github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/cmd/link/internal/ppc64/asm.go (about)

     1  // Inferno utils/5l/asm.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package ppc64
    32  
    33  import (
    34  	"cmd/internal/obj"
    35  	"cmd/link/internal/ld"
    36  	"encoding/binary"
    37  	"fmt"
    38  	"log"
    39  )
    40  
    41  func genplt(ctxt *ld.Link) {
    42  	// The ppc64 ABI PLT has similar concepts to other
    43  	// architectures, but is laid out quite differently. When we
    44  	// see an R_PPC64_REL24 relocation to a dynamic symbol
    45  	// (indicating that the call needs to go through the PLT), we
    46  	// generate up to three stubs and reserve a PLT slot.
    47  	//
    48  	// 1) The call site will be bl x; nop (where the relocation
    49  	//    applies to the bl).  We rewrite this to bl x_stub; ld
    50  	//    r2,24(r1).  The ld is necessary because x_stub will save
    51  	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
    52  	//
    53  	// 2) We reserve space for a pointer in the .plt section (once
    54  	//    per referenced dynamic function).  .plt is a data
    55  	//    section filled solely by the dynamic linker (more like
    56  	//    .plt.got on other architectures).  Initially, the
    57  	//    dynamic linker will fill each slot with a pointer to the
    58  	//    corresponding x@plt entry point.
    59  	//
    60  	// 3) We generate the "call stub" x_stub (once per dynamic
    61  	//    function/object file pair).  This saves the TOC in the
    62  	//    TOC save slot, reads the function pointer from x's .plt
    63  	//    slot and calls it like any other global entry point
    64  	//    (including setting r12 to the function address).
    65  	//
    66  	// 4) We generate the "symbol resolver stub" x@plt (once per
    67  	//    dynamic function).  This is solely a branch to the glink
    68  	//    resolver stub.
    69  	//
    70  	// 5) We generate the glink resolver stub (only once).  This
    71  	//    computes which symbol resolver stub we came through and
    72  	//    invokes the dynamic resolver via a pointer provided by
    73  	//    the dynamic linker. This will patch up the .plt slot to
    74  	//    point directly at the function so future calls go
    75  	//    straight from the call stub to the real function, and
    76  	//    then call the function.
    77  
    78  	// NOTE: It's possible we could make ppc64 closer to other
    79  	// architectures: ppc64's .plt is like .plt.got on other
    80  	// platforms and ppc64's .glink is like .plt on other
    81  	// platforms.
    82  
    83  	// Find all R_PPC64_REL24 relocations that reference dynamic
    84  	// imports. Reserve PLT entries for these symbols and
    85  	// generate call stubs. The call stubs need to live in .text,
    86  	// which is why we need to do this pass this early.
    87  	//
    88  	// This assumes "case 1" from the ABI, where the caller needs
    89  	// us to save and restore the TOC pointer.
    90  	for _, s := range ctxt.Textp {
    91  		for i := range s.R {
    92  			r := &s.R[i]
    93  			if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != obj.SDYNIMPORT {
    94  				continue
    95  			}
    96  
    97  			// Reserve PLT entry and generate symbol
    98  			// resolver
    99  			addpltsym(ctxt, r.Sym)
   100  
   101  			// Generate call stub
   102  			n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
   103  
   104  			stub := ctxt.Syms.Lookup(n, 0)
   105  			if s.Attr.Reachable() {
   106  				stub.Attr |= ld.AttrReachable
   107  			}
   108  			if stub.Size == 0 {
   109  				// Need outer to resolve .TOC.
   110  				stub.Outer = s
   111  				ctxt.Textp = append(ctxt.Textp, stub)
   112  				gencallstub(ctxt, 1, stub, r.Sym)
   113  			}
   114  
   115  			// Update the relocation to use the call stub
   116  			r.Sym = stub
   117  
   118  			// Restore TOC after bl. The compiler put a
   119  			// nop here for us to overwrite.
   120  			const o1 = 0xe8410018 // ld r2,24(r1)
   121  			ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
   122  		}
   123  	}
   124  }
   125  
   126  func genaddmoduledata(ctxt *ld.Link) {
   127  	addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0)
   128  	if addmoduledata.Type == obj.STEXT {
   129  		return
   130  	}
   131  	addmoduledata.Attr |= ld.AttrReachable
   132  	initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0)
   133  	initfunc.Type = obj.STEXT
   134  	initfunc.Attr |= ld.AttrLocal
   135  	initfunc.Attr |= ld.AttrReachable
   136  	o := func(op uint32) {
   137  		ld.Adduint32(ctxt, initfunc, op)
   138  	}
   139  	// addis r2, r12, .TOC.-func@ha
   140  	rel := ld.Addrel(initfunc)
   141  	rel.Off = int32(initfunc.Size)
   142  	rel.Siz = 8
   143  	rel.Sym = ctxt.Syms.Lookup(".TOC.", 0)
   144  	rel.Type = obj.R_ADDRPOWER_PCREL
   145  	o(0x3c4c0000)
   146  	// addi r2, r2, .TOC.-func@l
   147  	o(0x38420000)
   148  	// mflr r31
   149  	o(0x7c0802a6)
   150  	// stdu r31, -32(r1)
   151  	o(0xf801ffe1)
   152  	// addis r3, r2, local.moduledata@got@ha
   153  	rel = ld.Addrel(initfunc)
   154  	rel.Off = int32(initfunc.Size)
   155  	rel.Siz = 8
   156  	rel.Sym = ctxt.Syms.Lookup("local.moduledata", 0)
   157  	rel.Type = obj.R_ADDRPOWER_GOT
   158  	o(0x3c620000)
   159  	// ld r3, local.moduledata@got@l(r3)
   160  	o(0xe8630000)
   161  	// bl runtime.addmoduledata
   162  	rel = ld.Addrel(initfunc)
   163  	rel.Off = int32(initfunc.Size)
   164  	rel.Siz = 4
   165  	rel.Sym = addmoduledata
   166  	rel.Type = obj.R_CALLPOWER
   167  	o(0x48000001)
   168  	// nop
   169  	o(0x60000000)
   170  	// ld r31, 0(r1)
   171  	o(0xe8010000)
   172  	// mtlr r31
   173  	o(0x7c0803a6)
   174  	// addi r1,r1,32
   175  	o(0x38210020)
   176  	// blr
   177  	o(0x4e800020)
   178  
   179  	initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0)
   180  	ctxt.Textp = append(ctxt.Textp, initfunc)
   181  	initarray_entry.Attr |= ld.AttrReachable
   182  	initarray_entry.Attr |= ld.AttrLocal
   183  	initarray_entry.Type = obj.SINITARR
   184  	ld.Addaddr(ctxt, initarray_entry, initfunc)
   185  }
   186  
   187  func gentext(ctxt *ld.Link) {
   188  	if ctxt.DynlinkingGo() {
   189  		genaddmoduledata(ctxt)
   190  	}
   191  
   192  	if ld.Linkmode == ld.LinkInternal {
   193  		genplt(ctxt)
   194  	}
   195  }
   196  
   197  // Construct a call stub in stub that calls symbol targ via its PLT
   198  // entry.
   199  func gencallstub(ctxt *ld.Link, abicase int, stub *ld.Symbol, targ *ld.Symbol) {
   200  	if abicase != 1 {
   201  		// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
   202  		// relocations, we'll need to implement cases 2 and 3.
   203  		log.Fatalf("gencallstub only implements case 1 calls")
   204  	}
   205  
   206  	plt := ctxt.Syms.Lookup(".plt", 0)
   207  
   208  	stub.Type = obj.STEXT
   209  
   210  	// Save TOC pointer in TOC save slot
   211  	ld.Adduint32(ctxt, stub, 0xf8410018) // std r2,24(r1)
   212  
   213  	// Load the function pointer from the PLT.
   214  	r := ld.Addrel(stub)
   215  
   216  	r.Off = int32(stub.Size)
   217  	r.Sym = plt
   218  	r.Add = int64(targ.Plt)
   219  	r.Siz = 2
   220  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   221  		r.Off += int32(r.Siz)
   222  	}
   223  	r.Type = obj.R_POWER_TOC
   224  	r.Variant = ld.RV_POWER_HA
   225  	ld.Adduint32(ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
   226  	r = ld.Addrel(stub)
   227  	r.Off = int32(stub.Size)
   228  	r.Sym = plt
   229  	r.Add = int64(targ.Plt)
   230  	r.Siz = 2
   231  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   232  		r.Off += int32(r.Siz)
   233  	}
   234  	r.Type = obj.R_POWER_TOC
   235  	r.Variant = ld.RV_POWER_LO
   236  	ld.Adduint32(ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
   237  
   238  	// Jump to the loaded pointer
   239  	ld.Adduint32(ctxt, stub, 0x7d8903a6) // mtctr r12
   240  	ld.Adduint32(ctxt, stub, 0x4e800420) // bctr
   241  }
   242  
   243  func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool {
   244  	targ := r.Sym
   245  
   246  	switch r.Type {
   247  	default:
   248  		if r.Type >= 256 {
   249  			ld.Errorf(s, "unexpected relocation type %d", r.Type)
   250  			return false
   251  		}
   252  
   253  		// Handle relocations found in ELF object files.
   254  	case 256 + ld.R_PPC64_REL24:
   255  		r.Type = obj.R_CALLPOWER
   256  
   257  		// This is a local call, so the caller isn't setting
   258  		// up r12 and r2 is the same for the caller and
   259  		// callee. Hence, we need to go to the local entry
   260  		// point.  (If we don't do this, the callee will try
   261  		// to use r12 to compute r2.)
   262  		r.Add += int64(r.Sym.Localentry) * 4
   263  
   264  		if targ.Type == obj.SDYNIMPORT {
   265  			// Should have been handled in elfsetupplt
   266  			ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
   267  		}
   268  
   269  		return true
   270  
   271  	case 256 + ld.R_PPC_REL32:
   272  		r.Type = obj.R_PCREL
   273  		r.Add += 4
   274  
   275  		if targ.Type == obj.SDYNIMPORT {
   276  			ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
   277  		}
   278  
   279  		return true
   280  
   281  	case 256 + ld.R_PPC64_ADDR64:
   282  		r.Type = obj.R_ADDR
   283  		if targ.Type == obj.SDYNIMPORT {
   284  			// These happen in .toc sections
   285  			ld.Adddynsym(ctxt, targ)
   286  
   287  			rela := ctxt.Syms.Lookup(".rela", 0)
   288  			ld.Addaddrplus(ctxt, rela, s, int64(r.Off))
   289  			ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64))
   290  			ld.Adduint64(ctxt, rela, uint64(r.Add))
   291  			r.Type = 256 // ignore during relocsym
   292  		}
   293  
   294  		return true
   295  
   296  	case 256 + ld.R_PPC64_TOC16:
   297  		r.Type = obj.R_POWER_TOC
   298  		r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW
   299  		return true
   300  
   301  	case 256 + ld.R_PPC64_TOC16_LO:
   302  		r.Type = obj.R_POWER_TOC
   303  		r.Variant = ld.RV_POWER_LO
   304  		return true
   305  
   306  	case 256 + ld.R_PPC64_TOC16_HA:
   307  		r.Type = obj.R_POWER_TOC
   308  		r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
   309  		return true
   310  
   311  	case 256 + ld.R_PPC64_TOC16_HI:
   312  		r.Type = obj.R_POWER_TOC
   313  		r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
   314  		return true
   315  
   316  	case 256 + ld.R_PPC64_TOC16_DS:
   317  		r.Type = obj.R_POWER_TOC
   318  		r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW
   319  		return true
   320  
   321  	case 256 + ld.R_PPC64_TOC16_LO_DS:
   322  		r.Type = obj.R_POWER_TOC
   323  		r.Variant = ld.RV_POWER_DS
   324  		return true
   325  
   326  	case 256 + ld.R_PPC64_REL16_LO:
   327  		r.Type = obj.R_PCREL
   328  		r.Variant = ld.RV_POWER_LO
   329  		r.Add += 2 // Compensate for relocation size of 2
   330  		return true
   331  
   332  	case 256 + ld.R_PPC64_REL16_HI:
   333  		r.Type = obj.R_PCREL
   334  		r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
   335  		r.Add += 2
   336  		return true
   337  
   338  	case 256 + ld.R_PPC64_REL16_HA:
   339  		r.Type = obj.R_PCREL
   340  		r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
   341  		r.Add += 2
   342  		return true
   343  	}
   344  
   345  	// Handle references to ELF symbols from our own object files.
   346  	if targ.Type != obj.SDYNIMPORT {
   347  		return true
   348  	}
   349  
   350  	// TODO(austin): Translate our relocations to ELF
   351  
   352  	return false
   353  }
   354  
   355  func elfreloc1(ctxt *ld.Link, r *ld.Reloc, sectoff int64) int {
   356  	ld.Thearch.Vput(uint64(sectoff))
   357  
   358  	elfsym := r.Xsym.ElfsymForReloc()
   359  	switch r.Type {
   360  	default:
   361  		return -1
   362  
   363  	case obj.R_ADDR:
   364  		switch r.Siz {
   365  		case 4:
   366  			ld.Thearch.Vput(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32)
   367  		case 8:
   368  			ld.Thearch.Vput(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32)
   369  		default:
   370  			return -1
   371  		}
   372  
   373  	case obj.R_POWER_TLS:
   374  		ld.Thearch.Vput(ld.R_PPC64_TLS | uint64(elfsym)<<32)
   375  
   376  	case obj.R_POWER_TLS_LE:
   377  		ld.Thearch.Vput(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32)
   378  
   379  	case obj.R_POWER_TLS_IE:
   380  		ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32)
   381  		ld.Thearch.Vput(uint64(r.Xadd))
   382  		ld.Thearch.Vput(uint64(sectoff + 4))
   383  		ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32)
   384  
   385  	case obj.R_ADDRPOWER:
   386  		ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
   387  		ld.Thearch.Vput(uint64(r.Xadd))
   388  		ld.Thearch.Vput(uint64(sectoff + 4))
   389  		ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32)
   390  
   391  	case obj.R_ADDRPOWER_DS:
   392  		ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
   393  		ld.Thearch.Vput(uint64(r.Xadd))
   394  		ld.Thearch.Vput(uint64(sectoff + 4))
   395  		ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32)
   396  
   397  	case obj.R_ADDRPOWER_GOT:
   398  		ld.Thearch.Vput(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32)
   399  		ld.Thearch.Vput(uint64(r.Xadd))
   400  		ld.Thearch.Vput(uint64(sectoff + 4))
   401  		ld.Thearch.Vput(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32)
   402  
   403  	case obj.R_ADDRPOWER_PCREL:
   404  		ld.Thearch.Vput(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32)
   405  		ld.Thearch.Vput(uint64(r.Xadd))
   406  		ld.Thearch.Vput(uint64(sectoff + 4))
   407  		ld.Thearch.Vput(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32)
   408  		r.Xadd += 4
   409  
   410  	case obj.R_ADDRPOWER_TOCREL:
   411  		ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
   412  		ld.Thearch.Vput(uint64(r.Xadd))
   413  		ld.Thearch.Vput(uint64(sectoff + 4))
   414  		ld.Thearch.Vput(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32)
   415  
   416  	case obj.R_ADDRPOWER_TOCREL_DS:
   417  		ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
   418  		ld.Thearch.Vput(uint64(r.Xadd))
   419  		ld.Thearch.Vput(uint64(sectoff + 4))
   420  		ld.Thearch.Vput(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32)
   421  
   422  	case obj.R_CALLPOWER:
   423  		if r.Siz != 4 {
   424  			return -1
   425  		}
   426  		ld.Thearch.Vput(ld.R_PPC64_REL24 | uint64(elfsym)<<32)
   427  
   428  	}
   429  	ld.Thearch.Vput(uint64(r.Xadd))
   430  
   431  	return 0
   432  }
   433  
   434  func elfsetupplt(ctxt *ld.Link) {
   435  	plt := ctxt.Syms.Lookup(".plt", 0)
   436  	if plt.Size == 0 {
   437  		// The dynamic linker stores the address of the
   438  		// dynamic resolver and the DSO identifier in the two
   439  		// doublewords at the beginning of the .plt section
   440  		// before the PLT array. Reserve space for these.
   441  		plt.Size = 16
   442  	}
   443  }
   444  
   445  func machoreloc1(s *ld.Symbol, r *ld.Reloc, sectoff int64) int {
   446  	return -1
   447  }
   448  
   449  // Return the value of .TOC. for symbol s
   450  func symtoc(ctxt *ld.Link, s *ld.Symbol) int64 {
   451  	var toc *ld.Symbol
   452  
   453  	if s.Outer != nil {
   454  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version))
   455  	} else {
   456  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
   457  	}
   458  
   459  	if toc == nil {
   460  		ld.Errorf(s, "TOC-relative relocation in object without .TOC.")
   461  		return 0
   462  	}
   463  
   464  	return toc.Value
   465  }
   466  
   467  func archrelocaddr(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int {
   468  	var o1, o2 uint32
   469  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   470  		o1 = uint32(*val >> 32)
   471  		o2 = uint32(*val)
   472  	} else {
   473  		o1 = uint32(*val)
   474  		o2 = uint32(*val >> 32)
   475  	}
   476  
   477  	// We are spreading a 31-bit address across two instructions, putting the
   478  	// high (adjusted) part in the low 16 bits of the first instruction and the
   479  	// low part in the low 16 bits of the second instruction, or, in the DS case,
   480  	// bits 15-2 (inclusive) of the address into bits 15-2 of the second
   481  	// instruction (it is an error in this case if the low 2 bits of the address
   482  	// are non-zero).
   483  
   484  	t := ld.Symaddr(r.Sym) + r.Add
   485  	if t < 0 || t >= 1<<31 {
   486  		ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym))
   487  	}
   488  	if t&0x8000 != 0 {
   489  		t += 0x10000
   490  	}
   491  
   492  	switch r.Type {
   493  	case obj.R_ADDRPOWER:
   494  		o1 |= (uint32(t) >> 16) & 0xffff
   495  		o2 |= uint32(t) & 0xffff
   496  
   497  	case obj.R_ADDRPOWER_DS:
   498  		o1 |= (uint32(t) >> 16) & 0xffff
   499  		if t&3 != 0 {
   500  			ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
   501  		}
   502  		o2 |= uint32(t) & 0xfffc
   503  
   504  	default:
   505  		return -1
   506  	}
   507  
   508  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   509  		*val = int64(o1)<<32 | int64(o2)
   510  	} else {
   511  		*val = int64(o2)<<32 | int64(o1)
   512  	}
   513  	return 0
   514  }
   515  
   516  // resolve direct jump relocation r in s, and add trampoline if necessary
   517  func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) {
   518  
   519  	t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   520  	switch r.Type {
   521  	case obj.R_CALLPOWER:
   522  
   523  		// If branch offset is too far then create a trampoline.
   524  
   525  		if int64(int32(t<<6)>>6) != t || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) {
   526  			var tramp *ld.Symbol
   527  			for i := 0; ; i++ {
   528  
   529  				// Using r.Add as part of the name is significant in functions like duffzero where the call
   530  				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
   531  				// distinct trampolines.
   532  
   533  				name := r.Sym.Name
   534  				if r.Add == 0 {
   535  					name = name + fmt.Sprintf("-tramp%d", i)
   536  				} else {
   537  					name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i)
   538  				}
   539  
   540  				// Look up the trampoline in case it already exists
   541  
   542  				tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version))
   543  				if tramp.Value == 0 {
   544  					break
   545  				}
   546  
   547  				t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off))
   548  
   549  				// If the offset of the trampoline that has been found is within range, use it.
   550  				if int64(int32(t<<6)>>6) == t {
   551  					break
   552  				}
   553  			}
   554  			if tramp.Type == 0 {
   555  				ctxt.AddTramp(tramp)
   556  				tramp.Size = 16 // 4 instructions
   557  				tramp.P = make([]byte, tramp.Size)
   558  				t = ld.Symaddr(r.Sym) + r.Add
   559  				f := t & 0xffff0000
   560  				o1 := uint32(0x3fe00000 | (f >> 16)) // lis r31,trampaddr hi (r31 is temp reg)
   561  				f = t & 0xffff
   562  				o2 := uint32(0x63ff0000 | f) // ori r31,trampaddr lo
   563  				o3 := uint32(0x7fe903a6)     // mtctr
   564  				o4 := uint32(0x4e800420)     // bctr
   565  				ld.SysArch.ByteOrder.PutUint32(tramp.P, o1)
   566  				ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2)
   567  				ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3)
   568  				ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4)
   569  			}
   570  			r.Sym = tramp
   571  			r.Add = 0 // This was folded into the trampoline target address
   572  			r.Done = 0
   573  		}
   574  	default:
   575  		ld.Errorf(s, "trampoline called with non-jump reloc: %v", r.Type)
   576  	}
   577  }
   578  
   579  func archreloc(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int {
   580  	if ld.Linkmode == ld.LinkExternal {
   581  		switch r.Type {
   582  		default:
   583  			return -1
   584  
   585  		case obj.R_POWER_TLS, obj.R_POWER_TLS_LE, obj.R_POWER_TLS_IE:
   586  			r.Done = 0
   587  			// check Outer is nil, Type is TLSBSS?
   588  			r.Xadd = r.Add
   589  			r.Xsym = r.Sym
   590  			return 0
   591  
   592  		case obj.R_ADDRPOWER,
   593  			obj.R_ADDRPOWER_DS,
   594  			obj.R_ADDRPOWER_TOCREL,
   595  			obj.R_ADDRPOWER_TOCREL_DS,
   596  			obj.R_ADDRPOWER_GOT,
   597  			obj.R_ADDRPOWER_PCREL:
   598  			r.Done = 0
   599  
   600  			// set up addend for eventual relocation via outer symbol.
   601  			rs := r.Sym
   602  			r.Xadd = r.Add
   603  			for rs.Outer != nil {
   604  				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
   605  				rs = rs.Outer
   606  			}
   607  
   608  			if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
   609  				ld.Errorf(s, "missing section for %s", rs.Name)
   610  			}
   611  			r.Xsym = rs
   612  
   613  			return 0
   614  
   615  		case obj.R_CALLPOWER:
   616  			r.Done = 0
   617  			r.Xsym = r.Sym
   618  			r.Xadd = r.Add
   619  			return 0
   620  		}
   621  	}
   622  
   623  	switch r.Type {
   624  	case obj.R_CONST:
   625  		*val = r.Add
   626  		return 0
   627  
   628  	case obj.R_GOTOFF:
   629  		*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0))
   630  		return 0
   631  
   632  	case obj.R_ADDRPOWER, obj.R_ADDRPOWER_DS:
   633  		return archrelocaddr(ctxt, r, s, val)
   634  
   635  	case obj.R_CALLPOWER:
   636  		// Bits 6 through 29 = (S + A - P) >> 2
   637  
   638  		t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   639  
   640  		if t&3 != 0 {
   641  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   642  		}
   643  		// If branch offset is too far then create a trampoline.
   644  
   645  		if int64(int32(t<<6)>>6) != t {
   646  			ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t)
   647  		}
   648  		*val |= int64(uint32(t) &^ 0xfc000003)
   649  		return 0
   650  
   651  	case obj.R_POWER_TOC: // S + A - .TOC.
   652  		*val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s)
   653  
   654  		return 0
   655  
   656  	case obj.R_POWER_TLS_LE:
   657  		// The thread pointer points 0x7000 bytes after the start of the the
   658  		// thread local storage area as documented in section "3.7.2 TLS
   659  		// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
   660  		// Specification".
   661  		v := r.Sym.Value - 0x7000
   662  		if int64(int16(v)) != v {
   663  			ld.Errorf(s, "TLS offset out of range %d", v)
   664  		}
   665  		*val = (*val &^ 0xffff) | (v & 0xffff)
   666  		return 0
   667  	}
   668  
   669  	return -1
   670  }
   671  
   672  func archrelocvariant(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, t int64) int64 {
   673  	switch r.Variant & ld.RV_TYPE_MASK {
   674  	default:
   675  		ld.Errorf(s, "unexpected relocation variant %d", r.Variant)
   676  		fallthrough
   677  
   678  	case ld.RV_NONE:
   679  		return t
   680  
   681  	case ld.RV_POWER_LO:
   682  		if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
   683  			// Whether to check for signed or unsigned
   684  			// overflow depends on the instruction
   685  			var o1 uint32
   686  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   687  				o1 = ld.Be32(s.P[r.Off-2:])
   688  			} else {
   689  				o1 = ld.Le32(s.P[r.Off:])
   690  			}
   691  			switch o1 >> 26 {
   692  			case 24, // ori
   693  				26, // xori
   694  				28: // andi
   695  				if t>>16 != 0 {
   696  					goto overflow
   697  				}
   698  
   699  			default:
   700  				if int64(int16(t)) != t {
   701  					goto overflow
   702  				}
   703  			}
   704  		}
   705  
   706  		return int64(int16(t))
   707  
   708  	case ld.RV_POWER_HA:
   709  		t += 0x8000
   710  		fallthrough
   711  
   712  		// Fallthrough
   713  	case ld.RV_POWER_HI:
   714  		t >>= 16
   715  
   716  		if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
   717  			// Whether to check for signed or unsigned
   718  			// overflow depends on the instruction
   719  			var o1 uint32
   720  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   721  				o1 = ld.Be32(s.P[r.Off-2:])
   722  			} else {
   723  				o1 = ld.Le32(s.P[r.Off:])
   724  			}
   725  			switch o1 >> 26 {
   726  			case 25, // oris
   727  				27, // xoris
   728  				29: // andis
   729  				if t>>16 != 0 {
   730  					goto overflow
   731  				}
   732  
   733  			default:
   734  				if int64(int16(t)) != t {
   735  					goto overflow
   736  				}
   737  			}
   738  		}
   739  
   740  		return int64(int16(t))
   741  
   742  	case ld.RV_POWER_DS:
   743  		var o1 uint32
   744  		if ctxt.Arch.ByteOrder == binary.BigEndian {
   745  			o1 = uint32(ld.Be16(s.P[r.Off:]))
   746  		} else {
   747  			o1 = uint32(ld.Le16(s.P[r.Off:]))
   748  		}
   749  		if t&3 != 0 {
   750  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   751  		}
   752  		if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
   753  			goto overflow
   754  		}
   755  		return int64(o1)&0x3 | int64(int16(t))
   756  	}
   757  
   758  overflow:
   759  	ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
   760  	return t
   761  }
   762  
   763  func addpltsym(ctxt *ld.Link, s *ld.Symbol) {
   764  	if s.Plt >= 0 {
   765  		return
   766  	}
   767  
   768  	ld.Adddynsym(ctxt, s)
   769  
   770  	if ld.Iself {
   771  		plt := ctxt.Syms.Lookup(".plt", 0)
   772  		rela := ctxt.Syms.Lookup(".rela.plt", 0)
   773  		if plt.Size == 0 {
   774  			elfsetupplt(ctxt)
   775  		}
   776  
   777  		// Create the glink resolver if necessary
   778  		glink := ensureglinkresolver(ctxt)
   779  
   780  		// Write symbol resolver stub (just a branch to the
   781  		// glink resolver stub)
   782  		r := ld.Addrel(glink)
   783  
   784  		r.Sym = glink
   785  		r.Off = int32(glink.Size)
   786  		r.Siz = 4
   787  		r.Type = obj.R_CALLPOWER
   788  		ld.Adduint32(ctxt, glink, 0x48000000) // b .glink
   789  
   790  		// In the ppc64 ABI, the dynamic linker is responsible
   791  		// for writing the entire PLT.  We just need to
   792  		// reserve 8 bytes for each PLT entry and generate a
   793  		// JMP_SLOT dynamic relocation for it.
   794  		//
   795  		// TODO(austin): ABI v1 is different
   796  		s.Plt = int32(plt.Size)
   797  
   798  		plt.Size += 8
   799  
   800  		ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt))
   801  		ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
   802  		ld.Adduint64(ctxt, rela, 0)
   803  	} else {
   804  		ld.Errorf(s, "addpltsym: unsupported binary format")
   805  	}
   806  }
   807  
   808  // Generate the glink resolver stub if necessary and return the .glink section
   809  func ensureglinkresolver(ctxt *ld.Link) *ld.Symbol {
   810  	glink := ctxt.Syms.Lookup(".glink", 0)
   811  	if glink.Size != 0 {
   812  		return glink
   813  	}
   814  
   815  	// This is essentially the resolver from the ppc64 ELF ABI.
   816  	// At entry, r12 holds the address of the symbol resolver stub
   817  	// for the target routine and the argument registers hold the
   818  	// arguments for the target routine.
   819  	//
   820  	// This stub is PIC, so first get the PC of label 1 into r11.
   821  	// Other things will be relative to this.
   822  	ld.Adduint32(ctxt, glink, 0x7c0802a6) // mflr r0
   823  	ld.Adduint32(ctxt, glink, 0x429f0005) // bcl 20,31,1f
   824  	ld.Adduint32(ctxt, glink, 0x7d6802a6) // 1: mflr r11
   825  	ld.Adduint32(ctxt, glink, 0x7c0803a6) // mtlf r0
   826  
   827  	// Compute the .plt array index from the entry point address.
   828  	// Because this is PIC, everything is relative to label 1b (in
   829  	// r11):
   830  	//   r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
   831  	ld.Adduint32(ctxt, glink, 0x3800ffd0) // li r0,-(res_0-1b)=-48
   832  	ld.Adduint32(ctxt, glink, 0x7c006214) // add r0,r0,r12
   833  	ld.Adduint32(ctxt, glink, 0x7c0b0050) // sub r0,r0,r11
   834  	ld.Adduint32(ctxt, glink, 0x7800f082) // srdi r0,r0,2
   835  
   836  	// r11 = address of the first byte of the PLT
   837  	r := ld.Addrel(glink)
   838  
   839  	r.Off = int32(glink.Size)
   840  	r.Sym = ctxt.Syms.Lookup(".plt", 0)
   841  	r.Siz = 8
   842  	r.Type = obj.R_ADDRPOWER
   843  
   844  	ld.Adduint32(ctxt, glink, 0x3d600000) // addis r11,0,.plt@ha
   845  	ld.Adduint32(ctxt, glink, 0x396b0000) // addi r11,r11,.plt@l
   846  
   847  	// Load r12 = dynamic resolver address and r11 = DSO
   848  	// identifier from the first two doublewords of the PLT.
   849  	ld.Adduint32(ctxt, glink, 0xe98b0000) // ld r12,0(r11)
   850  	ld.Adduint32(ctxt, glink, 0xe96b0008) // ld r11,8(r11)
   851  
   852  	// Jump to the dynamic resolver
   853  	ld.Adduint32(ctxt, glink, 0x7d8903a6) // mtctr r12
   854  	ld.Adduint32(ctxt, glink, 0x4e800420) // bctr
   855  
   856  	// The symbol resolvers must immediately follow.
   857  	//   res_0:
   858  
   859  	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
   860  	// before the first symbol resolver stub.
   861  	s := ctxt.Syms.Lookup(".dynamic", 0)
   862  
   863  	ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32)
   864  
   865  	return glink
   866  }
   867  
   868  func asmb(ctxt *ld.Link) {
   869  	if ctxt.Debugvlog != 0 {
   870  		ctxt.Logf("%5.2f asmb\n", obj.Cputime())
   871  	}
   872  
   873  	if ld.Iself {
   874  		ld.Asmbelfsetup()
   875  	}
   876  
   877  	for sect := ld.Segtext.Sect; sect != nil; sect = sect.Next {
   878  		ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
   879  		// Handle additional text sections with Codeblk
   880  		if sect.Name == ".text" {
   881  			ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
   882  		} else {
   883  			ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
   884  		}
   885  	}
   886  
   887  	if ld.Segrodata.Filelen > 0 {
   888  		if ctxt.Debugvlog != 0 {
   889  			ctxt.Logf("%5.2f rodatblk\n", obj.Cputime())
   890  		}
   891  		ld.Cseek(int64(ld.Segrodata.Fileoff))
   892  		ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen))
   893  	}
   894  	if ld.Segrelrodata.Filelen > 0 {
   895  		if ctxt.Debugvlog != 0 {
   896  			ctxt.Logf("%5.2f relrodatblk\n", obj.Cputime())
   897  		}
   898  		ld.Cseek(int64(ld.Segrelrodata.Fileoff))
   899  		ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen))
   900  	}
   901  
   902  	if ctxt.Debugvlog != 0 {
   903  		ctxt.Logf("%5.2f datblk\n", obj.Cputime())
   904  	}
   905  
   906  	ld.Cseek(int64(ld.Segdata.Fileoff))
   907  	ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen))
   908  
   909  	ld.Cseek(int64(ld.Segdwarf.Fileoff))
   910  	ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen))
   911  
   912  	/* output symbol table */
   913  	ld.Symsize = 0
   914  
   915  	ld.Lcsize = 0
   916  	symo := uint32(0)
   917  	if !*ld.FlagS {
   918  		// TODO: rationalize
   919  		if ctxt.Debugvlog != 0 {
   920  			ctxt.Logf("%5.2f sym\n", obj.Cputime())
   921  		}
   922  		switch ld.Headtype {
   923  		default:
   924  			if ld.Iself {
   925  				symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
   926  				symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound)))
   927  			}
   928  
   929  		case obj.Hplan9:
   930  			symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
   931  		}
   932  
   933  		ld.Cseek(int64(symo))
   934  		switch ld.Headtype {
   935  		default:
   936  			if ld.Iself {
   937  				if ctxt.Debugvlog != 0 {
   938  					ctxt.Logf("%5.2f elfsym\n", obj.Cputime())
   939  				}
   940  				ld.Asmelfsym(ctxt)
   941  				ld.Cflush()
   942  				ld.Cwrite(ld.Elfstrdat)
   943  
   944  				if ld.Linkmode == ld.LinkExternal {
   945  					ld.Elfemitreloc(ctxt)
   946  				}
   947  			}
   948  
   949  		case obj.Hplan9:
   950  			ld.Asmplan9sym(ctxt)
   951  			ld.Cflush()
   952  
   953  			sym := ctxt.Syms.Lookup("pclntab", 0)
   954  			if sym != nil {
   955  				ld.Lcsize = int32(len(sym.P))
   956  				for i := 0; int32(i) < ld.Lcsize; i++ {
   957  					ld.Cput(sym.P[i])
   958  				}
   959  
   960  				ld.Cflush()
   961  			}
   962  		}
   963  	}
   964  
   965  	if ctxt.Debugvlog != 0 {
   966  		ctxt.Logf("%5.2f header\n", obj.Cputime())
   967  	}
   968  	ld.Cseek(0)
   969  	switch ld.Headtype {
   970  	default:
   971  	case obj.Hplan9: /* plan 9 */
   972  		ld.Thearch.Lput(0x647)                      /* magic */
   973  		ld.Thearch.Lput(uint32(ld.Segtext.Filelen)) /* sizes */
   974  		ld.Thearch.Lput(uint32(ld.Segdata.Filelen))
   975  		ld.Thearch.Lput(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
   976  		ld.Thearch.Lput(uint32(ld.Symsize))          /* nsyms */
   977  		ld.Thearch.Lput(uint32(ld.Entryvalue(ctxt))) /* va of entry */
   978  		ld.Thearch.Lput(0)
   979  		ld.Thearch.Lput(uint32(ld.Lcsize))
   980  
   981  	case obj.Hlinux,
   982  		obj.Hfreebsd,
   983  		obj.Hnetbsd,
   984  		obj.Hopenbsd,
   985  		obj.Hnacl:
   986  		ld.Asmbelf(ctxt, int64(symo))
   987  	}
   988  
   989  	ld.Cflush()
   990  	if *ld.FlagC {
   991  		fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
   992  		fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
   993  		fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
   994  		fmt.Printf("symsize=%d\n", ld.Symsize)
   995  		fmt.Printf("lcsize=%d\n", ld.Lcsize)
   996  		fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
   997  	}
   998  }