (Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui) && Linkmode != LinkExternal { 745 rel := ctxt.Syms.Lookup(".rel", 0) 746 if s == rel { 747 return 748 } 749 for ri := 0; ri < len(s.R); ri++ { 750 r := &s.R[ri] 751 targ := r.Sym 752 if targ == nil { 753 continue 754 } 755 if !targ.Attr.Reachable() { 756 if r.Type == obj.R_WEAKADDROFF { 757 continue 758 } 759 Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) 760 } 761 if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. 762 targ.Plt = int32(rel.Size) 763 r.Sym = rel 764 r.Add = int64(targ.Plt) 765 766 // jmp *addr 767 if SysArch.Family == sys.I386 { 768 Adduint8(ctxt, rel, 0xff) 769 Adduint8(ctxt, rel, 0x25) 770 Addaddr(ctxt, rel, targ) 771 Adduint8(ctxt, rel, 0x90) 772 Adduint8(ctxt, rel, 0x90) 773 } else { 774 Adduint8(ctxt, rel, 0xff) 775 Adduint8(ctxt, rel, 0x24) 776 Adduint8(ctxt, rel, 0x25) 777 addaddrplus4(ctxt, rel, targ, 0) 778 Adduint8(ctxt, rel, 0x90) 779 } 780 } else if r.Sym.Plt >= 0 { 781 r.Sym = rel 782 r.Add = int64(targ.Plt) 783 } 784 } 785 786 return 787 } 788 789 for ri := 0; ri < len(s.R); ri++ { 790 r := &s.R[ri] 791 if Buildmode == BuildmodePIE && Linkmode == LinkInternal { 792 // It's expected that some relocations will be done 793 // later by relocsym (R_TLS_LE, R_ADDROFF), so 794 // don't worry if Adddynrel returns false. 795 Thearch.Adddynrel(ctxt, s, r) 796 continue 797 } 798 if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 { 799 if r.Sym != nil && !r.Sym.Attr.Reachable() { 800 Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) 801 } 802 if !Thearch.Adddynrel(ctxt, s, r) { 803 Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type) 804 } 805 } 806 } 807 } 808 809 func dynreloc(ctxt *Link, data *[obj.SXREF][]*Symbol) { 810 // -d suppresses dynamic loader format, so we may as well not 811 // compute these sections or mark their symbols as reachable. 812 if *FlagD && Headtype != obj.Hwindows && Headtype != obj.Hwindowsgui { 813 return 814 } 815 if ctxt.Debugvlog != 0 { 816 ctxt.Logf("%5.2f reloc\n", obj.Cputime()) 817 } 818 819 for _, s := range ctxt.Textp { 820 dynrelocsym(ctxt, s) 821 } 822 for _, syms := range data { 823 for _, sym := range syms { 824 dynrelocsym(ctxt, sym) 825 } 826 } 827 if Iself { 828 elfdynhash(ctxt) 829 } 830 } 831 832 func Codeblk(ctxt *Link, addr int64, size int64) { 833 CodeblkPad(ctxt, addr, size, zeros[:]) 834 } 835 func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { 836 if *flagA { 837 ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 838 } 839 840 blk(ctxt, ctxt.Textp, addr, size, pad) 841 842 /* again for printing */ 843 if !*flagA { 844 return 845 } 846 847 syms := ctxt.Textp 848 for i, sym := range syms { 849 if !sym.Attr.Reachable() { 850 continue 851 } 852 if sym.Value >= addr { 853 syms = syms[i:] 854 break 855 } 856 } 857 858 eaddr := addr + size 859 var q []byte 860 for _, sym := range syms { 861 if !sym.Attr.Reachable() { 862 continue 863 } 864 if sym.Value >= eaddr { 865 break 866 } 867 868 if addr < sym.Value { 869 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 870 for ; addr < sym.Value; addr++ { 871 ctxt.Logf(" %.2x", 0) 872 } 873 ctxt.Logf("\n") 874 } 875 876 ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name) 877 q = sym.P 878 879 for len(q) >= 16 { 880 ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) 881 addr += 16 882 q = q[16:] 883 } 884 885 if len(q) > 0 { 886 ctxt.Logf("%.6x\t% x\n", uint64(addr), q) 887 addr += int64(len(q)) 888 } 889 } 890 891 if addr < eaddr { 892 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 893 for ; addr < eaddr; addr++ { 894 ctxt.Logf(" %.2x", 0) 895 } 896 } 897 } 898 899 func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { 900 for i, s := range syms { 901 if s.Type&obj.SSUB == 0 && s.Value >= addr { 902 syms = syms[i:] 903 break 904 } 905 } 906 907 eaddr := addr + size 908 for _, s := range syms { 909 if s.Type&obj.SSUB != 0 { 910 continue 911 } 912 if s.Value >= eaddr { 913 break 914 } 915 if s.Value < addr { 916 Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) 917 errorexit() 918 } 919 if addr < s.Value { 920 strnputPad("", int(s.Value-addr), pad) 921 addr = s.Value 922 } 923 Cwrite(s.P) 924 addr += int64(len(s.P)) 925 if addr < s.Value+s.Size { 926 strnputPad("", int(s.Value+s.Size-addr), pad) 927 addr = s.Value + s.Size 928 } 929 if addr != s.Value+s.Size { 930 Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) 931 errorexit() 932 } 933 if s.Value+s.Size >= eaddr { 934 break 935 } 936 } 937 938 if addr < eaddr { 939 strnputPad("", int(eaddr-addr), pad) 940 } 941 Cflush() 942 } 943 944 func Datblk(ctxt *Link, addr int64, size int64) { 945 if *flagA { 946 ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 947 } 948 949 blk(ctxt, datap, addr, size, zeros[:]) 950 951 /* again for printing */ 952 if !*flagA { 953 return 954 } 955 956 syms := datap 957 for i, sym := range syms { 958 if sym.Value >= addr { 959 syms = syms[i:] 960 break 961 } 962 } 963 964 eaddr := addr + size 965 for _, sym := range syms { 966 if sym.Value >= eaddr { 967 break 968 } 969 if addr < sym.Value { 970 ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) 971 addr = sym.Value 972 } 973 974 ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) 975 for i, b := range sym.P { 976 if i > 0 && i%16 == 0 { 977 ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) 978 } 979 ctxt.Logf(" %.2x", b) 980 } 981 982 addr += int64(len(sym.P)) 983 for ; addr < sym.Value+sym.Size; addr++ { 984 ctxt.Logf(" %.2x", 0) 985 } 986 ctxt.Logf("\n") 987 988 if Linkmode != LinkExternal { 989 continue 990 } 991 for _, r := range sym.R { 992 rsname := "" 993 if r.Sym != nil { 994 rsname = r.Sym.Name 995 } 996 typ := "?" 997 switch r.Type { 998 case obj.R_ADDR: 999 typ = "addr" 1000 case obj.R_PCREL: 1001 typ = "pcrel" 1002 case obj.R_CALL: 1003 typ = "call" 1004 } 1005 ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) 1006 } 1007 } 1008 1009 if addr < eaddr { 1010 ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) 1011 } 1012 ctxt.Logf("\t%.8x|\n", uint(eaddr)) 1013 } 1014 1015 func Dwarfblk(ctxt *Link, addr int64, size int64) { 1016 if *flagA { 1017 ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 1018 } 1019 1020 blk(ctxt, dwarfp, addr, size, zeros[:]) 1021 } 1022 1023 var zeros [512]byte 1024 1025 // strnput writes the first n bytes of s. 1026 // If n is larger than len(s), 1027 // it is padded with NUL bytes. 1028 func strnput(s string, n int) { 1029 strnputPad(s, n, zeros[:]) 1030 } 1031 1032 // strnput writes the first n bytes of s. 1033 // If n is larger than len(s), 1034 // it is padded with the bytes in pad (repeated as needed). 1035 func strnputPad(s string, n int, pad []byte) { 1036 if len(s) >= n { 1037 Cwritestring(s[:n]) 1038 } else { 1039 Cwritestring(s) 1040 n -= len(s) 1041 for n > len(pad) { 1042 Cwrite(pad) 1043 n -= len(pad) 1044 1045 } 1046 Cwrite(pad[:n]) 1047 } 1048 } 1049 1050 var strdata []*Symbol 1051 1052 func addstrdata1(ctxt *Link, arg string) { 1053 eq := strings.Index(arg, "=") 1054 dot := strings.LastIndex(arg[:eq+1], ".") 1055 if eq < 0 || dot < 0 { 1056 Exitf("-X flag requires argument of the form importpath.name=value") 1057 } 1058 addstrdata(ctxt, pathtoprefix(arg[:dot])+arg[dot:eq], arg[eq+1:]) 1059 } 1060 1061 func addstrdata(ctxt *Link, name string, value string) { 1062 p := fmt.Sprintf("%s.str", name) 1063 sp := ctxt.Syms.Lookup(p, 0) 1064 1065 Addstring(sp, value) 1066 sp.Type = obj.SRODATA 1067 1068 s := ctxt.Syms.Lookup(name, 0) 1069 s.Size = 0 1070 s.Attr |= AttrDuplicateOK 1071 reachable := s.Attr.Reachable() 1072 Addaddr(ctxt, s, sp) 1073 adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) 1074 1075 // addstring, addaddr, etc., mark the symbols as reachable. 1076 // In this case that is not necessarily true, so stick to what 1077 // we know before entering this function. 1078 s.Attr.Set(AttrReachable, reachable) 1079 1080 strdata = append(strdata, s) 1081 1082 sp.Attr.Set(AttrReachable, reachable) 1083 } 1084 1085 func (ctxt *Link) checkstrdata() { 1086 for _, s := range strdata { 1087 if s.Type == obj.STEXT { 1088 Errorf(s, "cannot use -X with text symbol") 1089 } else if s.Gotype != nil && s.Gotype.Name != "type.string" { 1090 Errorf(s, "cannot use -X with non-string symbol") 1091 } 1092 } 1093 } 1094 1095 func Addstring(s *Symbol, str string) int64 { 1096 if s.Type == 0 { 1097 s.Type = obj.SNOPTRDATA 1098 } 1099 s.Attr |= AttrReachable 1100 r := s.Size 1101 if s.Name == ".shstrtab" { 1102 elfsetstring(s, str, int(r)) 1103 } 1104 s.P = append(s.P, str...) 1105 s.P = append(s.P, 0) 1106 s.Size = int64(len(s.P)) 1107 return r 1108 } 1109 1110 // addgostring adds str, as a Go string value, to s. symname is the name of the 1111 // symbol used to define the string data and must be unique per linked object. 1112 func addgostring(ctxt *Link, s *Symbol, symname, str string) { 1113 sym := ctxt.Syms.Lookup(symname, 0) 1114 if sym.Type != obj.Sxxx { 1115 Errorf(s, "duplicate symname in addgostring: %s", symname) 1116 } 1117 sym.Attr |= AttrReachable 1118 sym.Attr |= AttrLocal 1119 sym.Type = obj.SRODATA 1120 sym.Size = int64(len(str)) 1121 sym.P = []byte(str) 1122 Addaddr(ctxt, s, sym) 1123 adduint(ctxt, s, uint64(len(str))) 1124 } 1125 1126 func addinitarrdata(ctxt *Link, s *Symbol) { 1127 p := s.Name + ".ptr" 1128 sp := ctxt.Syms.Lookup(p, 0) 1129 sp.Type = obj.SINITARR 1130 sp.Size = 0 1131 sp.Attr |= AttrDuplicateOK 1132 Addaddr(ctxt, sp, s) 1133 } 1134 1135 func dosymtype(ctxt *Link) { 1136 for _, s := range ctxt.Syms.Allsym { 1137 if len(s.P) > 0 { 1138 if s.Type == obj.SBSS { 1139 s.Type = obj.SDATA 1140 } 1141 if s.Type == obj.SNOPTRBSS { 1142 s.Type = obj.SNOPTRDATA 1143 } 1144 } 1145 // Create a new entry in the .init_array section that points to the 1146 // library initializer function. 1147 switch Buildmode { 1148 case BuildmodeCArchive, BuildmodeCShared: 1149 if s.Name == *flagEntrySymbol { 1150 addinitarrdata(ctxt, s) 1151 } 1152 } 1153 } 1154 } 1155 1156 // symalign returns the required alignment for the given symbol s. 1157 func symalign(s *Symbol) int32 { 1158 min := int32(Thearch.Minalign) 1159 if s.Align >= min { 1160 return s.Align 1161 } else if s.Align != 0 { 1162 return min 1163 } 1164 if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { 1165 // String data is just bytes. 1166 // If we align it, we waste a lot of space to padding. 1167 return min 1168 } 1169 align := int32(Thearch.Maxalign) 1170 for int64(align) > s.Size && align > min { 1171 align >>= 1 1172 } 1173 return align 1174 } 1175 1176 func aligndatsize(datsize int64, s *Symbol) int64 { 1177 return Rnd(datsize, int64(symalign(s))) 1178 } 1179 1180 const debugGCProg = false 1181 1182 type GCProg struct { 1183 ctxt *Link 1184 sym *Symbol 1185 w gcprog.Writer 1186 } 1187 1188 func (p *GCProg) Init(ctxt *Link, name string) { 1189 p.ctxt = ctxt 1190 p.sym = ctxt.Syms.Lookup(name, 0) 1191 p.w.Init(p.writeByte(ctxt)) 1192 if debugGCProg { 1193 fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) 1194 p.w.Debug(os.Stderr) 1195 } 1196 } 1197 1198 func (p *GCProg) writeByte(ctxt *Link) func(x byte) { 1199 return func(x byte) { 1200 Adduint8(ctxt, p.sym, x) 1201 } 1202 } 1203 1204 func (p *GCProg) End(size int64) { 1205 p.w.ZeroUntil(size / int64(SysArch.PtrSize)) 1206 p.w.End() 1207 if debugGCProg { 1208 fmt.Fprintf(os.Stderr, "ld: end GCProg\n") 1209 } 1210 } 1211 1212 func (p *GCProg) AddSym(s *Symbol) { 1213 typ := s.Gotype 1214 // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; 1215 // everything we see should have pointers and should therefore have a type. 1216 if typ == nil { 1217 switch s.Name { 1218 case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": 1219 // Ignore special symbols that are sometimes laid out 1220 // as real symbols. See comment about dyld on darwin in 1221 // the address function. 1222 return 1223 } 1224 Errorf(s, "missing Go type information for global symbol: size %d", s.Size) 1225 return 1226 } 1227 1228 ptrsize := int64(SysArch.PtrSize) 1229 nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize 1230 1231 if debugGCProg { 1232 fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) 1233 } 1234 1235 if decodetypeUsegcprog(typ) == 0 { 1236 // Copy pointers from mask into program. 1237 mask := decodetypeGcmask(p.ctxt, typ) 1238 for i := int64(0); i < nptr; i++ { 1239 if (mask[i/8]>>uint(i%8))&1 != 0 { 1240 p.w.Ptr(s.Value/ptrsize + i) 1241 } 1242 } 1243 return 1244 } 1245 1246 // Copy program. 1247 prog := decodetypeGcprog(p.ctxt, typ) 1248 p.w.ZeroUntil(s.Value / ptrsize) 1249 p.w.Append(prog[4:], nptr) 1250 } 1251 1252 // dataSortKey is used to sort a slice of data symbol *Symbol pointers. 1253 // The sort keys are kept inline to improve cache behavior while sorting. 1254 type dataSortKey struct { 1255 size int64 1256 name string 1257 sym *Symbol 1258 } 1259 1260 type bySizeAndName []dataSortKey 1261 1262 func (d bySizeAndName) Len() int { return len(d) } 1263 func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } 1264 func (d bySizeAndName) Less(i, j int) bool { 1265 s1, s2 := d[i], d[j] 1266 if s1.size != s2.size { 1267 return s1.size < s2.size 1268 } 1269 return s1.name < s2.name 1270 } 1271 1272 const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) 1273 1274 func checkdatsize(ctxt *Link, datsize int64, symn obj.SymKind) { 1275 if datsize > cutoff { 1276 Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff) 1277 } 1278 } 1279 1280 // datap is a collection of reachable data symbols in address order. 1281 // Generated by dodata. 1282 var datap []*Symbol 1283 1284 func (ctxt *Link) dodata() { 1285 if ctxt.Debugvlog != 0 { 1286 ctxt.Logf("%5.2f dodata\n", obj.Cputime()) 1287 } 1288 1289 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 1290 // The values in moduledata are filled out by relocations 1291 // pointing to the addresses of these special symbols. 1292 // Typically these symbols have no size and are not laid 1293 // out with their matching section. 1294 // 1295 // However on darwin, dyld will find the special symbol 1296 // in the first loaded module, even though it is local. 1297 // 1298 // (An hypothesis, formed without looking in the dyld sources: 1299 // these special symbols have no size, so their address 1300 // matches a real symbol. The dynamic linker assumes we 1301 // want the normal symbol with the same address and finds 1302 // it in the other module.) 1303 // 1304 // To work around this we lay out the symbls whose 1305 // addresses are vital for multi-module programs to work 1306 // as normal symbols, and give them a little size. 1307 bss := ctxt.Syms.Lookup("runtime.bss", 0) 1308 bss.Size = 8 1309 bss.Attr.Set(AttrSpecial, false) 1310 1311 ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false) 1312 1313 data := ctxt.Syms.Lookup("runtime.data", 0) 1314 data.Size = 8 1315 data.Attr.Set(AttrSpecial, false) 1316 1317 ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false) 1318 1319 types := ctxt.Syms.Lookup("runtime.types", 0) 1320 types.Type = obj.STYPE 1321 types.Size = 8 1322 types.Attr.Set(AttrSpecial, false) 1323 1324 etypes := ctxt.Syms.Lookup("runtime.etypes", 0) 1325 etypes.Type = obj.SFUNCTAB 1326 etypes.Attr.Set(AttrSpecial, false) 1327 } 1328 1329 // Collect data symbols by type into data. 1330 var data [obj.SXREF][]*Symbol 1331 for _, s := range ctxt.Syms.Allsym { 1332 if !s.Attr.Reachable() || s.Attr.Special() { 1333 continue 1334 } 1335 if s.Type <= obj.STEXT || s.Type >= obj.SXREF { 1336 continue 1337 } 1338 data[s.Type] = append(data[s.Type], s) 1339 } 1340 1341 // Now that we have the data symbols, but before we start 1342 // to assign addresses, record all the necessary 1343 // dynamic relocations. These will grow the relocation 1344 // symbol, which is itself data. 1345 // 1346 // On darwin, we need the symbol table numbers for dynreloc. 1347 if Headtype == obj.Hdarwin { 1348 machosymorder(ctxt) 1349 } 1350 dynreloc(ctxt, &data) 1351 1352 if UseRelro() { 1353 // "read only" data with relocations needs to go in its own section 1354 // when building a shared library. We do this by boosting objects of 1355 // type SXXX with relocations to type SXXXRELRO. 1356 for _, symnro := range obj.ReadOnly { 1357 symnrelro := obj.RelROMap[symnro] 1358 1359 ro := []*Symbol{} 1360 relro := data[symnrelro] 1361 1362 for _, s := range data[symnro] { 1363 isRelro := len(s.R) > 0 1364 switch s.Type { 1365 case obj.STYPE, obj.STYPERELRO, obj.SGOFUNCRELRO: 1366 // Symbols are not sorted yet, so it is possible 1367 // that an Outer symbol has been changed to a 1368 // relro Type before it reaches here. 1369 isRelro = true 1370 } 1371 if isRelro { 1372 s.Type = symnrelro 1373 if s.Outer != nil { 1374 s.Outer.Type = s.Type 1375 } 1376 relro = append(relro, s) 1377 } else { 1378 ro = append(ro, s) 1379 } 1380 } 1381 1382 // Check that we haven't made two symbols with the same .Outer into 1383 // different types (because references two symbols with non-nil Outer 1384 // become references to the outer symbol + offset it's vital that the 1385 // symbol and the outer end up in the same section). 1386 for _, s := range relro { 1387 if s.Outer != nil && s.Outer.Type != s.Type { 1388 Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", 1389 s.Outer.Name, s.Type, s.Outer.Type) 1390 } 1391 } 1392 1393 data[symnro] = ro 1394 data[symnrelro] = relro 1395 } 1396 } 1397 1398 // Sort symbols. 1399 var dataMaxAlign [obj.SXREF]int32 1400 var wg sync.WaitGroup 1401 for symn := range data { 1402 symn := obj.SymKind(symn) 1403 wg.Add(1) 1404 go func() { 1405 data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) 1406 wg.Done() 1407 }() 1408 } 1409 wg.Wait() 1410 1411 // Allocate sections. 1412 // Data is processed before segtext, because we need 1413 // to see all symbols in the .data and .bss sections in order 1414 // to generate garbage collection information. 1415 datsize := int64(0) 1416 1417 // Writable data sections that do not need any specialized handling. 1418 writable := []obj.SymKind{ 1419 obj.SELFSECT, 1420 obj.SMACHO, 1421 obj.SMACHOGOT, 1422 obj.SWINDOWS, 1423 } 1424 for _, symn := range writable { 1425 for _, s := range data[symn] { 1426 sect := addsection(&Segdata, s.Name, 06) 1427 sect.Align = symalign(s) 1428 datsize = Rnd(datsize, int64(sect.Align)) 1429 sect.Vaddr = uint64(datsize) 1430 s.Sect = sect 1431 s.Type = obj.SDATA 1432 s.Value = int64(uint64(datsize) - sect.Vaddr) 1433 datsize += s.Size 1434 sect.Length = uint64(datsize) - sect.Vaddr 1435 } 1436 checkdatsize(ctxt, datsize, symn) 1437 } 1438 1439 // .got (and .toc on ppc64) 1440 if len(data[obj.SELFGOT]) > 0 { 1441 sect := addsection(&Segdata, ".got", 06) 1442 sect.Align = dataMaxAlign[obj.SELFGOT] 1443 datsize = Rnd(datsize, int64(sect.Align)) 1444 sect.Vaddr = uint64(datsize) 1445 var toc *Symbol 1446 for _, s := range data[obj.SELFGOT] { 1447 datsize = aligndatsize(datsize, s) 1448 s.Sect = sect 1449 s.Type = obj.SDATA 1450 s.Value = int64(uint64(datsize) - sect.Vaddr) 1451 1452 // Resolve .TOC. symbol for this object file (ppc64) 1453 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 1454 if toc != nil { 1455 toc.Sect = sect 1456 toc.Outer = s 1457 toc.Sub = s.Sub 1458 s.Sub = toc 1459 1460 toc.Value = 0x8000 1461 } 1462 1463 datsize += s.Size 1464 } 1465 checkdatsize(ctxt, datsize, obj.SELFGOT) 1466 sect.Length = uint64(datsize) - sect.Vaddr 1467 } 1468 1469 /* pointer-free data */ 1470 sect := addsection(&Segdata, ".noptrdata", 06) 1471 sect.Align = dataMaxAlign[obj.SNOPTRDATA] 1472 datsize = Rnd(datsize, int64(sect.Align)) 1473 sect.Vaddr = uint64(datsize) 1474 ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect 1475 ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect 1476 for _, s := range data[obj.SNOPTRDATA] { 1477 datsize = aligndatsize(datsize, s) 1478 s.Sect = sect 1479 s.Type = obj.SDATA 1480 s.Value = int64(uint64(datsize) - sect.Vaddr) 1481 datsize += s.Size 1482 } 1483 checkdatsize(ctxt, datsize, obj.SNOPTRDATA) 1484 sect.Length = uint64(datsize) - sect.Vaddr 1485 1486 hasinitarr := *FlagLinkshared 1487 1488 /* shared library initializer */ 1489 switch Buildmode { 1490 case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin: 1491 hasinitarr = true 1492 } 1493 if hasinitarr { 1494 sect := addsection(&Segdata, ".init_array", 06) 1495 sect.Align = dataMaxAlign[obj.SINITARR] 1496 datsize = Rnd(datsize, int64(sect.Align)) 1497 sect.Vaddr = uint64(datsize) 1498 for _, s := range data[obj.SINITARR] { 1499 datsize = aligndatsize(datsize, s) 1500 s.Sect = sect 1501 s.Value = int64(uint64(datsize) - sect.Vaddr) 1502 datsize += s.Size 1503 } 1504 sect.Length = uint64(datsize) - sect.Vaddr 1505 checkdatsize(ctxt, datsize, obj.SINITARR) 1506 } 1507 1508 /* data */ 1509 sect = addsection(&Segdata, ".data", 06) 1510 sect.Align = dataMaxAlign[obj.SDATA] 1511 datsize = Rnd(datsize, int64(sect.Align)) 1512 sect.Vaddr = uint64(datsize) 1513 ctxt.Syms.Lookup("runtime.data", 0).Sect = sect 1514 ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect 1515 var gc GCProg 1516 gc.Init(ctxt, "runtime.gcdata") 1517 for _, s := range data[obj.SDATA] { 1518 s.Sect = sect 1519 s.Type = obj.SDATA 1520 datsize = aligndatsize(datsize, s) 1521 s.Value = int64(uint64(datsize) - sect.Vaddr) 1522 gc.AddSym(s) 1523 datsize += s.Size 1524 } 1525 checkdatsize(ctxt, datsize, obj.SDATA) 1526 sect.Length = uint64(datsize) - sect.Vaddr 1527 gc.End(int64(sect.Length)) 1528 1529 /* bss */ 1530 sect = addsection(&Segdata, ".bss", 06) 1531 sect.Align = dataMaxAlign[obj.SBSS] 1532 datsize = Rnd(datsize, int64(sect.Align)) 1533 sect.Vaddr = uint64(datsize) 1534 ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect 1535 ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect 1536 gc = GCProg{} 1537 gc.Init(ctxt, "runtime.gcbss") 1538 for _, s := range data[obj.SBSS] { 1539 s.Sect = sect 1540 datsize = aligndatsize(datsize, s) 1541 s.Value = int64(uint64(datsize) - sect.Vaddr) 1542 gc.AddSym(s) 1543 datsize += s.Size 1544 } 1545 checkdatsize(ctxt, datsize, obj.SBSS) 1546 sect.Length = uint64(datsize) - sect.Vaddr 1547 gc.End(int64(sect.Length)) 1548 1549 /* pointer-free bss */ 1550 sect = addsection(&Segdata, ".noptrbss", 06) 1551 sect.Align = dataMaxAlign[obj.SNOPTRBSS] 1552 datsize = Rnd(datsize, int64(sect.Align)) 1553 sect.Vaddr = uint64(datsize) 1554 ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect 1555 ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect 1556 for _, s := range data[obj.SNOPTRBSS] { 1557 datsize = aligndatsize(datsize, s) 1558 s.Sect = sect 1559 s.Value = int64(uint64(datsize) - sect.Vaddr) 1560 datsize += s.Size 1561 } 1562 1563 sect.Length = uint64(datsize) - sect.Vaddr 1564 ctxt.Syms.Lookup("runtime.end", 0).Sect = sect 1565 checkdatsize(ctxt, datsize, obj.SNOPTRBSS) 1566 1567 if len(data[obj.STLSBSS]) > 0 { 1568 var sect *Section 1569 if Iself && (Linkmode == LinkExternal || !*FlagD) && Headtype != obj.Hopenbsd { 1570 sect = addsection(&Segdata, ".tbss", 06) 1571 sect.Align = int32(SysArch.PtrSize) 1572 sect.Vaddr = 0 1573 } 1574 datsize = 0 1575 1576 for _, s := range data[obj.STLSBSS] { 1577 datsize = aligndatsize(datsize, s) 1578 s.Sect = sect 1579 s.Value = datsize 1580 datsize += s.Size 1581 } 1582 checkdatsize(ctxt, datsize, obj.STLSBSS) 1583 1584 if sect != nil { 1585 sect.Length = uint64(datsize) 1586 } 1587 } 1588 1589 /* 1590 * We finished data, begin read-only data. 1591 * Not all systems support a separate read-only non-executable data section. 1592 * ELF systems do. 1593 * OS X and Plan 9 do not. 1594 * Windows PE may, but if so we have not implemented it. 1595 * And if we're using external linking mode, the point is moot, 1596 * since it's not our decision; that code expects the sections in 1597 * segtext. 1598 */ 1599 var segro *Segment 1600 if Iself && Linkmode == LinkInternal { 1601 segro = &Segrodata 1602 } else { 1603 segro = &Segtext 1604 } 1605 1606 datsize = 0 1607 1608 /* read-only executable ELF, Mach-O sections */ 1609 if len(data[obj.STEXT]) != 0 { 1610 Errorf(nil, "dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name) 1611 } 1612 for _, s := range data[obj.SELFRXSECT] { 1613 sect := addsection(&Segtext, s.Name, 04) 1614 sect.Align = symalign(s) 1615 datsize = Rnd(datsize, int64(sect.Align)) 1616 sect.Vaddr = uint64(datsize) 1617 s.Sect = sect 1618 s.Type = obj.SRODATA 1619 s.Value = int64(uint64(datsize) - sect.Vaddr) 1620 datsize += s.Size 1621 sect.Length = uint64(datsize) - sect.Vaddr 1622 checkdatsize(ctxt, datsize, obj.SELFRXSECT) 1623 } 1624 1625 /* read-only data */ 1626 sect = addsection(segro, ".rodata", 04) 1627 1628 sect.Vaddr = 0 1629 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect 1630 ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect 1631 if !UseRelro() { 1632 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1633 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1634 } 1635 for _, symn := range obj.ReadOnly { 1636 align := dataMaxAlign[symn] 1637 if sect.Align < align { 1638 sect.Align = align 1639 } 1640 } 1641 datsize = Rnd(datsize, int64(sect.Align)) 1642 for _, symn := range obj.ReadOnly { 1643 for _, s := range data[symn] { 1644 datsize = aligndatsize(datsize, s) 1645 s.Sect = sect 1646 s.Type = obj.SRODATA 1647 s.Value = int64(uint64(datsize) - sect.Vaddr) 1648 datsize += s.Size 1649 } 1650 checkdatsize(ctxt, datsize, symn) 1651 } 1652 sect.Length = uint64(datsize) - sect.Vaddr 1653 1654 /* read-only ELF, Mach-O sections */ 1655 for _, s := range data[obj.SELFROSECT] { 1656 sect = addsection(segro, s.Name, 04) 1657 sect.Align = symalign(s) 1658 datsize = Rnd(datsize, int64(sect.Align)) 1659 sect.Vaddr = uint64(datsize) 1660 s.Sect = sect 1661 s.Type = obj.SRODATA 1662 s.Value = int64(uint64(datsize) - sect.Vaddr) 1663 datsize += s.Size 1664 sect.Length = uint64(datsize) - sect.Vaddr 1665 } 1666 checkdatsize(ctxt, datsize, obj.SELFROSECT) 1667 1668 for _, s := range data[obj.SMACHOPLT] { 1669 sect = addsection(segro, s.Name, 04) 1670 sect.Align = symalign(s) 1671 datsize = Rnd(datsize, int64(sect.Align)) 1672 sect.Vaddr = uint64(datsize) 1673 s.Sect = sect 1674 s.Type = obj.SRODATA 1675 s.Value = int64(uint64(datsize) - sect.Vaddr) 1676 datsize += s.Size 1677 sect.Length = uint64(datsize) - sect.Vaddr 1678 } 1679 checkdatsize(ctxt, datsize, obj.SMACHOPLT) 1680 1681 // There is some data that are conceptually read-only but are written to by 1682 // relocations. On GNU systems, we can arrange for the dynamic linker to 1683 // mprotect sections after relocations are applied by giving them write 1684 // permissions in the object file and calling them ".data.rel.ro.FOO". We 1685 // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, 1686 // but for the other sections that this applies to, we just write a read-only 1687 // .FOO section or a read-write .data.rel.ro.FOO section depending on the 1688 // situation. 1689 // TODO(mwhudson): It would make sense to do this more widely, but it makes 1690 // the system linker segfault on darwin. 1691 addrelrosection := func(suffix string) *Section { 1692 return addsection(segro, suffix, 04) 1693 } 1694 1695 if UseRelro() { 1696 addrelrosection = func(suffix string) *Section { 1697 seg := &Segrelrodata 1698 if Linkmode == LinkExternal { 1699 // Using a separate segment with an external 1700 // linker results in some programs moving 1701 // their data sections unexpectedly, which 1702 // corrupts the moduledata. So we use the 1703 // rodata segment and let the external linker 1704 // sort out a rel.ro segment. 1705 seg = &Segrodata 1706 } 1707 return addsection(seg, ".data.rel.ro"+suffix, 06) 1708 } 1709 /* data only written by relocations */ 1710 sect = addrelrosection("") 1711 1712 sect.Vaddr = 0 1713 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1714 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1715 for _, symnro := range obj.ReadOnly { 1716 symn := obj.RelROMap[symnro] 1717 align := dataMaxAlign[symn] 1718 if sect.Align < align { 1719 sect.Align = align 1720 } 1721 } 1722 datsize = Rnd(datsize, int64(sect.Align)) 1723 for _, symnro := range obj.ReadOnly { 1724 symn := obj.RelROMap[symnro] 1725 for _, s := range data[symn] { 1726 datsize = aligndatsize(datsize, s) 1727 if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { 1728 Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) 1729 } 1730 s.Sect = sect 1731 s.Type = obj.SRODATA 1732 s.Value = int64(uint64(datsize) - sect.Vaddr) 1733 datsize += s.Size 1734 } 1735 checkdatsize(ctxt, datsize, symn) 1736 } 1737 1738 sect.Length = uint64(datsize) - sect.Vaddr 1739 } 1740 1741 /* typelink */ 1742 sect = addrelrosection(".typelink") 1743 sect.Align = dataMaxAlign[obj.STYPELINK] 1744 datsize = Rnd(datsize, int64(sect.Align)) 1745 sect.Vaddr = uint64(datsize) 1746 typelink := ctxt.Syms.Lookup("runtime.typelink", 0) 1747 typelink.Sect = sect 1748 typelink.Type = obj.RODATA 1749 datsize += typelink.Size 1750 checkdatsize(ctxt, datsize, obj.STYPELINK) 1751 sect.Length = uint64(datsize) - sect.Vaddr 1752 1753 /* itablink */ 1754 sect = addrelrosection(".itablink") 1755 sect.Align = dataMaxAlign[obj.SITABLINK] 1756 datsize = Rnd(datsize, int64(sect.Align)) 1757 sect.Vaddr = uint64(datsize) 1758 ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect 1759 ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect 1760 for _, s := range data[obj.SITABLINK] { 1761 datsize = aligndatsize(datsize, s) 1762 s.Sect = sect 1763 s.Type = obj.SRODATA 1764 s.Value = int64(uint64(datsize) - sect.Vaddr) 1765 datsize += s.Size 1766 } 1767 checkdatsize(ctxt, datsize, obj.SITABLINK) 1768 sect.Length = uint64(datsize) - sect.Vaddr 1769 1770 /* gosymtab */ 1771 sect = addrelrosection(".gosymtab") 1772 sect.Align = dataMaxAlign[obj.SSYMTAB] 1773 datsize = Rnd(datsize, int64(sect.Align)) 1774 sect.Vaddr = uint64(datsize) 1775 ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect 1776 ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect 1777 for _, s := range data[obj.SSYMTAB] { 1778 datsize = aligndatsize(datsize, s) 1779 s.Sect = sect 1780 s.Type = obj.SRODATA 1781 s.Value = int64(uint64(datsize) - sect.Vaddr) 1782 datsize += s.Size 1783 } 1784 checkdatsize(ctxt, datsize, obj.SSYMTAB) 1785 sect.Length = uint64(datsize) - sect.Vaddr 1786 1787 /* gopclntab */ 1788 sect = addrelrosection(".gopclntab") 1789 sect.Align = dataMaxAlign[obj.SPCLNTAB] 1790 datsize = Rnd(datsize, int64(sect.Align)) 1791 sect.Vaddr = uint64(datsize) 1792 ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect 1793 ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect 1794 for _, s := range data[obj.SPCLNTAB] { 1795 datsize = aligndatsize(datsize, s) 1796 s.Sect = sect 1797 s.Type = obj.SRODATA 1798 s.Value = int64(uint64(datsize) - sect.Vaddr) 1799 datsize += s.Size 1800 } 1801 checkdatsize(ctxt, datsize, obj.SRODATA) 1802 sect.Length = uint64(datsize) - sect.Vaddr 1803 1804 // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. 1805 if datsize != int64(uint32(datsize)) { 1806 Errorf(nil, "read-only data segment too large: %d", datsize) 1807 } 1808 1809 for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ { 1810 datap = append(datap, data[symn]...) 1811 } 1812 1813 dwarfgeneratedebugsyms(ctxt) 1814 1815 var s *Symbol 1816 var i int 1817 for i, s = range dwarfp { 1818 if s.Type != obj.SDWARFSECT { 1819 break 1820 } 1821 sect = addsection(&Segdwarf, s.Name, 04) 1822 sect.Align = 1 1823 datsize = Rnd(datsize, int64(sect.Align)) 1824 sect.Vaddr = uint64(datsize) 1825 s.Sect = sect 1826 s.Type = obj.SRODATA 1827 s.Value = int64(uint64(datsize) - sect.Vaddr) 1828 datsize += s.Size 1829 sect.Length = uint64(datsize) - sect.Vaddr 1830 } 1831 checkdatsize(ctxt, datsize, obj.SDWARFSECT) 1832 1833 if i < len(dwarfp) { 1834 sect = addsection(&Segdwarf, ".debug_info", 04) 1835 sect.Align = 1 1836 datsize = Rnd(datsize, int64(sect.Align)) 1837 sect.Vaddr = uint64(datsize) 1838 for _, s := range dwarfp[i:] { 1839 if s.Type != obj.SDWARFINFO { 1840 break 1841 } 1842 s.Sect = sect 1843 s.Type = obj.SRODATA 1844 s.Value = int64(uint64(datsize) - sect.Vaddr) 1845 s.Attr |= AttrLocal 1846 datsize += s.Size 1847 } 1848 sect.Length = uint64(datsize) - sect.Vaddr 1849 checkdatsize(ctxt, datsize, obj.SDWARFINFO) 1850 } 1851 1852 /* number the sections */ 1853 n := int32(1) 1854 1855 for sect := Segtext.Sect; sect != nil; sect = sect.Next { 1856 sect.Extnum = int16(n) 1857 n++ 1858 } 1859 for sect := Segrodata.Sect; sect != nil; sect = sect.Next { 1860 sect.Extnum = int16(n) 1861 n++ 1862 } 1863 for sect := Segrelrodata.Sect; sect != nil; sect = sect.Next { 1864 sect.Extnum = int16(n) 1865 n++ 1866 } 1867 for sect := Segdata.Sect; sect != nil; sect = sect.Next { 1868 sect.Extnum = int16(n) 1869 n++ 1870 } 1871 for sect := Segdwarf.Sect; sect != nil; sect = sect.Next { 1872 sect.Extnum = int16(n) 1873 n++ 1874 } 1875 } 1876 1877 func dodataSect(ctxt *Link, symn obj.SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) { 1878 if Headtype == obj.Hdarwin { 1879 // Some symbols may no longer belong in syms 1880 // due to movement in machosymorder. 1881 newSyms := make([]*Symbol, 0, len(syms)) 1882 for _, s := range syms { 1883 if s.Type == symn { 1884 newSyms = append(newSyms, s) 1885 } 1886 } 1887 syms = newSyms 1888 } 1889 1890 var head, tail *Symbol 1891 symsSort := make([]dataSortKey, 0, len(syms)) 1892 for _, s := range syms { 1893 if s.Attr.OnList() { 1894 log.Fatalf("symbol %s listed multiple times", s.Name) 1895 } 1896 s.Attr |= AttrOnList 1897 switch { 1898 case s.Size < int64(len(s.P)): 1899 Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) 1900 case s.Size < 0: 1901 Errorf(s, "negative size (%d bytes)", s.Size) 1902 case s.Size > cutoff: 1903 Errorf(s, "symbol too large (%d bytes)", s.Size) 1904 } 1905 1906 // If the usually-special section-marker symbols are being laid 1907 // out as regular symbols, put them either at the beginning or 1908 // end of their section. 1909 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 1910 switch s.Name { 1911 case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": 1912 head = s 1913 continue 1914 case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": 1915 tail = s 1916 continue 1917 } 1918 } 1919 1920 key := dataSortKey{ 1921 size: s.Size, 1922 name: s.Name, 1923 sym: s, 1924 } 1925 1926 switch s.Type { 1927 case obj.SELFGOT: 1928 // For ppc64, we want to interleave the .got and .toc sections 1929 // from input files. Both are type SELFGOT, so in that case 1930 // we skip size comparison and fall through to the name 1931 // comparison (conveniently, .got sorts before .toc). 1932 key.size = 0 1933 } 1934 1935 symsSort = append(symsSort, key) 1936 } 1937 1938 sort.Sort(bySizeAndName(symsSort)) 1939 1940 off := 0 1941 if head != nil { 1942 syms[0] = head 1943 off++ 1944 } 1945 for i, symSort := range symsSort { 1946 syms[i+off] = symSort.sym 1947 align := symalign(symSort.sym) 1948 if maxAlign < align { 1949 maxAlign = align 1950 } 1951 } 1952 if tail != nil { 1953 syms[len(syms)-1] = tail 1954 } 1955 1956 if Iself && symn == obj.SELFROSECT { 1957 // Make .rela and .rela.plt contiguous, the ELF ABI requires this 1958 // and Solaris actually cares. 1959 reli, plti := -1, -1 1960 for i, s := range syms { 1961 switch s.Name { 1962 case ".rel.plt", ".rela.plt": 1963 plti = i 1964 case ".rel", ".rela": 1965 reli = i 1966 } 1967 } 1968 if reli >= 0 && plti >= 0 && plti != reli+1 { 1969 var first, second int 1970 if plti > reli { 1971 first, second = reli, plti 1972 } else { 1973 first, second = plti, reli 1974 } 1975 rel, plt := syms[reli], syms[plti] 1976 copy(syms[first+2:], syms[first+1:second]) 1977 syms[first+0] = rel 1978 syms[first+1] = plt 1979 1980 // Make sure alignment doesn't introduce a gap. 1981 // Setting the alignment explicitly prevents 1982 // symalign from basing it on the size and 1983 // getting it wrong. 1984 rel.Align = int32(SysArch.RegSize) 1985 plt.Align = int32(SysArch.RegSize) 1986 } 1987 } 1988 1989 return syms, maxAlign 1990 } 1991 1992 // Add buildid to beginning of text segment, on non-ELF systems. 1993 // Non-ELF binary formats are not always flexible enough to 1994 // give us a place to put the Go build ID. On those systems, we put it 1995 // at the very beginning of the text segment. 1996 // This ``header'' is read by cmd/go. 1997 func (ctxt *Link) textbuildid() { 1998 if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" { 1999 return 2000 } 2001 2002 sym := ctxt.Syms.Lookup("go.buildid", 0) 2003 sym.Attr |= AttrReachable 2004 // The \xff is invalid UTF-8, meant to make it less likely 2005 // to find one of these accidentally. 2006 data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" 2007 sym.Type = obj.STEXT 2008 sym.P = []byte(data) 2009 sym.Size = int64(len(sym.P)) 2010 2011 ctxt.Textp = append(ctxt.Textp, nil) 2012 copy(ctxt.Textp[1:], ctxt.Textp) 2013 ctxt.Textp[0] = sym 2014 } 2015 2016 // assign addresses to text 2017 func (ctxt *Link) textaddress() { 2018 addsection(&Segtext, ".text", 05) 2019 2020 // Assign PCs in text segment. 2021 // Could parallelize, by assigning to text 2022 // and then letting threads copy down, but probably not worth it. 2023 sect := Segtext.Sect 2024 2025 sect.Align = int32(Funcalign) 2026 2027 text := ctxt.Syms.Lookup("runtime.text", 0) 2028 text.Sect = sect 2029 2030 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 2031 etext := ctxt.Syms.Lookup("runtime.etext", 0) 2032 etext.Sect = sect 2033 2034 ctxt.Textp = append(ctxt.Textp, etext, nil) 2035 copy(ctxt.Textp[1:], ctxt.Textp) 2036 ctxt.Textp[0] = text 2037 } 2038 2039 if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 2040 ctxt.Syms.Lookup(".text", 0).Sect = sect 2041 } 2042 va := uint64(*FlagTextAddr) 2043 n := 1 2044 sect.Vaddr = va 2045 ntramps := 0 2046 for _, sym := range ctxt.Textp { 2047 sect, n, va = assignAddress(ctxt, sect, n, sym, va) 2048 2049 trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far 2050 2051 // lay down trampolines after each function 2052 for ; ntramps < len(ctxt.tramps); ntramps++ { 2053 tramp := ctxt.tramps[ntramps] 2054 sect, n, va = assignAddress(ctxt, sect, n, tramp, va) 2055 } 2056 } 2057 2058 sect.Length = va - sect.Vaddr 2059 ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect 2060 2061 // merge tramps into Textp, keeping Textp in address order 2062 if ntramps != 0 { 2063 newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps) 2064 i := 0 2065 for _, sym := range ctxt.Textp { 2066 for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ { 2067 newtextp = append(newtextp, ctxt.tramps[i]) 2068 } 2069 newtextp = append(newtextp, sym) 2070 } 2071 newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) 2072 2073 ctxt.Textp = newtextp 2074 } 2075 } 2076 2077 // assigns address for a text symbol, returns (possibly new) section, its number, and the address 2078 // Note: once we have trampoline insertion support for external linking, this function 2079 // will not need to create new text sections, and so no need to return sect and n. 2080 func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64) (*Section, int, uint64) { 2081 sym.Sect = sect 2082 if sym.Type&obj.SSUB != 0 { 2083 return sect, n, va 2084 } 2085 if sym.Align != 0 { 2086 va = uint64(Rnd(int64(va), int64(sym.Align))) 2087 } else { 2088 va = uint64(Rnd(int64(va), int64(Funcalign))) 2089 } 2090 sym.Value = 0 2091 for sub := sym; sub != nil; sub = sub.Sub { 2092 sub.Value += int64(va) 2093 } 2094 2095 funcsize := uint64(MINFUNC) // spacing required for findfunctab 2096 if sym.Size > MINFUNC { 2097 funcsize = uint64(sym.Size) 2098 } 2099 2100 // On ppc64x a text section should not be larger than 2^26 bytes due to the size of 2101 // call target offset field in the bl instruction. Splitting into smaller text 2102 // sections smaller than this limit allows the GNU linker to modify the long calls 2103 // appropriately. The limit allows for the space needed for tables inserted by the linker. 2104 2105 // If this function doesn't fit in the current text section, then create a new one. 2106 2107 // Only break at outermost syms. 2108 2109 if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize > 0x1c00000 { 2110 2111 // Set the length for the previous text section 2112 sect.Length = va - sect.Vaddr 2113 2114 // Create new section, set the starting Vaddr 2115 sect = addsection(&Segtext, ".text", 05) 2116 sect.Vaddr = va 2117 sym.Sect = sect 2118 2119 // Create a symbol for the start of the secondary text sections 2120 ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect 2121 n++ 2122 } 2123 va += funcsize 2124 2125 return sect, n, va 2126 } 2127 2128 // assign addresses 2129 func (ctxt *Link) address() { 2130 va := uint64(*FlagTextAddr) 2131 Segtext.Rwx = 05 2132 Segtext.Vaddr = va 2133 Segtext.Fileoff = uint64(HEADR) 2134 for s := Segtext.Sect; s != nil; s = s.Next { 2135 va = uint64(Rnd(int64(va), int64(s.Align))) 2136 s.Vaddr = va 2137 va += s.Length 2138 } 2139 2140 Segtext.Length = va - uint64(*FlagTextAddr) 2141 Segtext.Filelen = Segtext.Length 2142 if Headtype == obj.Hnacl { 2143 va += 32 // room for the "halt sled" 2144 } 2145 2146 if Segrodata.Sect != nil { 2147 // align to page boundary so as not to mix 2148 // rodata and executable text. 2149 // 2150 // Note: gold or GNU ld will reduce the size of the executable 2151 // file by arranging for the relro segment to end at a page 2152 // boundary, and overlap the end of the text segment with the 2153 // start of the relro segment in the file. The PT_LOAD segments 2154 // will be such that the last page of the text segment will be 2155 // mapped twice, once r-x and once starting out rw- and, after 2156 // relocation processing, changed to r--. 2157 // 2158 // Ideally the last page of the text segment would not be 2159 // writable even for this short period. 2160 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2161 2162 Segrodata.Rwx = 04 2163 Segrodata.Vaddr = va 2164 Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2165 Segrodata.Filelen = 0 2166 for s := Segrodata.Sect; s != nil; s = s.Next { 2167 va = uint64(Rnd(int64(va), int64(s.Align))) 2168 s.Vaddr = va 2169 va += s.Length 2170 } 2171 2172 Segrodata.Length = va - Segrodata.Vaddr 2173 Segrodata.Filelen = Segrodata.Length 2174 } 2175 if Segrelrodata.Sect != nil { 2176 // align to page boundary so as not to mix 2177 // rodata, rel-ro data, and executable text. 2178 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2179 2180 Segrelrodata.Rwx = 06 2181 Segrelrodata.Vaddr = va 2182 Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff 2183 Segrelrodata.Filelen = 0 2184 for s := Segrelrodata.Sect; s != nil; s = s.Next { 2185 va = uint64(Rnd(int64(va), int64(s.Align))) 2186 s.Vaddr = va 2187 va += s.Length 2188 } 2189 2190 Segrelrodata.Length = va - Segrelrodata.Vaddr 2191 Segrelrodata.Filelen = Segrelrodata.Length 2192 } 2193 2194 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2195 Segdata.Rwx = 06 2196 Segdata.Vaddr = va 2197 Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2198 Segdata.Filelen = 0 2199 if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 2200 Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) 2201 } 2202 if Headtype == obj.Hplan9 { 2203 Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen 2204 } 2205 var data *Section 2206 var noptr *Section 2207 var bss *Section 2208 var noptrbss *Section 2209 var vlen int64 2210 for s := Segdata.Sect; s != nil; s = s.Next { 2211 if Iself && s.Name == ".tbss" { 2212 continue 2213 } 2214 vlen = int64(s.Length) 2215 if s.Next != nil && !(Iself && s.Next.Name == ".tbss") { 2216 vlen = int64(s.Next.Vaddr - s.Vaddr) 2217 } 2218 s.Vaddr = va 2219 va += uint64(vlen) 2220 Segdata.Length = va - Segdata.Vaddr 2221 if s.Name == ".data" { 2222 data = s 2223 } 2224 if s.Name == ".noptrdata" { 2225 noptr = s 2226 } 2227 if s.Name == ".bss" { 2228 bss = s 2229 } 2230 if s.Name == ".noptrbss" { 2231 noptrbss = s 2232 } 2233 } 2234 2235 Segdata.Filelen = bss.Vaddr - Segdata.Vaddr 2236 2237 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2238 Segdwarf.Rwx = 06 2239 Segdwarf.Vaddr = va 2240 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) 2241 Segdwarf.Filelen = 0 2242 if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 2243 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) 2244 } 2245 for s := Segdwarf.Sect; s != nil; s = s.Next { 2246 vlen = int64(s.Length) 2247 if s.Next != nil { 2248 vlen = int64(s.Next.Vaddr - s.Vaddr) 2249 } 2250 s.Vaddr = va 2251 va += uint64(vlen) 2252 if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 2253 va = uint64(Rnd(int64(va), PEFILEALIGN)) 2254 } 2255 Segdwarf.Length = va - Segdwarf.Vaddr 2256 } 2257 2258 Segdwarf.Filelen = va - Segdwarf.Vaddr 2259 2260 var ( 2261 text = Segtext.Sect 2262 rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect 2263 itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect 2264 symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect 2265 pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect 2266 types = ctxt.Syms.Lookup("runtime.types", 0).Sect 2267 ) 2268 lasttext := text 2269 // Could be multiple .text sections 2270 for sect := text.Next; sect != nil && sect.Name == ".text"; sect = sect.Next { 2271 lasttext = sect 2272 } 2273 2274 for _, s := range datap { 2275 if s.Sect != nil { 2276 s.Value += int64(s.Sect.Vaddr) 2277 } 2278 for sub := s.Sub; sub != nil; sub = sub.Sub { 2279 sub.Value += s.Value 2280 } 2281 } 2282 2283 for _, sym := range dwarfp { 2284 if sym.Sect != nil { 2285 sym.Value += int64(sym.Sect.Vaddr) 2286 } 2287 for sub := sym.Sub; sub != nil; sub = sub.Sub { 2288 sub.Value += sym.Value 2289 } 2290 } 2291 2292 if Buildmode == BuildmodeShared { 2293 s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) 2294 sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) 2295 s.Sect = sectSym.Sect 2296 s.Value = int64(sectSym.Sect.Vaddr + 16) 2297 } 2298 2299 ctxt.xdefine("runtime.text", obj.STEXT, int64(text.Vaddr)) 2300 ctxt.xdefine("runtime.etext", obj.STEXT, int64(lasttext.Vaddr+lasttext.Length)) 2301 if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui { 2302 ctxt.xdefine(".text", obj.STEXT, int64(text.Vaddr)) 2303 } 2304 2305 // If there are multiple text sections, create runtime.text.n for 2306 // their section Vaddr, using n for index 2307 n := 1 2308 for sect := Segtext.Sect.Next; sect != nil && sect.Name == ".text"; sect = sect.Next { 2309 symname := fmt.Sprintf("runtime.text.%d", n) 2310 ctxt.xdefine(symname, obj.STEXT, int64(sect.Vaddr)) 2311 n++ 2312 } 2313 2314 ctxt.xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr)) 2315 ctxt.xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length)) 2316 ctxt.xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr)) 2317 ctxt.xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length)) 2318 ctxt.xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr)) 2319 ctxt.xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length)) 2320 2321 sym := ctxt.Syms.Lookup("runtime.gcdata", 0) 2322 sym.Attr |= AttrLocal 2323 ctxt.xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size) 2324 ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect 2325 2326 sym = ctxt.Syms.Lookup("runtime.gcbss", 0) 2327 sym.Attr |= AttrLocal 2328 ctxt.xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size) 2329 ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect 2330 2331 ctxt.xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr)) 2332 ctxt.xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length)) 2333 ctxt.xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr)) 2334 ctxt.xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) 2335 ctxt.xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr)) 2336 ctxt.xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) 2337 ctxt.xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr)) 2338 ctxt.xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length)) 2339 ctxt.xdefine("runtime.data", obj.SDATA, int64(data.Vaddr)) 2340 ctxt.xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length)) 2341 ctxt.xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr)) 2342 ctxt.xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) 2343 ctxt.xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length)) 2344 } 2345 2346 // add a trampoline with symbol s (to be laid down after the current function) 2347 func (ctxt *Link) AddTramp(s *Symbol) { 2348 s.Type = obj.STEXT 2349 s.Attr |= AttrReachable 2350 s.Attr |= AttrOnList 2351 ctxt.tramps = append(ctxt.tramps, s) 2352 if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { 2353 ctxt.Logf("trampoline %s inserted\n", s) 2354 } 2355 }