github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/reflect/value.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflect
     6  
     7  import (
     8  	"math"
     9  	"runtime"
    10  	"unsafe"
    11  )
    12  
    13  const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
    14  
    15  // Value is the reflection interface to a Go value.
    16  //
    17  // Not all methods apply to all kinds of values. Restrictions,
    18  // if any, are noted in the documentation for each method.
    19  // Use the Kind method to find out the kind of value before
    20  // calling kind-specific methods. Calling a method
    21  // inappropriate to the kind of type causes a run time panic.
    22  //
    23  // The zero Value represents no value.
    24  // Its IsValid method returns false, its Kind method returns Invalid,
    25  // its String method returns "<invalid Value>", and all other methods panic.
    26  // Most functions and methods never return an invalid value.
    27  // If one does, its documentation states the conditions explicitly.
    28  //
    29  // A Value can be used concurrently by multiple goroutines provided that
    30  // the underlying Go value can be used concurrently for the equivalent
    31  // direct operations.
    32  //
    33  // Using == on two Values does not compare the underlying values
    34  // they represent, but rather the contents of the Value structs.
    35  // To compare two Values, compare the results of the Interface method.
    36  type Value struct {
    37  	// typ holds the type of the value represented by a Value.
    38  	typ *rtype
    39  
    40  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    41  	// Valid when either flagIndir is set or typ.pointers() is true.
    42  	ptr unsafe.Pointer
    43  
    44  	// flag holds metadata about the value.
    45  	// The lowest bits are flag bits:
    46  	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    47  	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    48  	//	- flagIndir: val holds a pointer to the data
    49  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    50  	//	- flagMethod: v is a method value.
    51  	// The next five bits give the Kind of the value.
    52  	// This repeats typ.Kind() except for method values.
    53  	// The remaining 23+ bits give a method number for method values.
    54  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    55  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    56  	flag
    57  
    58  	// A method value represents a curried method invocation
    59  	// like r.Read for some receiver r. The typ+val+flag bits describe
    60  	// the receiver r, but the flag's Kind bits say Func (methods are
    61  	// functions), and the top bits of the flag give the method number
    62  	// in r's type's method table.
    63  }
    64  
    65  type flag uintptr
    66  
    67  const (
    68  	flagKindWidth        = 5 // there are 27 kinds
    69  	flagKindMask    flag = 1<<flagKindWidth - 1
    70  	flagStickyRO    flag = 1 << 5
    71  	flagEmbedRO     flag = 1 << 6
    72  	flagIndir       flag = 1 << 7
    73  	flagAddr        flag = 1 << 8
    74  	flagMethod      flag = 1 << 9
    75  	flagMethodShift      = 10
    76  	flagRO          flag = flagStickyRO | flagEmbedRO
    77  )
    78  
    79  func (f flag) kind() Kind {
    80  	return Kind(f & flagKindMask)
    81  }
    82  
    83  // pointer returns the underlying pointer represented by v.
    84  // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    85  func (v Value) pointer() unsafe.Pointer {
    86  	if v.typ.size != ptrSize || !v.typ.pointers() {
    87  		panic("can't call pointer on a non-pointer Value")
    88  	}
    89  	if v.flag&flagIndir != 0 {
    90  		return *(*unsafe.Pointer)(v.ptr)
    91  	}
    92  	return v.ptr
    93  }
    94  
    95  // packEface converts v to the empty interface.
    96  func packEface(v Value) interface{} {
    97  	t := v.typ
    98  	var i interface{}
    99  	e := (*emptyInterface)(unsafe.Pointer(&i))
   100  	// First, fill in the data portion of the interface.
   101  	switch {
   102  	case ifaceIndir(t):
   103  		if v.flag&flagIndir == 0 {
   104  			panic("bad indir")
   105  		}
   106  		// Value is indirect, and so is the interface we're making.
   107  		ptr := v.ptr
   108  		if v.flag&flagAddr != 0 {
   109  			// TODO: pass safe boolean from valueInterface so
   110  			// we don't need to copy if safe==true?
   111  			c := unsafe_New(t)
   112  			typedmemmove(t, c, ptr)
   113  			ptr = c
   114  		}
   115  		e.word = ptr
   116  	case v.flag&flagIndir != 0:
   117  		// Value is indirect, but interface is direct. We need
   118  		// to load the data at v.ptr into the interface data word.
   119  		e.word = *(*unsafe.Pointer)(v.ptr)
   120  	default:
   121  		// Value is direct, and so is the interface.
   122  		e.word = v.ptr
   123  	}
   124  	// Now, fill in the type portion. We're very careful here not
   125  	// to have any operation between the e.word and e.typ assignments
   126  	// that would let the garbage collector observe the partially-built
   127  	// interface value.
   128  	e.typ = t
   129  	return i
   130  }
   131  
   132  // unpackEface converts the empty interface i to a Value.
   133  func unpackEface(i interface{}) Value {
   134  	e := (*emptyInterface)(unsafe.Pointer(&i))
   135  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   136  	t := e.typ
   137  	if t == nil {
   138  		return Value{}
   139  	}
   140  	f := flag(t.Kind())
   141  	if ifaceIndir(t) {
   142  		f |= flagIndir
   143  	}
   144  	return Value{t, e.word, f}
   145  }
   146  
   147  // A ValueError occurs when a Value method is invoked on
   148  // a Value that does not support it. Such cases are documented
   149  // in the description of each method.
   150  type ValueError struct {
   151  	Method string
   152  	Kind   Kind
   153  }
   154  
   155  func (e *ValueError) Error() string {
   156  	if e.Kind == 0 {
   157  		return "reflect: call of " + e.Method + " on zero Value"
   158  	}
   159  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   160  }
   161  
   162  // methodName returns the name of the calling method,
   163  // assumed to be two stack frames above.
   164  func methodName() string {
   165  	pc, _, _, _ := runtime.Caller(2)
   166  	f := runtime.FuncForPC(pc)
   167  	if f == nil {
   168  		return "unknown method"
   169  	}
   170  	return f.Name()
   171  }
   172  
   173  // emptyInterface is the header for an interface{} value.
   174  type emptyInterface struct {
   175  	typ  *rtype
   176  	word unsafe.Pointer
   177  }
   178  
   179  // nonEmptyInterface is the header for a interface value with methods.
   180  type nonEmptyInterface struct {
   181  	// see ../runtime/iface.go:/Itab
   182  	itab *struct {
   183  		ityp   *rtype // static interface type
   184  		typ    *rtype // dynamic concrete type
   185  		link   unsafe.Pointer
   186  		bad    int32
   187  		unused int32
   188  		fun    [100000]unsafe.Pointer // method table
   189  	}
   190  	word unsafe.Pointer
   191  }
   192  
   193  // mustBe panics if f's kind is not expected.
   194  // Making this a method on flag instead of on Value
   195  // (and embedding flag in Value) means that we can write
   196  // the very clear v.mustBe(Bool) and have it compile into
   197  // v.flag.mustBe(Bool), which will only bother to copy the
   198  // single important word for the receiver.
   199  func (f flag) mustBe(expected Kind) {
   200  	if f.kind() != expected {
   201  		panic(&ValueError{methodName(), f.kind()})
   202  	}
   203  }
   204  
   205  // mustBeExported panics if f records that the value was obtained using
   206  // an unexported field.
   207  func (f flag) mustBeExported() {
   208  	if f == 0 {
   209  		panic(&ValueError{methodName(), 0})
   210  	}
   211  	if f&flagRO != 0 {
   212  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   213  	}
   214  }
   215  
   216  // mustBeAssignable panics if f records that the value is not assignable,
   217  // which is to say that either it was obtained using an unexported field
   218  // or it is not addressable.
   219  func (f flag) mustBeAssignable() {
   220  	if f == 0 {
   221  		panic(&ValueError{methodName(), Invalid})
   222  	}
   223  	// Assignable if addressable and not read-only.
   224  	if f&flagRO != 0 {
   225  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   226  	}
   227  	if f&flagAddr == 0 {
   228  		panic("reflect: " + methodName() + " using unaddressable value")
   229  	}
   230  }
   231  
   232  // Addr returns a pointer value representing the address of v.
   233  // It panics if CanAddr() returns false.
   234  // Addr is typically used to obtain a pointer to a struct field
   235  // or slice element in order to call a method that requires a
   236  // pointer receiver.
   237  func (v Value) Addr() Value {
   238  	if v.flag&flagAddr == 0 {
   239  		panic("reflect.Value.Addr of unaddressable value")
   240  	}
   241  	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
   242  }
   243  
   244  // Bool returns v's underlying value.
   245  // It panics if v's kind is not Bool.
   246  func (v Value) Bool() bool {
   247  	v.mustBe(Bool)
   248  	return *(*bool)(v.ptr)
   249  }
   250  
   251  // Bytes returns v's underlying value.
   252  // It panics if v's underlying value is not a slice of bytes.
   253  func (v Value) Bytes() []byte {
   254  	v.mustBe(Slice)
   255  	if v.typ.Elem().Kind() != Uint8 {
   256  		panic("reflect.Value.Bytes of non-byte slice")
   257  	}
   258  	// Slice is always bigger than a word; assume flagIndir.
   259  	return *(*[]byte)(v.ptr)
   260  }
   261  
   262  // runes returns v's underlying value.
   263  // It panics if v's underlying value is not a slice of runes (int32s).
   264  func (v Value) runes() []rune {
   265  	v.mustBe(Slice)
   266  	if v.typ.Elem().Kind() != Int32 {
   267  		panic("reflect.Value.Bytes of non-rune slice")
   268  	}
   269  	// Slice is always bigger than a word; assume flagIndir.
   270  	return *(*[]rune)(v.ptr)
   271  }
   272  
   273  // CanAddr reports whether the value's address can be obtained with Addr.
   274  // Such values are called addressable. A value is addressable if it is
   275  // an element of a slice, an element of an addressable array,
   276  // a field of an addressable struct, or the result of dereferencing a pointer.
   277  // If CanAddr returns false, calling Addr will panic.
   278  func (v Value) CanAddr() bool {
   279  	return v.flag&flagAddr != 0
   280  }
   281  
   282  // CanSet reports whether the value of v can be changed.
   283  // A Value can be changed only if it is addressable and was not
   284  // obtained by the use of unexported struct fields.
   285  // If CanSet returns false, calling Set or any type-specific
   286  // setter (e.g., SetBool, SetInt) will panic.
   287  func (v Value) CanSet() bool {
   288  	return v.flag&(flagAddr|flagRO) == flagAddr
   289  }
   290  
   291  // Call calls the function v with the input arguments in.
   292  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   293  // Call panics if v's Kind is not Func.
   294  // It returns the output results as Values.
   295  // As in Go, each input argument must be assignable to the
   296  // type of the function's corresponding input parameter.
   297  // If v is a variadic function, Call creates the variadic slice parameter
   298  // itself, copying in the corresponding values.
   299  func (v Value) Call(in []Value) []Value {
   300  	v.mustBe(Func)
   301  	v.mustBeExported()
   302  	return v.call("Call", in)
   303  }
   304  
   305  // CallSlice calls the variadic function v with the input arguments in,
   306  // assigning the slice in[len(in)-1] to v's final variadic argument.
   307  // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
   308  // CallSlice panics if v's Kind is not Func or if v is not variadic.
   309  // It returns the output results as Values.
   310  // As in Go, each input argument must be assignable to the
   311  // type of the function's corresponding input parameter.
   312  func (v Value) CallSlice(in []Value) []Value {
   313  	v.mustBe(Func)
   314  	v.mustBeExported()
   315  	return v.call("CallSlice", in)
   316  }
   317  
   318  var callGC bool // for testing; see TestCallMethodJump
   319  
   320  func (v Value) call(op string, in []Value) []Value {
   321  	// Get function pointer, type.
   322  	t := v.typ
   323  	var (
   324  		fn       unsafe.Pointer
   325  		rcvr     Value
   326  		rcvrtype *rtype
   327  	)
   328  	if v.flag&flagMethod != 0 {
   329  		rcvr = v
   330  		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   331  	} else if v.flag&flagIndir != 0 {
   332  		fn = *(*unsafe.Pointer)(v.ptr)
   333  	} else {
   334  		fn = v.ptr
   335  	}
   336  
   337  	if fn == nil {
   338  		panic("reflect.Value.Call: call of nil function")
   339  	}
   340  
   341  	isSlice := op == "CallSlice"
   342  	n := t.NumIn()
   343  	if isSlice {
   344  		if !t.IsVariadic() {
   345  			panic("reflect: CallSlice of non-variadic function")
   346  		}
   347  		if len(in) < n {
   348  			panic("reflect: CallSlice with too few input arguments")
   349  		}
   350  		if len(in) > n {
   351  			panic("reflect: CallSlice with too many input arguments")
   352  		}
   353  	} else {
   354  		if t.IsVariadic() {
   355  			n--
   356  		}
   357  		if len(in) < n {
   358  			panic("reflect: Call with too few input arguments")
   359  		}
   360  		if !t.IsVariadic() && len(in) > n {
   361  			panic("reflect: Call with too many input arguments")
   362  		}
   363  	}
   364  	for _, x := range in {
   365  		if x.Kind() == Invalid {
   366  			panic("reflect: " + op + " using zero Value argument")
   367  		}
   368  	}
   369  	for i := 0; i < n; i++ {
   370  		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   371  			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   372  		}
   373  	}
   374  	if !isSlice && t.IsVariadic() {
   375  		// prepare slice for remaining values
   376  		m := len(in) - n
   377  		slice := MakeSlice(t.In(n), m, m)
   378  		elem := t.In(n).Elem()
   379  		for i := 0; i < m; i++ {
   380  			x := in[n+i]
   381  			if xt := x.Type(); !xt.AssignableTo(elem) {
   382  				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   383  			}
   384  			slice.Index(i).Set(x)
   385  		}
   386  		origIn := in
   387  		in = make([]Value, n+1)
   388  		copy(in[:n], origIn)
   389  		in[n] = slice
   390  	}
   391  
   392  	nin := len(in)
   393  	if nin != t.NumIn() {
   394  		panic("reflect.Value.Call: wrong argument count")
   395  	}
   396  	nout := t.NumOut()
   397  
   398  	// Compute frame type.
   399  	frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype)
   400  
   401  	// Allocate a chunk of memory for frame.
   402  	var args unsafe.Pointer
   403  	if nout == 0 {
   404  		args = framePool.Get().(unsafe.Pointer)
   405  	} else {
   406  		// Can't use pool if the function has return values.
   407  		// We will leak pointer to args in ret, so its lifetime is not scoped.
   408  		args = unsafe_New(frametype)
   409  	}
   410  	off := uintptr(0)
   411  
   412  	// Copy inputs into args.
   413  	if rcvrtype != nil {
   414  		storeRcvr(rcvr, args)
   415  		off = ptrSize
   416  	}
   417  	for i, v := range in {
   418  		v.mustBeExported()
   419  		targ := t.In(i).(*rtype)
   420  		a := uintptr(targ.align)
   421  		off = (off + a - 1) &^ (a - 1)
   422  		n := targ.size
   423  		addr := unsafe.Pointer(uintptr(args) + off)
   424  		v = v.assignTo("reflect.Value.Call", targ, addr)
   425  		if v.flag&flagIndir != 0 {
   426  			typedmemmove(targ, addr, v.ptr)
   427  		} else {
   428  			*(*unsafe.Pointer)(addr) = v.ptr
   429  		}
   430  		off += n
   431  	}
   432  
   433  	// Call.
   434  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   435  
   436  	// For testing; see TestCallMethodJump.
   437  	if callGC {
   438  		runtime.GC()
   439  	}
   440  
   441  	var ret []Value
   442  	if nout == 0 {
   443  		// This is untyped because the frame is really a
   444  		// stack, even though it's a heap object.
   445  		memclrNoHeapPointers(args, frametype.size)
   446  		framePool.Put(args)
   447  	} else {
   448  		// Zero the now unused input area of args,
   449  		// because the Values returned by this function contain pointers to the args object,
   450  		// and will thus keep the args object alive indefinitely.
   451  		memclrNoHeapPointers(args, retOffset)
   452  		// Wrap Values around return values in args.
   453  		ret = make([]Value, nout)
   454  		off = retOffset
   455  		for i := 0; i < nout; i++ {
   456  			tv := t.Out(i)
   457  			a := uintptr(tv.Align())
   458  			off = (off + a - 1) &^ (a - 1)
   459  			fl := flagIndir | flag(tv.Kind())
   460  			ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl}
   461  			off += tv.Size()
   462  		}
   463  	}
   464  
   465  	return ret
   466  }
   467  
   468  // callReflect is the call implementation used by a function
   469  // returned by MakeFunc. In many ways it is the opposite of the
   470  // method Value.call above. The method above converts a call using Values
   471  // into a call of a function with a concrete argument frame, while
   472  // callReflect converts a call of a function with a concrete argument
   473  // frame into a call using Values.
   474  // It is in this file so that it can be next to the call method above.
   475  // The remainder of the MakeFunc implementation is in makefunc.go.
   476  //
   477  // NOTE: This function must be marked as a "wrapper" in the generated code,
   478  // so that the linker can make it work correctly for panic and recover.
   479  // The gc compilers know to do that for the name "reflect.callReflect".
   480  func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
   481  	ftyp := ctxt.typ
   482  	f := ctxt.fn
   483  
   484  	// Copy argument frame into Values.
   485  	ptr := frame
   486  	off := uintptr(0)
   487  	in := make([]Value, 0, int(ftyp.inCount))
   488  	for _, typ := range ftyp.in() {
   489  		off += -off & uintptr(typ.align-1)
   490  		addr := unsafe.Pointer(uintptr(ptr) + off)
   491  		v := Value{typ, nil, flag(typ.Kind())}
   492  		if ifaceIndir(typ) {
   493  			// value cannot be inlined in interface data.
   494  			// Must make a copy, because f might keep a reference to it,
   495  			// and we cannot let f keep a reference to the stack frame
   496  			// after this function returns, not even a read-only reference.
   497  			v.ptr = unsafe_New(typ)
   498  			typedmemmove(typ, v.ptr, addr)
   499  			v.flag |= flagIndir
   500  		} else {
   501  			v.ptr = *(*unsafe.Pointer)(addr)
   502  		}
   503  		in = append(in, v)
   504  		off += typ.size
   505  	}
   506  
   507  	// Call underlying function.
   508  	out := f(in)
   509  	numOut := ftyp.NumOut()
   510  	if len(out) != numOut {
   511  		panic("reflect: wrong return count from function created by MakeFunc")
   512  	}
   513  
   514  	// Copy results back into argument frame.
   515  	if numOut > 0 {
   516  		off += -off & (ptrSize - 1)
   517  		if runtime.GOARCH == "amd64p32" {
   518  			off = align(off, 8)
   519  		}
   520  		for i, typ := range ftyp.out() {
   521  			v := out[i]
   522  			if v.typ != typ {
   523  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   524  					" returned wrong type: have " +
   525  					out[i].typ.String() + " for " + typ.String())
   526  			}
   527  			if v.flag&flagRO != 0 {
   528  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   529  					" returned value obtained from unexported field")
   530  			}
   531  			off += -off & uintptr(typ.align-1)
   532  			addr := unsafe.Pointer(uintptr(ptr) + off)
   533  			if v.flag&flagIndir != 0 {
   534  				typedmemmove(typ, addr, v.ptr)
   535  			} else {
   536  				*(*unsafe.Pointer)(addr) = v.ptr
   537  			}
   538  			off += typ.size
   539  		}
   540  	}
   541  
   542  	// runtime.getArgInfo expects to be able to find ctxt on the
   543  	// stack when it finds our caller, makeFuncStub. Make sure it
   544  	// doesn't get garbage collected.
   545  	runtime.KeepAlive(ctxt)
   546  }
   547  
   548  // methodReceiver returns information about the receiver
   549  // described by v. The Value v may or may not have the
   550  // flagMethod bit set, so the kind cached in v.flag should
   551  // not be used.
   552  // The return value rcvrtype gives the method's actual receiver type.
   553  // The return value t gives the method type signature (without the receiver).
   554  // The return value fn is a pointer to the method code.
   555  func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
   556  	i := methodIndex
   557  	if v.typ.Kind() == Interface {
   558  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   559  		if uint(i) >= uint(len(tt.methods)) {
   560  			panic("reflect: internal error: invalid method index")
   561  		}
   562  		m := &tt.methods[i]
   563  		if !tt.nameOff(m.name).isExported() {
   564  			panic("reflect: " + op + " of unexported method")
   565  		}
   566  		iface := (*nonEmptyInterface)(v.ptr)
   567  		if iface.itab == nil {
   568  			panic("reflect: " + op + " of method on nil interface value")
   569  		}
   570  		rcvrtype = iface.itab.typ
   571  		fn = unsafe.Pointer(&iface.itab.fun[i])
   572  		t = tt.typeOff(m.typ)
   573  	} else {
   574  		rcvrtype = v.typ
   575  		ut := v.typ.uncommon()
   576  		if ut == nil || uint(i) >= uint(ut.mcount) {
   577  			panic("reflect: internal error: invalid method index")
   578  		}
   579  		m := ut.methods()[i]
   580  		if !v.typ.nameOff(m.name).isExported() {
   581  			panic("reflect: " + op + " of unexported method")
   582  		}
   583  		ifn := v.typ.textOff(m.ifn)
   584  		fn = unsafe.Pointer(&ifn)
   585  		t = v.typ.typeOff(m.mtyp)
   586  	}
   587  	return
   588  }
   589  
   590  // v is a method receiver. Store at p the word which is used to
   591  // encode that receiver at the start of the argument list.
   592  // Reflect uses the "interface" calling convention for
   593  // methods, which always uses one word to record the receiver.
   594  func storeRcvr(v Value, p unsafe.Pointer) {
   595  	t := v.typ
   596  	if t.Kind() == Interface {
   597  		// the interface data word becomes the receiver word
   598  		iface := (*nonEmptyInterface)(v.ptr)
   599  		*(*unsafe.Pointer)(p) = iface.word
   600  	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   601  		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   602  	} else {
   603  		*(*unsafe.Pointer)(p) = v.ptr
   604  	}
   605  }
   606  
   607  // align returns the result of rounding x up to a multiple of n.
   608  // n must be a power of two.
   609  func align(x, n uintptr) uintptr {
   610  	return (x + n - 1) &^ (n - 1)
   611  }
   612  
   613  // callMethod is the call implementation used by a function returned
   614  // by makeMethodValue (used by v.Method(i).Interface()).
   615  // It is a streamlined version of the usual reflect call: the caller has
   616  // already laid out the argument frame for us, so we don't have
   617  // to deal with individual Values for each argument.
   618  // It is in this file so that it can be next to the two similar functions above.
   619  // The remainder of the makeMethodValue implementation is in makefunc.go.
   620  //
   621  // NOTE: This function must be marked as a "wrapper" in the generated code,
   622  // so that the linker can make it work correctly for panic and recover.
   623  // The gc compilers know to do that for the name "reflect.callMethod".
   624  func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
   625  	rcvr := ctxt.rcvr
   626  	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
   627  	frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype)
   628  
   629  	// Make a new frame that is one word bigger so we can store the receiver.
   630  	args := framePool.Get().(unsafe.Pointer)
   631  
   632  	// Copy in receiver and rest of args.
   633  	storeRcvr(rcvr, args)
   634  	typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize)
   635  
   636  	// Call.
   637  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   638  
   639  	// Copy return values. On amd64p32, the beginning of return values
   640  	// is 64-bit aligned, so the caller's frame layout (which doesn't have
   641  	// a receiver) is different from the layout of the fn call, which has
   642  	// a receiver.
   643  	// Ignore any changes to args and just copy return values.
   644  	callerRetOffset := retOffset - ptrSize
   645  	if runtime.GOARCH == "amd64p32" {
   646  		callerRetOffset = align(argSize-ptrSize, 8)
   647  	}
   648  	typedmemmovepartial(frametype,
   649  		unsafe.Pointer(uintptr(frame)+callerRetOffset),
   650  		unsafe.Pointer(uintptr(args)+retOffset),
   651  		retOffset,
   652  		frametype.size-retOffset)
   653  
   654  	// This is untyped because the frame is really a stack, even
   655  	// though it's a heap object.
   656  	memclrNoHeapPointers(args, frametype.size)
   657  	framePool.Put(args)
   658  
   659  	// See the comment in callReflect.
   660  	runtime.KeepAlive(ctxt)
   661  }
   662  
   663  // funcName returns the name of f, for use in error messages.
   664  func funcName(f func([]Value) []Value) string {
   665  	pc := *(*uintptr)(unsafe.Pointer(&f))
   666  	rf := runtime.FuncForPC(pc)
   667  	if rf != nil {
   668  		return rf.Name()
   669  	}
   670  	return "closure"
   671  }
   672  
   673  // Cap returns v's capacity.
   674  // It panics if v's Kind is not Array, Chan, or Slice.
   675  func (v Value) Cap() int {
   676  	k := v.kind()
   677  	switch k {
   678  	case Array:
   679  		return v.typ.Len()
   680  	case Chan:
   681  		return chancap(v.pointer())
   682  	case Slice:
   683  		// Slice is always bigger than a word; assume flagIndir.
   684  		return (*sliceHeader)(v.ptr).Cap
   685  	}
   686  	panic(&ValueError{"reflect.Value.Cap", v.kind()})
   687  }
   688  
   689  // Close closes the channel v.
   690  // It panics if v's Kind is not Chan.
   691  func (v Value) Close() {
   692  	v.mustBe(Chan)
   693  	v.mustBeExported()
   694  	chanclose(v.pointer())
   695  }
   696  
   697  // Complex returns v's underlying value, as a complex128.
   698  // It panics if v's Kind is not Complex64 or Complex128
   699  func (v Value) Complex() complex128 {
   700  	k := v.kind()
   701  	switch k {
   702  	case Complex64:
   703  		return complex128(*(*complex64)(v.ptr))
   704  	case Complex128:
   705  		return *(*complex128)(v.ptr)
   706  	}
   707  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
   708  }
   709  
   710  // Elem returns the value that the interface v contains
   711  // or that the pointer v points to.
   712  // It panics if v's Kind is not Interface or Ptr.
   713  // It returns the zero Value if v is nil.
   714  func (v Value) Elem() Value {
   715  	k := v.kind()
   716  	switch k {
   717  	case Interface:
   718  		var eface interface{}
   719  		if v.typ.NumMethod() == 0 {
   720  			eface = *(*interface{})(v.ptr)
   721  		} else {
   722  			eface = (interface{})(*(*interface {
   723  				M()
   724  			})(v.ptr))
   725  		}
   726  		x := unpackEface(eface)
   727  		if x.flag != 0 {
   728  			x.flag |= v.flag & flagRO
   729  		}
   730  		return x
   731  	case Ptr:
   732  		ptr := v.ptr
   733  		if v.flag&flagIndir != 0 {
   734  			ptr = *(*unsafe.Pointer)(ptr)
   735  		}
   736  		// The returned value's address is v's value.
   737  		if ptr == nil {
   738  			return Value{}
   739  		}
   740  		tt := (*ptrType)(unsafe.Pointer(v.typ))
   741  		typ := tt.elem
   742  		fl := v.flag&flagRO | flagIndir | flagAddr
   743  		fl |= flag(typ.Kind())
   744  		return Value{typ, ptr, fl}
   745  	}
   746  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
   747  }
   748  
   749  // Field returns the i'th field of the struct v.
   750  // It panics if v's Kind is not Struct or i is out of range.
   751  func (v Value) Field(i int) Value {
   752  	if v.kind() != Struct {
   753  		panic(&ValueError{"reflect.Value.Field", v.kind()})
   754  	}
   755  	tt := (*structType)(unsafe.Pointer(v.typ))
   756  	if uint(i) >= uint(len(tt.fields)) {
   757  		panic("reflect: Field index out of range")
   758  	}
   759  	field := &tt.fields[i]
   760  	typ := field.typ
   761  
   762  	// Inherit permission bits from v, but clear flagEmbedRO.
   763  	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
   764  	// Using an unexported field forces flagRO.
   765  	if !field.name.isExported() {
   766  		if field.name.name() == "" {
   767  			fl |= flagEmbedRO
   768  		} else {
   769  			fl |= flagStickyRO
   770  		}
   771  	}
   772  	// Either flagIndir is set and v.ptr points at struct,
   773  	// or flagIndir is not set and v.ptr is the actual struct data.
   774  	// In the former case, we want v.ptr + offset.
   775  	// In the latter case, we must have field.offset = 0,
   776  	// so v.ptr + field.offset is still okay.
   777  	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
   778  	return Value{typ, ptr, fl}
   779  }
   780  
   781  // FieldByIndex returns the nested field corresponding to index.
   782  // It panics if v's Kind is not struct.
   783  func (v Value) FieldByIndex(index []int) Value {
   784  	if len(index) == 1 {
   785  		return v.Field(index[0])
   786  	}
   787  	v.mustBe(Struct)
   788  	for i, x := range index {
   789  		if i > 0 {
   790  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
   791  				if v.IsNil() {
   792  					panic("reflect: indirection through nil pointer to embedded struct")
   793  				}
   794  				v = v.Elem()
   795  			}
   796  		}
   797  		v = v.Field(x)
   798  	}
   799  	return v
   800  }
   801  
   802  // FieldByName returns the struct field with the given name.
   803  // It returns the zero Value if no field was found.
   804  // It panics if v's Kind is not struct.
   805  func (v Value) FieldByName(name string) Value {
   806  	v.mustBe(Struct)
   807  	if f, ok := v.typ.FieldByName(name); ok {
   808  		return v.FieldByIndex(f.Index)
   809  	}
   810  	return Value{}
   811  }
   812  
   813  // FieldByNameFunc returns the struct field with a name
   814  // that satisfies the match function.
   815  // It panics if v's Kind is not struct.
   816  // It returns the zero Value if no field was found.
   817  func (v Value) FieldByNameFunc(match func(string) bool) Value {
   818  	if f, ok := v.typ.FieldByNameFunc(match); ok {
   819  		return v.FieldByIndex(f.Index)
   820  	}
   821  	return Value{}
   822  }
   823  
   824  // Float returns v's underlying value, as a float64.
   825  // It panics if v's Kind is not Float32 or Float64
   826  func (v Value) Float() float64 {
   827  	k := v.kind()
   828  	switch k {
   829  	case Float32:
   830  		return float64(*(*float32)(v.ptr))
   831  	case Float64:
   832  		return *(*float64)(v.ptr)
   833  	}
   834  	panic(&ValueError{"reflect.Value.Float", v.kind()})
   835  }
   836  
   837  var uint8Type = TypeOf(uint8(0)).(*rtype)
   838  
   839  // Index returns v's i'th element.
   840  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
   841  func (v Value) Index(i int) Value {
   842  	switch v.kind() {
   843  	case Array:
   844  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   845  		if uint(i) >= uint(tt.len) {
   846  			panic("reflect: array index out of range")
   847  		}
   848  		typ := tt.elem
   849  		offset := uintptr(i) * typ.size
   850  
   851  		// Either flagIndir is set and v.ptr points at array,
   852  		// or flagIndir is not set and v.ptr is the actual array data.
   853  		// In the former case, we want v.ptr + offset.
   854  		// In the latter case, we must be doing Index(0), so offset = 0,
   855  		// so v.ptr + offset is still okay.
   856  		val := unsafe.Pointer(uintptr(v.ptr) + offset)
   857  		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
   858  		return Value{typ, val, fl}
   859  
   860  	case Slice:
   861  		// Element flag same as Elem of Ptr.
   862  		// Addressable, indirect, possibly read-only.
   863  		s := (*sliceHeader)(v.ptr)
   864  		if uint(i) >= uint(s.Len) {
   865  			panic("reflect: slice index out of range")
   866  		}
   867  		tt := (*sliceType)(unsafe.Pointer(v.typ))
   868  		typ := tt.elem
   869  		val := arrayAt(s.Data, i, typ.size)
   870  		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
   871  		return Value{typ, val, fl}
   872  
   873  	case String:
   874  		s := (*stringHeader)(v.ptr)
   875  		if uint(i) >= uint(s.Len) {
   876  			panic("reflect: string index out of range")
   877  		}
   878  		p := arrayAt(s.Data, i, 1)
   879  		fl := v.flag&flagRO | flag(Uint8) | flagIndir
   880  		return Value{uint8Type, p, fl}
   881  	}
   882  	panic(&ValueError{"reflect.Value.Index", v.kind()})
   883  }
   884  
   885  // Int returns v's underlying value, as an int64.
   886  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
   887  func (v Value) Int() int64 {
   888  	k := v.kind()
   889  	p := v.ptr
   890  	switch k {
   891  	case Int:
   892  		return int64(*(*int)(p))
   893  	case Int8:
   894  		return int64(*(*int8)(p))
   895  	case Int16:
   896  		return int64(*(*int16)(p))
   897  	case Int32:
   898  		return int64(*(*int32)(p))
   899  	case Int64:
   900  		return *(*int64)(p)
   901  	}
   902  	panic(&ValueError{"reflect.Value.Int", v.kind()})
   903  }
   904  
   905  // CanInterface reports whether Interface can be used without panicking.
   906  func (v Value) CanInterface() bool {
   907  	if v.flag == 0 {
   908  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
   909  	}
   910  	return v.flag&flagRO == 0
   911  }
   912  
   913  // Interface returns v's current value as an interface{}.
   914  // It is equivalent to:
   915  //	var i interface{} = (v's underlying value)
   916  // It panics if the Value was obtained by accessing
   917  // unexported struct fields.
   918  func (v Value) Interface() (i interface{}) {
   919  	return valueInterface(v, true)
   920  }
   921  
   922  func valueInterface(v Value, safe bool) interface{} {
   923  	if v.flag == 0 {
   924  		panic(&ValueError{"reflect.Value.Interface", 0})
   925  	}
   926  	if safe && v.flag&flagRO != 0 {
   927  		// Do not allow access to unexported values via Interface,
   928  		// because they might be pointers that should not be
   929  		// writable or methods or function that should not be callable.
   930  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
   931  	}
   932  	if v.flag&flagMethod != 0 {
   933  		v = makeMethodValue("Interface", v)
   934  	}
   935  
   936  	if v.kind() == Interface {
   937  		// Special case: return the element inside the interface.
   938  		// Empty interface has one layout, all interfaces with
   939  		// methods have a second layout.
   940  		if v.NumMethod() == 0 {
   941  			return *(*interface{})(v.ptr)
   942  		}
   943  		return *(*interface {
   944  			M()
   945  		})(v.ptr)
   946  	}
   947  
   948  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
   949  	return packEface(v)
   950  }
   951  
   952  // InterfaceData returns the interface v's value as a uintptr pair.
   953  // It panics if v's Kind is not Interface.
   954  func (v Value) InterfaceData() [2]uintptr {
   955  	// TODO: deprecate this
   956  	v.mustBe(Interface)
   957  	// We treat this as a read operation, so we allow
   958  	// it even for unexported data, because the caller
   959  	// has to import "unsafe" to turn it into something
   960  	// that can be abused.
   961  	// Interface value is always bigger than a word; assume flagIndir.
   962  	return *(*[2]uintptr)(v.ptr)
   963  }
   964  
   965  // IsNil reports whether its argument v is nil. The argument must be
   966  // a chan, func, interface, map, pointer, or slice value; if it is
   967  // not, IsNil panics. Note that IsNil is not always equivalent to a
   968  // regular comparison with nil in Go. For example, if v was created
   969  // by calling ValueOf with an uninitialized interface variable i,
   970  // i==nil will be true but v.IsNil will panic as v will be the zero
   971  // Value.
   972  func (v Value) IsNil() bool {
   973  	k := v.kind()
   974  	switch k {
   975  	case Chan, Func, Map, Ptr:
   976  		if v.flag&flagMethod != 0 {
   977  			return false
   978  		}
   979  		ptr := v.ptr
   980  		if v.flag&flagIndir != 0 {
   981  			ptr = *(*unsafe.Pointer)(ptr)
   982  		}
   983  		return ptr == nil
   984  	case Interface, Slice:
   985  		// Both interface and slice are nil if first word is 0.
   986  		// Both are always bigger than a word; assume flagIndir.
   987  		return *(*unsafe.Pointer)(v.ptr) == nil
   988  	}
   989  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
   990  }
   991  
   992  // IsValid reports whether v represents a value.
   993  // It returns false if v is the zero Value.
   994  // If IsValid returns false, all other methods except String panic.
   995  // Most functions and methods never return an invalid value.
   996  // If one does, its documentation states the conditions explicitly.
   997  func (v Value) IsValid() bool {
   998  	return v.flag != 0
   999  }
  1000  
  1001  // Kind returns v's Kind.
  1002  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
  1003  func (v Value) Kind() Kind {
  1004  	return v.kind()
  1005  }
  1006  
  1007  // Len returns v's length.
  1008  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
  1009  func (v Value) Len() int {
  1010  	k := v.kind()
  1011  	switch k {
  1012  	case Array:
  1013  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1014  		return int(tt.len)
  1015  	case Chan:
  1016  		return chanlen(v.pointer())
  1017  	case Map:
  1018  		return maplen(v.pointer())
  1019  	case Slice:
  1020  		// Slice is bigger than a word; assume flagIndir.
  1021  		return (*sliceHeader)(v.ptr).Len
  1022  	case String:
  1023  		// String is bigger than a word; assume flagIndir.
  1024  		return (*stringHeader)(v.ptr).Len
  1025  	}
  1026  	panic(&ValueError{"reflect.Value.Len", v.kind()})
  1027  }
  1028  
  1029  // MapIndex returns the value associated with key in the map v.
  1030  // It panics if v's Kind is not Map.
  1031  // It returns the zero Value if key is not found in the map or if v represents a nil map.
  1032  // As in Go, the key's value must be assignable to the map's key type.
  1033  func (v Value) MapIndex(key Value) Value {
  1034  	v.mustBe(Map)
  1035  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1036  
  1037  	// Do not require key to be exported, so that DeepEqual
  1038  	// and other programs can use all the keys returned by
  1039  	// MapKeys as arguments to MapIndex. If either the map
  1040  	// or the key is unexported, though, the result will be
  1041  	// considered unexported. This is consistent with the
  1042  	// behavior for structs, which allow read but not write
  1043  	// of unexported fields.
  1044  	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1045  
  1046  	var k unsafe.Pointer
  1047  	if key.flag&flagIndir != 0 {
  1048  		k = key.ptr
  1049  	} else {
  1050  		k = unsafe.Pointer(&key.ptr)
  1051  	}
  1052  	e := mapaccess(v.typ, v.pointer(), k)
  1053  	if e == nil {
  1054  		return Value{}
  1055  	}
  1056  	typ := tt.elem
  1057  	fl := (v.flag | key.flag) & flagRO
  1058  	fl |= flag(typ.Kind())
  1059  	if ifaceIndir(typ) {
  1060  		// Copy result so future changes to the map
  1061  		// won't change the underlying value.
  1062  		c := unsafe_New(typ)
  1063  		typedmemmove(typ, c, e)
  1064  		return Value{typ, c, fl | flagIndir}
  1065  	} else {
  1066  		return Value{typ, *(*unsafe.Pointer)(e), fl}
  1067  	}
  1068  }
  1069  
  1070  // MapKeys returns a slice containing all the keys present in the map,
  1071  // in unspecified order.
  1072  // It panics if v's Kind is not Map.
  1073  // It returns an empty slice if v represents a nil map.
  1074  func (v Value) MapKeys() []Value {
  1075  	v.mustBe(Map)
  1076  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1077  	keyType := tt.key
  1078  
  1079  	fl := v.flag&flagRO | flag(keyType.Kind())
  1080  
  1081  	m := v.pointer()
  1082  	mlen := int(0)
  1083  	if m != nil {
  1084  		mlen = maplen(m)
  1085  	}
  1086  	it := mapiterinit(v.typ, m)
  1087  	a := make([]Value, mlen)
  1088  	var i int
  1089  	for i = 0; i < len(a); i++ {
  1090  		key := mapiterkey(it)
  1091  		if key == nil {
  1092  			// Someone deleted an entry from the map since we
  1093  			// called maplen above. It's a data race, but nothing
  1094  			// we can do about it.
  1095  			break
  1096  		}
  1097  		if ifaceIndir(keyType) {
  1098  			// Copy result so future changes to the map
  1099  			// won't change the underlying value.
  1100  			c := unsafe_New(keyType)
  1101  			typedmemmove(keyType, c, key)
  1102  			a[i] = Value{keyType, c, fl | flagIndir}
  1103  		} else {
  1104  			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
  1105  		}
  1106  		mapiternext(it)
  1107  	}
  1108  	return a[:i]
  1109  }
  1110  
  1111  // Method returns a function value corresponding to v's i'th method.
  1112  // The arguments to a Call on the returned function should not include
  1113  // a receiver; the returned function will always use v as the receiver.
  1114  // Method panics if i is out of range or if v is a nil interface value.
  1115  func (v Value) Method(i int) Value {
  1116  	if v.typ == nil {
  1117  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1118  	}
  1119  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1120  		panic("reflect: Method index out of range")
  1121  	}
  1122  	if v.typ.Kind() == Interface && v.IsNil() {
  1123  		panic("reflect: Method on nil interface value")
  1124  	}
  1125  	fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO
  1126  	fl |= flag(Func)
  1127  	fl |= flag(i)<<flagMethodShift | flagMethod
  1128  	return Value{v.typ, v.ptr, fl}
  1129  }
  1130  
  1131  // NumMethod returns the number of methods in the value's method set.
  1132  func (v Value) NumMethod() int {
  1133  	if v.typ == nil {
  1134  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1135  	}
  1136  	if v.flag&flagMethod != 0 {
  1137  		return 0
  1138  	}
  1139  	return v.typ.NumMethod()
  1140  }
  1141  
  1142  // MethodByName returns a function value corresponding to the method
  1143  // of v with the given name.
  1144  // The arguments to a Call on the returned function should not include
  1145  // a receiver; the returned function will always use v as the receiver.
  1146  // It returns the zero Value if no method was found.
  1147  func (v Value) MethodByName(name string) Value {
  1148  	if v.typ == nil {
  1149  		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1150  	}
  1151  	if v.flag&flagMethod != 0 {
  1152  		return Value{}
  1153  	}
  1154  	m, ok := v.typ.MethodByName(name)
  1155  	if !ok {
  1156  		return Value{}
  1157  	}
  1158  	return v.Method(m.Index)
  1159  }
  1160  
  1161  // NumField returns the number of fields in the struct v.
  1162  // It panics if v's Kind is not Struct.
  1163  func (v Value) NumField() int {
  1164  	v.mustBe(Struct)
  1165  	tt := (*structType)(unsafe.Pointer(v.typ))
  1166  	return len(tt.fields)
  1167  }
  1168  
  1169  // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1170  // It panics if v's Kind is not Complex64 or Complex128.
  1171  func (v Value) OverflowComplex(x complex128) bool {
  1172  	k := v.kind()
  1173  	switch k {
  1174  	case Complex64:
  1175  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1176  	case Complex128:
  1177  		return false
  1178  	}
  1179  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1180  }
  1181  
  1182  // OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1183  // It panics if v's Kind is not Float32 or Float64.
  1184  func (v Value) OverflowFloat(x float64) bool {
  1185  	k := v.kind()
  1186  	switch k {
  1187  	case Float32:
  1188  		return overflowFloat32(x)
  1189  	case Float64:
  1190  		return false
  1191  	}
  1192  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1193  }
  1194  
  1195  func overflowFloat32(x float64) bool {
  1196  	if x < 0 {
  1197  		x = -x
  1198  	}
  1199  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1200  }
  1201  
  1202  // OverflowInt reports whether the int64 x cannot be represented by v's type.
  1203  // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
  1204  func (v Value) OverflowInt(x int64) bool {
  1205  	k := v.kind()
  1206  	switch k {
  1207  	case Int, Int8, Int16, Int32, Int64:
  1208  		bitSize := v.typ.size * 8
  1209  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1210  		return x != trunc
  1211  	}
  1212  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1213  }
  1214  
  1215  // OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1216  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1217  func (v Value) OverflowUint(x uint64) bool {
  1218  	k := v.kind()
  1219  	switch k {
  1220  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1221  		bitSize := v.typ.size * 8
  1222  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1223  		return x != trunc
  1224  	}
  1225  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1226  }
  1227  
  1228  // Pointer returns v's value as a uintptr.
  1229  // It returns uintptr instead of unsafe.Pointer so that
  1230  // code using reflect cannot obtain unsafe.Pointers
  1231  // without importing the unsafe package explicitly.
  1232  // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1233  //
  1234  // If v's Kind is Func, the returned pointer is an underlying
  1235  // code pointer, but not necessarily enough to identify a
  1236  // single function uniquely. The only guarantee is that the
  1237  // result is zero if and only if v is a nil func Value.
  1238  //
  1239  // If v's Kind is Slice, the returned pointer is to the first
  1240  // element of the slice. If the slice is nil the returned value
  1241  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1242  func (v Value) Pointer() uintptr {
  1243  	// TODO: deprecate
  1244  	k := v.kind()
  1245  	switch k {
  1246  	case Chan, Map, Ptr, UnsafePointer:
  1247  		return uintptr(v.pointer())
  1248  	case Func:
  1249  		if v.flag&flagMethod != 0 {
  1250  			// As the doc comment says, the returned pointer is an
  1251  			// underlying code pointer but not necessarily enough to
  1252  			// identify a single function uniquely. All method expressions
  1253  			// created via reflect have the same underlying code pointer,
  1254  			// so their Pointers are equal. The function used here must
  1255  			// match the one used in makeMethodValue.
  1256  			f := methodValueCall
  1257  			return **(**uintptr)(unsafe.Pointer(&f))
  1258  		}
  1259  		p := v.pointer()
  1260  		// Non-nil func value points at data block.
  1261  		// First word of data block is actual code.
  1262  		if p != nil {
  1263  			p = *(*unsafe.Pointer)(p)
  1264  		}
  1265  		return uintptr(p)
  1266  
  1267  	case Slice:
  1268  		return (*SliceHeader)(v.ptr).Data
  1269  	}
  1270  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1271  }
  1272  
  1273  // Recv receives and returns a value from the channel v.
  1274  // It panics if v's Kind is not Chan.
  1275  // The receive blocks until a value is ready.
  1276  // The boolean value ok is true if the value x corresponds to a send
  1277  // on the channel, false if it is a zero value received because the channel is closed.
  1278  func (v Value) Recv() (x Value, ok bool) {
  1279  	v.mustBe(Chan)
  1280  	v.mustBeExported()
  1281  	return v.recv(false)
  1282  }
  1283  
  1284  // internal recv, possibly non-blocking (nb).
  1285  // v is known to be a channel.
  1286  func (v Value) recv(nb bool) (val Value, ok bool) {
  1287  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1288  	if ChanDir(tt.dir)&RecvDir == 0 {
  1289  		panic("reflect: recv on send-only channel")
  1290  	}
  1291  	t := tt.elem
  1292  	val = Value{t, nil, flag(t.Kind())}
  1293  	var p unsafe.Pointer
  1294  	if ifaceIndir(t) {
  1295  		p = unsafe_New(t)
  1296  		val.ptr = p
  1297  		val.flag |= flagIndir
  1298  	} else {
  1299  		p = unsafe.Pointer(&val.ptr)
  1300  	}
  1301  	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
  1302  	if !selected {
  1303  		val = Value{}
  1304  	}
  1305  	return
  1306  }
  1307  
  1308  // Send sends x on the channel v.
  1309  // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1310  // As in Go, x's value must be assignable to the channel's element type.
  1311  func (v Value) Send(x Value) {
  1312  	v.mustBe(Chan)
  1313  	v.mustBeExported()
  1314  	v.send(x, false)
  1315  }
  1316  
  1317  // internal send, possibly non-blocking.
  1318  // v is known to be a channel.
  1319  func (v Value) send(x Value, nb bool) (selected bool) {
  1320  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1321  	if ChanDir(tt.dir)&SendDir == 0 {
  1322  		panic("reflect: send on recv-only channel")
  1323  	}
  1324  	x.mustBeExported()
  1325  	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1326  	var p unsafe.Pointer
  1327  	if x.flag&flagIndir != 0 {
  1328  		p = x.ptr
  1329  	} else {
  1330  		p = unsafe.Pointer(&x.ptr)
  1331  	}
  1332  	return chansend(v.typ, v.pointer(), p, nb)
  1333  }
  1334  
  1335  // Set assigns x to the value v.
  1336  // It panics if CanSet returns false.
  1337  // As in Go, x's value must be assignable to v's type.
  1338  func (v Value) Set(x Value) {
  1339  	v.mustBeAssignable()
  1340  	x.mustBeExported() // do not let unexported x leak
  1341  	var target unsafe.Pointer
  1342  	if v.kind() == Interface {
  1343  		target = v.ptr
  1344  	}
  1345  	x = x.assignTo("reflect.Set", v.typ, target)
  1346  	if x.flag&flagIndir != 0 {
  1347  		typedmemmove(v.typ, v.ptr, x.ptr)
  1348  	} else {
  1349  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1350  	}
  1351  }
  1352  
  1353  // SetBool sets v's underlying value.
  1354  // It panics if v's Kind is not Bool or if CanSet() is false.
  1355  func (v Value) SetBool(x bool) {
  1356  	v.mustBeAssignable()
  1357  	v.mustBe(Bool)
  1358  	*(*bool)(v.ptr) = x
  1359  }
  1360  
  1361  // SetBytes sets v's underlying value.
  1362  // It panics if v's underlying value is not a slice of bytes.
  1363  func (v Value) SetBytes(x []byte) {
  1364  	v.mustBeAssignable()
  1365  	v.mustBe(Slice)
  1366  	if v.typ.Elem().Kind() != Uint8 {
  1367  		panic("reflect.Value.SetBytes of non-byte slice")
  1368  	}
  1369  	*(*[]byte)(v.ptr) = x
  1370  }
  1371  
  1372  // setRunes sets v's underlying value.
  1373  // It panics if v's underlying value is not a slice of runes (int32s).
  1374  func (v Value) setRunes(x []rune) {
  1375  	v.mustBeAssignable()
  1376  	v.mustBe(Slice)
  1377  	if v.typ.Elem().Kind() != Int32 {
  1378  		panic("reflect.Value.setRunes of non-rune slice")
  1379  	}
  1380  	*(*[]rune)(v.ptr) = x
  1381  }
  1382  
  1383  // SetComplex sets v's underlying value to x.
  1384  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1385  func (v Value) SetComplex(x complex128) {
  1386  	v.mustBeAssignable()
  1387  	switch k := v.kind(); k {
  1388  	default:
  1389  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1390  	case Complex64:
  1391  		*(*complex64)(v.ptr) = complex64(x)
  1392  	case Complex128:
  1393  		*(*complex128)(v.ptr) = x
  1394  	}
  1395  }
  1396  
  1397  // SetFloat sets v's underlying value to x.
  1398  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1399  func (v Value) SetFloat(x float64) {
  1400  	v.mustBeAssignable()
  1401  	switch k := v.kind(); k {
  1402  	default:
  1403  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1404  	case Float32:
  1405  		*(*float32)(v.ptr) = float32(x)
  1406  	case Float64:
  1407  		*(*float64)(v.ptr) = x
  1408  	}
  1409  }
  1410  
  1411  // SetInt sets v's underlying value to x.
  1412  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1413  func (v Value) SetInt(x int64) {
  1414  	v.mustBeAssignable()
  1415  	switch k := v.kind(); k {
  1416  	default:
  1417  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1418  	case Int:
  1419  		*(*int)(v.ptr) = int(x)
  1420  	case Int8:
  1421  		*(*int8)(v.ptr) = int8(x)
  1422  	case Int16:
  1423  		*(*int16)(v.ptr) = int16(x)
  1424  	case Int32:
  1425  		*(*int32)(v.ptr) = int32(x)
  1426  	case Int64:
  1427  		*(*int64)(v.ptr) = x
  1428  	}
  1429  }
  1430  
  1431  // SetLen sets v's length to n.
  1432  // It panics if v's Kind is not Slice or if n is negative or
  1433  // greater than the capacity of the slice.
  1434  func (v Value) SetLen(n int) {
  1435  	v.mustBeAssignable()
  1436  	v.mustBe(Slice)
  1437  	s := (*sliceHeader)(v.ptr)
  1438  	if uint(n) > uint(s.Cap) {
  1439  		panic("reflect: slice length out of range in SetLen")
  1440  	}
  1441  	s.Len = n
  1442  }
  1443  
  1444  // SetCap sets v's capacity to n.
  1445  // It panics if v's Kind is not Slice or if n is smaller than the length or
  1446  // greater than the capacity of the slice.
  1447  func (v Value) SetCap(n int) {
  1448  	v.mustBeAssignable()
  1449  	v.mustBe(Slice)
  1450  	s := (*sliceHeader)(v.ptr)
  1451  	if n < s.Len || n > s.Cap {
  1452  		panic("reflect: slice capacity out of range in SetCap")
  1453  	}
  1454  	s.Cap = n
  1455  }
  1456  
  1457  // SetMapIndex sets the value associated with key in the map v to val.
  1458  // It panics if v's Kind is not Map.
  1459  // If val is the zero Value, SetMapIndex deletes the key from the map.
  1460  // Otherwise if v holds a nil map, SetMapIndex will panic.
  1461  // As in Go, key's value must be assignable to the map's key type,
  1462  // and val's value must be assignable to the map's value type.
  1463  func (v Value) SetMapIndex(key, val Value) {
  1464  	v.mustBe(Map)
  1465  	v.mustBeExported()
  1466  	key.mustBeExported()
  1467  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1468  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1469  	var k unsafe.Pointer
  1470  	if key.flag&flagIndir != 0 {
  1471  		k = key.ptr
  1472  	} else {
  1473  		k = unsafe.Pointer(&key.ptr)
  1474  	}
  1475  	if val.typ == nil {
  1476  		mapdelete(v.typ, v.pointer(), k)
  1477  		return
  1478  	}
  1479  	val.mustBeExported()
  1480  	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1481  	var e unsafe.Pointer
  1482  	if val.flag&flagIndir != 0 {
  1483  		e = val.ptr
  1484  	} else {
  1485  		e = unsafe.Pointer(&val.ptr)
  1486  	}
  1487  	mapassign(v.typ, v.pointer(), k, e)
  1488  }
  1489  
  1490  // SetUint sets v's underlying value to x.
  1491  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1492  func (v Value) SetUint(x uint64) {
  1493  	v.mustBeAssignable()
  1494  	switch k := v.kind(); k {
  1495  	default:
  1496  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1497  	case Uint:
  1498  		*(*uint)(v.ptr) = uint(x)
  1499  	case Uint8:
  1500  		*(*uint8)(v.ptr) = uint8(x)
  1501  	case Uint16:
  1502  		*(*uint16)(v.ptr) = uint16(x)
  1503  	case Uint32:
  1504  		*(*uint32)(v.ptr) = uint32(x)
  1505  	case Uint64:
  1506  		*(*uint64)(v.ptr) = x
  1507  	case Uintptr:
  1508  		*(*uintptr)(v.ptr) = uintptr(x)
  1509  	}
  1510  }
  1511  
  1512  // SetPointer sets the unsafe.Pointer value v to x.
  1513  // It panics if v's Kind is not UnsafePointer.
  1514  func (v Value) SetPointer(x unsafe.Pointer) {
  1515  	v.mustBeAssignable()
  1516  	v.mustBe(UnsafePointer)
  1517  	*(*unsafe.Pointer)(v.ptr) = x
  1518  }
  1519  
  1520  // SetString sets v's underlying value to x.
  1521  // It panics if v's Kind is not String or if CanSet() is false.
  1522  func (v Value) SetString(x string) {
  1523  	v.mustBeAssignable()
  1524  	v.mustBe(String)
  1525  	*(*string)(v.ptr) = x
  1526  }
  1527  
  1528  // Slice returns v[i:j].
  1529  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1530  // or if the indexes are out of bounds.
  1531  func (v Value) Slice(i, j int) Value {
  1532  	var (
  1533  		cap  int
  1534  		typ  *sliceType
  1535  		base unsafe.Pointer
  1536  	)
  1537  	switch kind := v.kind(); kind {
  1538  	default:
  1539  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1540  
  1541  	case Array:
  1542  		if v.flag&flagAddr == 0 {
  1543  			panic("reflect.Value.Slice: slice of unaddressable array")
  1544  		}
  1545  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1546  		cap = int(tt.len)
  1547  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1548  		base = v.ptr
  1549  
  1550  	case Slice:
  1551  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1552  		s := (*sliceHeader)(v.ptr)
  1553  		base = s.Data
  1554  		cap = s.Cap
  1555  
  1556  	case String:
  1557  		s := (*stringHeader)(v.ptr)
  1558  		if i < 0 || j < i || j > s.Len {
  1559  			panic("reflect.Value.Slice: string slice index out of bounds")
  1560  		}
  1561  		t := stringHeader{arrayAt(s.Data, i, 1), j - i}
  1562  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1563  	}
  1564  
  1565  	if i < 0 || j < i || j > cap {
  1566  		panic("reflect.Value.Slice: slice index out of bounds")
  1567  	}
  1568  
  1569  	// Declare slice so that gc can see the base pointer in it.
  1570  	var x []unsafe.Pointer
  1571  
  1572  	// Reinterpret as *sliceHeader to edit.
  1573  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1574  	s.Len = j - i
  1575  	s.Cap = cap - i
  1576  	if cap-i > 0 {
  1577  		s.Data = arrayAt(base, i, typ.elem.Size())
  1578  	} else {
  1579  		// do not advance pointer, to avoid pointing beyond end of slice
  1580  		s.Data = base
  1581  	}
  1582  
  1583  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1584  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1585  }
  1586  
  1587  // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  1588  // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  1589  // or if the indexes are out of bounds.
  1590  func (v Value) Slice3(i, j, k int) Value {
  1591  	var (
  1592  		cap  int
  1593  		typ  *sliceType
  1594  		base unsafe.Pointer
  1595  	)
  1596  	switch kind := v.kind(); kind {
  1597  	default:
  1598  		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  1599  
  1600  	case Array:
  1601  		if v.flag&flagAddr == 0 {
  1602  			panic("reflect.Value.Slice3: slice of unaddressable array")
  1603  		}
  1604  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1605  		cap = int(tt.len)
  1606  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1607  		base = v.ptr
  1608  
  1609  	case Slice:
  1610  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1611  		s := (*sliceHeader)(v.ptr)
  1612  		base = s.Data
  1613  		cap = s.Cap
  1614  	}
  1615  
  1616  	if i < 0 || j < i || k < j || k > cap {
  1617  		panic("reflect.Value.Slice3: slice index out of bounds")
  1618  	}
  1619  
  1620  	// Declare slice so that the garbage collector
  1621  	// can see the base pointer in it.
  1622  	var x []unsafe.Pointer
  1623  
  1624  	// Reinterpret as *sliceHeader to edit.
  1625  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1626  	s.Len = j - i
  1627  	s.Cap = k - i
  1628  	if k-i > 0 {
  1629  		s.Data = arrayAt(base, i, typ.elem.Size())
  1630  	} else {
  1631  		// do not advance pointer, to avoid pointing beyond end of slice
  1632  		s.Data = base
  1633  	}
  1634  
  1635  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1636  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1637  }
  1638  
  1639  // String returns the string v's underlying value, as a string.
  1640  // String is a special case because of Go's String method convention.
  1641  // Unlike the other getters, it does not panic if v's Kind is not String.
  1642  // Instead, it returns a string of the form "<T value>" where T is v's type.
  1643  // The fmt package treats Values specially. It does not call their String
  1644  // method implicitly but instead prints the concrete values they hold.
  1645  func (v Value) String() string {
  1646  	switch k := v.kind(); k {
  1647  	case Invalid:
  1648  		return "<invalid Value>"
  1649  	case String:
  1650  		return *(*string)(v.ptr)
  1651  	}
  1652  	// If you call String on a reflect.Value of other type, it's better to
  1653  	// print something than to panic. Useful in debugging.
  1654  	return "<" + v.Type().String() + " Value>"
  1655  }
  1656  
  1657  // TryRecv attempts to receive a value from the channel v but will not block.
  1658  // It panics if v's Kind is not Chan.
  1659  // If the receive delivers a value, x is the transferred value and ok is true.
  1660  // If the receive cannot finish without blocking, x is the zero Value and ok is false.
  1661  // If the channel is closed, x is the zero value for the channel's element type and ok is false.
  1662  func (v Value) TryRecv() (x Value, ok bool) {
  1663  	v.mustBe(Chan)
  1664  	v.mustBeExported()
  1665  	return v.recv(true)
  1666  }
  1667  
  1668  // TrySend attempts to send x on the channel v but will not block.
  1669  // It panics if v's Kind is not Chan.
  1670  // It reports whether the value was sent.
  1671  // As in Go, x's value must be assignable to the channel's element type.
  1672  func (v Value) TrySend(x Value) bool {
  1673  	v.mustBe(Chan)
  1674  	v.mustBeExported()
  1675  	return v.send(x, true)
  1676  }
  1677  
  1678  // Type returns v's type.
  1679  func (v Value) Type() Type {
  1680  	f := v.flag
  1681  	if f == 0 {
  1682  		panic(&ValueError{"reflect.Value.Type", Invalid})
  1683  	}
  1684  	if f&flagMethod == 0 {
  1685  		// Easy case
  1686  		return v.typ
  1687  	}
  1688  
  1689  	// Method value.
  1690  	// v.typ describes the receiver, not the method type.
  1691  	i := int(v.flag) >> flagMethodShift
  1692  	if v.typ.Kind() == Interface {
  1693  		// Method on interface.
  1694  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  1695  		if uint(i) >= uint(len(tt.methods)) {
  1696  			panic("reflect: internal error: invalid method index")
  1697  		}
  1698  		m := &tt.methods[i]
  1699  		return v.typ.typeOff(m.typ)
  1700  	}
  1701  	// Method on concrete type.
  1702  	ut := v.typ.uncommon()
  1703  	if ut == nil || uint(i) >= uint(ut.mcount) {
  1704  		panic("reflect: internal error: invalid method index")
  1705  	}
  1706  	m := ut.methods()[i]
  1707  	return v.typ.typeOff(m.mtyp)
  1708  }
  1709  
  1710  // Uint returns v's underlying value, as a uint64.
  1711  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1712  func (v Value) Uint() uint64 {
  1713  	k := v.kind()
  1714  	p := v.ptr
  1715  	switch k {
  1716  	case Uint:
  1717  		return uint64(*(*uint)(p))
  1718  	case Uint8:
  1719  		return uint64(*(*uint8)(p))
  1720  	case Uint16:
  1721  		return uint64(*(*uint16)(p))
  1722  	case Uint32:
  1723  		return uint64(*(*uint32)(p))
  1724  	case Uint64:
  1725  		return *(*uint64)(p)
  1726  	case Uintptr:
  1727  		return uint64(*(*uintptr)(p))
  1728  	}
  1729  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  1730  }
  1731  
  1732  // UnsafeAddr returns a pointer to v's data.
  1733  // It is for advanced clients that also import the "unsafe" package.
  1734  // It panics if v is not addressable.
  1735  func (v Value) UnsafeAddr() uintptr {
  1736  	// TODO: deprecate
  1737  	if v.typ == nil {
  1738  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  1739  	}
  1740  	if v.flag&flagAddr == 0 {
  1741  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  1742  	}
  1743  	return uintptr(v.ptr)
  1744  }
  1745  
  1746  // StringHeader is the runtime representation of a string.
  1747  // It cannot be used safely or portably and its representation may
  1748  // change in a later release.
  1749  // Moreover, the Data field is not sufficient to guarantee the data
  1750  // it references will not be garbage collected, so programs must keep
  1751  // a separate, correctly typed pointer to the underlying data.
  1752  type StringHeader struct {
  1753  	Data uintptr
  1754  	Len  int
  1755  }
  1756  
  1757  // stringHeader is a safe version of StringHeader used within this package.
  1758  type stringHeader struct {
  1759  	Data unsafe.Pointer
  1760  	Len  int
  1761  }
  1762  
  1763  // SliceHeader is the runtime representation of a slice.
  1764  // It cannot be used safely or portably and its representation may
  1765  // change in a later release.
  1766  // Moreover, the Data field is not sufficient to guarantee the data
  1767  // it references will not be garbage collected, so programs must keep
  1768  // a separate, correctly typed pointer to the underlying data.
  1769  type SliceHeader struct {
  1770  	Data uintptr
  1771  	Len  int
  1772  	Cap  int
  1773  }
  1774  
  1775  // sliceHeader is a safe version of SliceHeader used within this package.
  1776  type sliceHeader struct {
  1777  	Data unsafe.Pointer
  1778  	Len  int
  1779  	Cap  int
  1780  }
  1781  
  1782  func typesMustMatch(what string, t1, t2 Type) {
  1783  	if t1 != t2 {
  1784  		panic(what + ": " + t1.String() + " != " + t2.String())
  1785  	}
  1786  }
  1787  
  1788  // arrayAt returns the i-th element of p, a C-array whose elements are
  1789  // eltSize wide (in bytes).
  1790  func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer {
  1791  	return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize)
  1792  }
  1793  
  1794  // grow grows the slice s so that it can hold extra more values, allocating
  1795  // more capacity if needed. It also returns the old and new slice lengths.
  1796  func grow(s Value, extra int) (Value, int, int) {
  1797  	i0 := s.Len()
  1798  	i1 := i0 + extra
  1799  	if i1 < i0 {
  1800  		panic("reflect.Append: slice overflow")
  1801  	}
  1802  	m := s.Cap()
  1803  	if i1 <= m {
  1804  		return s.Slice(0, i1), i0, i1
  1805  	}
  1806  	if m == 0 {
  1807  		m = extra
  1808  	} else {
  1809  		for m < i1 {
  1810  			if i0 < 1024 {
  1811  				m += m
  1812  			} else {
  1813  				m += m / 4
  1814  			}
  1815  		}
  1816  	}
  1817  	t := MakeSlice(s.Type(), i1, m)
  1818  	Copy(t, s)
  1819  	return t, i0, i1
  1820  }
  1821  
  1822  // Append appends the values x to a slice s and returns the resulting slice.
  1823  // As in Go, each x's value must be assignable to the slice's element type.
  1824  func Append(s Value, x ...Value) Value {
  1825  	s.mustBe(Slice)
  1826  	s, i0, i1 := grow(s, len(x))
  1827  	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  1828  		s.Index(i).Set(x[j])
  1829  	}
  1830  	return s
  1831  }
  1832  
  1833  // AppendSlice appends a slice t to a slice s and returns the resulting slice.
  1834  // The slices s and t must have the same element type.
  1835  func AppendSlice(s, t Value) Value {
  1836  	s.mustBe(Slice)
  1837  	t.mustBe(Slice)
  1838  	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  1839  	s, i0, i1 := grow(s, t.Len())
  1840  	Copy(s.Slice(i0, i1), t)
  1841  	return s
  1842  }
  1843  
  1844  // Copy copies the contents of src into dst until either
  1845  // dst has been filled or src has been exhausted.
  1846  // It returns the number of elements copied.
  1847  // Dst and src each must have kind Slice or Array, and
  1848  // dst and src must have the same element type.
  1849  func Copy(dst, src Value) int {
  1850  	dk := dst.kind()
  1851  	if dk != Array && dk != Slice {
  1852  		panic(&ValueError{"reflect.Copy", dk})
  1853  	}
  1854  	if dk == Array {
  1855  		dst.mustBeAssignable()
  1856  	}
  1857  	dst.mustBeExported()
  1858  
  1859  	sk := src.kind()
  1860  	if sk != Array && sk != Slice {
  1861  		panic(&ValueError{"reflect.Copy", sk})
  1862  	}
  1863  	src.mustBeExported()
  1864  
  1865  	de := dst.typ.Elem()
  1866  	se := src.typ.Elem()
  1867  	typesMustMatch("reflect.Copy", de, se)
  1868  
  1869  	var ds, ss sliceHeader
  1870  	if dk == Array {
  1871  		ds.Data = dst.ptr
  1872  		ds.Len = dst.Len()
  1873  		ds.Cap = ds.Len
  1874  	} else {
  1875  		ds = *(*sliceHeader)(dst.ptr)
  1876  	}
  1877  	if sk == Array {
  1878  		ss.Data = src.ptr
  1879  		ss.Len = src.Len()
  1880  		ss.Cap = ss.Len
  1881  	} else {
  1882  		ss = *(*sliceHeader)(src.ptr)
  1883  	}
  1884  
  1885  	return typedslicecopy(de.common(), ds, ss)
  1886  }
  1887  
  1888  // A runtimeSelect is a single case passed to rselect.
  1889  // This must match ../runtime/select.go:/runtimeSelect
  1890  type runtimeSelect struct {
  1891  	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
  1892  	typ *rtype         // channel type
  1893  	ch  unsafe.Pointer // channel
  1894  	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  1895  }
  1896  
  1897  // rselect runs a select. It returns the index of the chosen case.
  1898  // If the case was a receive, val is filled in with the received value.
  1899  // The conventional OK bool indicates whether the receive corresponds
  1900  // to a sent value.
  1901  //go:noescape
  1902  func rselect([]runtimeSelect) (chosen int, recvOK bool)
  1903  
  1904  // A SelectDir describes the communication direction of a select case.
  1905  type SelectDir int
  1906  
  1907  // NOTE: These values must match ../runtime/select.go:/selectDir.
  1908  
  1909  const (
  1910  	_             SelectDir = iota
  1911  	SelectSend              // case Chan <- Send
  1912  	SelectRecv              // case <-Chan:
  1913  	SelectDefault           // default
  1914  )
  1915  
  1916  // A SelectCase describes a single case in a select operation.
  1917  // The kind of case depends on Dir, the communication direction.
  1918  //
  1919  // If Dir is SelectDefault, the case represents a default case.
  1920  // Chan and Send must be zero Values.
  1921  //
  1922  // If Dir is SelectSend, the case represents a send operation.
  1923  // Normally Chan's underlying value must be a channel, and Send's underlying value must be
  1924  // assignable to the channel's element type. As a special case, if Chan is a zero Value,
  1925  // then the case is ignored, and the field Send will also be ignored and may be either zero
  1926  // or non-zero.
  1927  //
  1928  // If Dir is SelectRecv, the case represents a receive operation.
  1929  // Normally Chan's underlying value must be a channel and Send must be a zero Value.
  1930  // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  1931  // When a receive operation is selected, the received Value is returned by Select.
  1932  //
  1933  type SelectCase struct {
  1934  	Dir  SelectDir // direction of case
  1935  	Chan Value     // channel to use (for send or receive)
  1936  	Send Value     // value to send (for send)
  1937  }
  1938  
  1939  // Select executes a select operation described by the list of cases.
  1940  // Like the Go select statement, it blocks until at least one of the cases
  1941  // can proceed, makes a uniform pseudo-random choice,
  1942  // and then executes that case. It returns the index of the chosen case
  1943  // and, if that case was a receive operation, the value received and a
  1944  // boolean indicating whether the value corresponds to a send on the channel
  1945  // (as opposed to a zero value received because the channel is closed).
  1946  func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  1947  	// NOTE: Do not trust that caller is not modifying cases data underfoot.
  1948  	// The range is safe because the caller cannot modify our copy of the len
  1949  	// and each iteration makes its own copy of the value c.
  1950  	runcases := make([]runtimeSelect, len(cases))
  1951  	haveDefault := false
  1952  	for i, c := range cases {
  1953  		rc := &runcases[i]
  1954  		rc.dir = c.Dir
  1955  		switch c.Dir {
  1956  		default:
  1957  			panic("reflect.Select: invalid Dir")
  1958  
  1959  		case SelectDefault: // default
  1960  			if haveDefault {
  1961  				panic("reflect.Select: multiple default cases")
  1962  			}
  1963  			haveDefault = true
  1964  			if c.Chan.IsValid() {
  1965  				panic("reflect.Select: default case has Chan value")
  1966  			}
  1967  			if c.Send.IsValid() {
  1968  				panic("reflect.Select: default case has Send value")
  1969  			}
  1970  
  1971  		case SelectSend:
  1972  			ch := c.Chan
  1973  			if !ch.IsValid() {
  1974  				break
  1975  			}
  1976  			ch.mustBe(Chan)
  1977  			ch.mustBeExported()
  1978  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  1979  			if ChanDir(tt.dir)&SendDir == 0 {
  1980  				panic("reflect.Select: SendDir case using recv-only channel")
  1981  			}
  1982  			rc.ch = ch.pointer()
  1983  			rc.typ = &tt.rtype
  1984  			v := c.Send
  1985  			if !v.IsValid() {
  1986  				panic("reflect.Select: SendDir case missing Send value")
  1987  			}
  1988  			v.mustBeExported()
  1989  			v = v.assignTo("reflect.Select", tt.elem, nil)
  1990  			if v.flag&flagIndir != 0 {
  1991  				rc.val = v.ptr
  1992  			} else {
  1993  				rc.val = unsafe.Pointer(&v.ptr)
  1994  			}
  1995  
  1996  		case SelectRecv:
  1997  			if c.Send.IsValid() {
  1998  				panic("reflect.Select: RecvDir case has Send value")
  1999  			}
  2000  			ch := c.Chan
  2001  			if !ch.IsValid() {
  2002  				break
  2003  			}
  2004  			ch.mustBe(Chan)
  2005  			ch.mustBeExported()
  2006  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  2007  			if ChanDir(tt.dir)&RecvDir == 0 {
  2008  				panic("reflect.Select: RecvDir case using send-only channel")
  2009  			}
  2010  			rc.ch = ch.pointer()
  2011  			rc.typ = &tt.rtype
  2012  			rc.val = unsafe_New(tt.elem)
  2013  		}
  2014  	}
  2015  
  2016  	chosen, recvOK = rselect(runcases)
  2017  	if runcases[chosen].dir == SelectRecv {
  2018  		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  2019  		t := tt.elem
  2020  		p := runcases[chosen].val
  2021  		fl := flag(t.Kind())
  2022  		if ifaceIndir(t) {
  2023  			recv = Value{t, p, fl | flagIndir}
  2024  		} else {
  2025  			recv = Value{t, *(*unsafe.Pointer)(p), fl}
  2026  		}
  2027  	}
  2028  	return chosen, recv, recvOK
  2029  }
  2030  
  2031  /*
  2032   * constructors
  2033   */
  2034  
  2035  // implemented in package runtime
  2036  func unsafe_New(*rtype) unsafe.Pointer
  2037  func unsafe_NewArray(*rtype, int) unsafe.Pointer
  2038  
  2039  // MakeSlice creates a new zero-initialized slice value
  2040  // for the specified slice type, length, and capacity.
  2041  func MakeSlice(typ Type, len, cap int) Value {
  2042  	if typ.Kind() != Slice {
  2043  		panic("reflect.MakeSlice of non-slice type")
  2044  	}
  2045  	if len < 0 {
  2046  		panic("reflect.MakeSlice: negative len")
  2047  	}
  2048  	if cap < 0 {
  2049  		panic("reflect.MakeSlice: negative cap")
  2050  	}
  2051  	if len > cap {
  2052  		panic("reflect.MakeSlice: len > cap")
  2053  	}
  2054  
  2055  	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
  2056  	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2057  }
  2058  
  2059  // MakeChan creates a new channel with the specified type and buffer size.
  2060  func MakeChan(typ Type, buffer int) Value {
  2061  	if typ.Kind() != Chan {
  2062  		panic("reflect.MakeChan of non-chan type")
  2063  	}
  2064  	if buffer < 0 {
  2065  		panic("reflect.MakeChan: negative buffer size")
  2066  	}
  2067  	if typ.ChanDir() != BothDir {
  2068  		panic("reflect.MakeChan: unidirectional channel type")
  2069  	}
  2070  	ch := makechan(typ.(*rtype), uint64(buffer))
  2071  	return Value{typ.common(), ch, flag(Chan)}
  2072  }
  2073  
  2074  // MakeMap creates a new map of the specified type.
  2075  func MakeMap(typ Type) Value {
  2076  	if typ.Kind() != Map {
  2077  		panic("reflect.MakeMap of non-map type")
  2078  	}
  2079  	m := makemap(typ.(*rtype))
  2080  	return Value{typ.common(), m, flag(Map)}
  2081  }
  2082  
  2083  // Indirect returns the value that v points to.
  2084  // If v is a nil pointer, Indirect returns a zero Value.
  2085  // If v is not a pointer, Indirect returns v.
  2086  func Indirect(v Value) Value {
  2087  	if v.Kind() != Ptr {
  2088  		return v
  2089  	}
  2090  	return v.Elem()
  2091  }
  2092  
  2093  // ValueOf returns a new Value initialized to the concrete value
  2094  // stored in the interface i. ValueOf(nil) returns the zero Value.
  2095  func ValueOf(i interface{}) Value {
  2096  	if i == nil {
  2097  		return Value{}
  2098  	}
  2099  
  2100  	// TODO: Maybe allow contents of a Value to live on the stack.
  2101  	// For now we make the contents always escape to the heap. It
  2102  	// makes life easier in a few places (see chanrecv/mapassign
  2103  	// comment below).
  2104  	escapes(i)
  2105  
  2106  	return unpackEface(i)
  2107  }
  2108  
  2109  // Zero returns a Value representing the zero value for the specified type.
  2110  // The result is different from the zero value of the Value struct,
  2111  // which represents no value at all.
  2112  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2113  // The returned value is neither addressable nor settable.
  2114  func Zero(typ Type) Value {
  2115  	if typ == nil {
  2116  		panic("reflect: Zero(nil)")
  2117  	}
  2118  	t := typ.common()
  2119  	fl := flag(t.Kind())
  2120  	if ifaceIndir(t) {
  2121  		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
  2122  	}
  2123  	return Value{t, nil, fl}
  2124  }
  2125  
  2126  // New returns a Value representing a pointer to a new zero value
  2127  // for the specified type. That is, the returned Value's Type is PtrTo(typ).
  2128  func New(typ Type) Value {
  2129  	if typ == nil {
  2130  		panic("reflect: New(nil)")
  2131  	}
  2132  	ptr := unsafe_New(typ.(*rtype))
  2133  	fl := flag(Ptr)
  2134  	return Value{typ.common().ptrTo(), ptr, fl}
  2135  }
  2136  
  2137  // NewAt returns a Value representing a pointer to a value of the
  2138  // specified type, using p as that pointer.
  2139  func NewAt(typ Type, p unsafe.Pointer) Value {
  2140  	fl := flag(Ptr)
  2141  	return Value{typ.common().ptrTo(), p, fl}
  2142  }
  2143  
  2144  // assignTo returns a value v that can be assigned directly to typ.
  2145  // It panics if v is not assignable to typ.
  2146  // For a conversion to an interface type, target is a suggested scratch space to use.
  2147  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2148  	if v.flag&flagMethod != 0 {
  2149  		v = makeMethodValue(context, v)
  2150  	}
  2151  
  2152  	switch {
  2153  	case directlyAssignable(dst, v.typ):
  2154  		// Overwrite type so that they match.
  2155  		// Same memory layout, so no harm done.
  2156  		v.typ = dst
  2157  		fl := v.flag & (flagRO | flagAddr | flagIndir)
  2158  		fl |= flag(dst.Kind())
  2159  		return Value{dst, v.ptr, fl}
  2160  
  2161  	case implements(dst, v.typ):
  2162  		if target == nil {
  2163  			target = unsafe_New(dst)
  2164  		}
  2165  		x := valueInterface(v, false)
  2166  		if dst.NumMethod() == 0 {
  2167  			*(*interface{})(target) = x
  2168  		} else {
  2169  			ifaceE2I(dst, x, target)
  2170  		}
  2171  		return Value{dst, target, flagIndir | flag(Interface)}
  2172  	}
  2173  
  2174  	// Failed.
  2175  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2176  }
  2177  
  2178  // Convert returns the value v converted to type t.
  2179  // If the usual Go conversion rules do not allow conversion
  2180  // of the value v to type t, Convert panics.
  2181  func (v Value) Convert(t Type) Value {
  2182  	if v.flag&flagMethod != 0 {
  2183  		v = makeMethodValue("Convert", v)
  2184  	}
  2185  	op := convertOp(t.common(), v.typ)
  2186  	if op == nil {
  2187  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2188  	}
  2189  	return op(v, t)
  2190  }
  2191  
  2192  // convertOp returns the function to convert a value of type src
  2193  // to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2194  func convertOp(dst, src *rtype) func(Value, Type) Value {
  2195  	switch src.Kind() {
  2196  	case Int, Int8, Int16, Int32, Int64:
  2197  		switch dst.Kind() {
  2198  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2199  			return cvtInt
  2200  		case Float32, Float64:
  2201  			return cvtIntFloat
  2202  		case String:
  2203  			return cvtIntString
  2204  		}
  2205  
  2206  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2207  		switch dst.Kind() {
  2208  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2209  			return cvtUint
  2210  		case Float32, Float64:
  2211  			return cvtUintFloat
  2212  		case String:
  2213  			return cvtUintString
  2214  		}
  2215  
  2216  	case Float32, Float64:
  2217  		switch dst.Kind() {
  2218  		case Int, Int8, Int16, Int32, Int64:
  2219  			return cvtFloatInt
  2220  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2221  			return cvtFloatUint
  2222  		case Float32, Float64:
  2223  			return cvtFloat
  2224  		}
  2225  
  2226  	case Complex64, Complex128:
  2227  		switch dst.Kind() {
  2228  		case Complex64, Complex128:
  2229  			return cvtComplex
  2230  		}
  2231  
  2232  	case String:
  2233  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2234  			switch dst.Elem().Kind() {
  2235  			case Uint8:
  2236  				return cvtStringBytes
  2237  			case Int32:
  2238  				return cvtStringRunes
  2239  			}
  2240  		}
  2241  
  2242  	case Slice:
  2243  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2244  			switch src.Elem().Kind() {
  2245  			case Uint8:
  2246  				return cvtBytesString
  2247  			case Int32:
  2248  				return cvtRunesString
  2249  			}
  2250  		}
  2251  	}
  2252  
  2253  	// dst and src have same underlying type.
  2254  	if haveIdenticalUnderlyingType(dst, src, false) {
  2255  		return cvtDirect
  2256  	}
  2257  
  2258  	// dst and src are unnamed pointer types with same underlying base type.
  2259  	if dst.Kind() == Ptr && dst.Name() == "" &&
  2260  		src.Kind() == Ptr && src.Name() == "" &&
  2261  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
  2262  		return cvtDirect
  2263  	}
  2264  
  2265  	if implements(dst, src) {
  2266  		if src.Kind() == Interface {
  2267  			return cvtI2I
  2268  		}
  2269  		return cvtT2I
  2270  	}
  2271  
  2272  	return nil
  2273  }
  2274  
  2275  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2276  // where t is a signed or unsigned int type.
  2277  func makeInt(f flag, bits uint64, t Type) Value {
  2278  	typ := t.common()
  2279  	ptr := unsafe_New(typ)
  2280  	switch typ.size {
  2281  	case 1:
  2282  		*(*uint8)(ptr) = uint8(bits)
  2283  	case 2:
  2284  		*(*uint16)(ptr) = uint16(bits)
  2285  	case 4:
  2286  		*(*uint32)(ptr) = uint32(bits)
  2287  	case 8:
  2288  		*(*uint64)(ptr) = bits
  2289  	}
  2290  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2291  }
  2292  
  2293  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2294  // where t is a float32 or float64 type.
  2295  func makeFloat(f flag, v float64, t Type) Value {
  2296  	typ := t.common()
  2297  	ptr := unsafe_New(typ)
  2298  	switch typ.size {
  2299  	case 4:
  2300  		*(*float32)(ptr) = float32(v)
  2301  	case 8:
  2302  		*(*float64)(ptr) = v
  2303  	}
  2304  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2305  }
  2306  
  2307  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2308  // where t is a complex64 or complex128 type.
  2309  func makeComplex(f flag, v complex128, t Type) Value {
  2310  	typ := t.common()
  2311  	ptr := unsafe_New(typ)
  2312  	switch typ.size {
  2313  	case 8:
  2314  		*(*complex64)(ptr) = complex64(v)
  2315  	case 16:
  2316  		*(*complex128)(ptr) = v
  2317  	}
  2318  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2319  }
  2320  
  2321  func makeString(f flag, v string, t Type) Value {
  2322  	ret := New(t).Elem()
  2323  	ret.SetString(v)
  2324  	ret.flag = ret.flag&^flagAddr | f
  2325  	return ret
  2326  }
  2327  
  2328  func makeBytes(f flag, v []byte, t Type) Value {
  2329  	ret := New(t).Elem()
  2330  	ret.SetBytes(v)
  2331  	ret.flag = ret.flag&^flagAddr | f
  2332  	return ret
  2333  }
  2334  
  2335  func makeRunes(f flag, v []rune, t Type) Value {
  2336  	ret := New(t).Elem()
  2337  	ret.setRunes(v)
  2338  	ret.flag = ret.flag&^flagAddr | f
  2339  	return ret
  2340  }
  2341  
  2342  // These conversion functions are returned by convertOp
  2343  // for classes of conversions. For example, the first function, cvtInt,
  2344  // takes any value v of signed int type and returns the value converted
  2345  // to type t, where t is any signed or unsigned int type.
  2346  
  2347  // convertOp: intXX -> [u]intXX
  2348  func cvtInt(v Value, t Type) Value {
  2349  	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
  2350  }
  2351  
  2352  // convertOp: uintXX -> [u]intXX
  2353  func cvtUint(v Value, t Type) Value {
  2354  	return makeInt(v.flag&flagRO, v.Uint(), t)
  2355  }
  2356  
  2357  // convertOp: floatXX -> intXX
  2358  func cvtFloatInt(v Value, t Type) Value {
  2359  	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
  2360  }
  2361  
  2362  // convertOp: floatXX -> uintXX
  2363  func cvtFloatUint(v Value, t Type) Value {
  2364  	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
  2365  }
  2366  
  2367  // convertOp: intXX -> floatXX
  2368  func cvtIntFloat(v Value, t Type) Value {
  2369  	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
  2370  }
  2371  
  2372  // convertOp: uintXX -> floatXX
  2373  func cvtUintFloat(v Value, t Type) Value {
  2374  	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
  2375  }
  2376  
  2377  // convertOp: floatXX -> floatXX
  2378  func cvtFloat(v Value, t Type) Value {
  2379  	return makeFloat(v.flag&flagRO, v.Float(), t)
  2380  }
  2381  
  2382  // convertOp: complexXX -> complexXX
  2383  func cvtComplex(v Value, t Type) Value {
  2384  	return makeComplex(v.flag&flagRO, v.Complex(), t)
  2385  }
  2386  
  2387  // convertOp: intXX -> string
  2388  func cvtIntString(v Value, t Type) Value {
  2389  	return makeString(v.flag&flagRO, string(v.Int()), t)
  2390  }
  2391  
  2392  // convertOp: uintXX -> string
  2393  func cvtUintString(v Value, t Type) Value {
  2394  	return makeString(v.flag&flagRO, string(v.Uint()), t)
  2395  }
  2396  
  2397  // convertOp: []byte -> string
  2398  func cvtBytesString(v Value, t Type) Value {
  2399  	return makeString(v.flag&flagRO, string(v.Bytes()), t)
  2400  }
  2401  
  2402  // convertOp: string -> []byte
  2403  func cvtStringBytes(v Value, t Type) Value {
  2404  	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
  2405  }
  2406  
  2407  // convertOp: []rune -> string
  2408  func cvtRunesString(v Value, t Type) Value {
  2409  	return makeString(v.flag&flagRO, string(v.runes()), t)
  2410  }
  2411  
  2412  // convertOp: string -> []rune
  2413  func cvtStringRunes(v Value, t Type) Value {
  2414  	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
  2415  }
  2416  
  2417  // convertOp: direct copy
  2418  func cvtDirect(v Value, typ Type) Value {
  2419  	f := v.flag
  2420  	t := typ.common()
  2421  	ptr := v.ptr
  2422  	if f&flagAddr != 0 {
  2423  		// indirect, mutable word - make a copy
  2424  		c := unsafe_New(t)
  2425  		typedmemmove(t, c, ptr)
  2426  		ptr = c
  2427  		f &^= flagAddr
  2428  	}
  2429  	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
  2430  }
  2431  
  2432  // convertOp: concrete -> interface
  2433  func cvtT2I(v Value, typ Type) Value {
  2434  	target := unsafe_New(typ.common())
  2435  	x := valueInterface(v, false)
  2436  	if typ.NumMethod() == 0 {
  2437  		*(*interface{})(target) = x
  2438  	} else {
  2439  		ifaceE2I(typ.(*rtype), x, target)
  2440  	}
  2441  	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
  2442  }
  2443  
  2444  // convertOp: interface -> interface
  2445  func cvtI2I(v Value, typ Type) Value {
  2446  	if v.IsNil() {
  2447  		ret := Zero(typ)
  2448  		ret.flag |= v.flag & flagRO
  2449  		return ret
  2450  	}
  2451  	return cvtT2I(v.Elem(), typ)
  2452  }
  2453  
  2454  // implemented in ../runtime
  2455  func chancap(ch unsafe.Pointer) int
  2456  func chanclose(ch unsafe.Pointer)
  2457  func chanlen(ch unsafe.Pointer) int
  2458  
  2459  // Note: some of the noescape annotations below are technically a lie,
  2460  // but safe in the context of this package. Functions like chansend
  2461  // and mapassign don't escape the referent, but may escape anything
  2462  // the referent points to (they do shallow copies of the referent).
  2463  // It is safe in this package because the referent may only point
  2464  // to something a Value may point to, and that is always in the heap
  2465  // (due to the escapes() call in ValueOf).
  2466  
  2467  //go:noescape
  2468  func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  2469  
  2470  //go:noescape
  2471  func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  2472  
  2473  func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
  2474  func makemap(t *rtype) (m unsafe.Pointer)
  2475  
  2476  //go:noescape
  2477  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2478  
  2479  //go:noescape
  2480  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2481  
  2482  //go:noescape
  2483  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2484  
  2485  // m escapes into the return value, but the caller of mapiterinit
  2486  // doesn't let the return value escape.
  2487  //go:noescape
  2488  func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  2489  
  2490  //go:noescape
  2491  func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  2492  
  2493  //go:noescape
  2494  func mapiternext(it unsafe.Pointer)
  2495  
  2496  //go:noescape
  2497  func maplen(m unsafe.Pointer) int
  2498  
  2499  // call calls fn with a copy of the n argument bytes pointed at by arg.
  2500  // After fn returns, reflectcall copies n-retoffset result bytes
  2501  // back into arg+retoffset before returning. If copying result bytes back,
  2502  // the caller must pass the argument frame type as argtype, so that
  2503  // call can execute appropriate write barriers during the copy.
  2504  func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
  2505  
  2506  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  2507  
  2508  // typedmemmove copies a value of type t to dst from src.
  2509  //go:noescape
  2510  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  2511  
  2512  // typedmemmovepartial is like typedmemmove but assumes that
  2513  // dst and src point off bytes into the value and only copies size bytes.
  2514  //go:noescape
  2515  func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  2516  
  2517  // typedslicecopy copies a slice of elemType values from src to dst,
  2518  // returning the number of elements copied.
  2519  //go:noescape
  2520  func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
  2521  
  2522  //go:noescape
  2523  func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
  2524  
  2525  // Dummy annotation marking that the value x escapes,
  2526  // for use in cases where the reflect code is so clever that
  2527  // the compiler cannot follow.
  2528  func escapes(x interface{}) {
  2529  	if dummy.b {
  2530  		dummy.x = x
  2531  	}
  2532  }
  2533  
  2534  var dummy struct {
  2535  	b bool
  2536  	x interface{}
  2537  }