github.com/FenixAra/go@v0.0.0-20170127160404-96ea0918e670/src/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  package time
    10  
    11  import "errors"
    12  
    13  // A Time represents an instant in time with nanosecond precision.
    14  //
    15  // Programs using times should typically store and pass them as values,
    16  // not pointers. That is, time variables and struct fields should be of
    17  // type time.Time, not *time.Time. A Time value can be used by
    18  // multiple goroutines simultaneously.
    19  //
    20  // Time instants can be compared using the Before, After, and Equal methods.
    21  // The Sub method subtracts two instants, producing a Duration.
    22  // The Add method adds a Time and a Duration, producing a Time.
    23  //
    24  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    25  // As this time is unlikely to come up in practice, the IsZero method gives
    26  // a simple way of detecting a time that has not been initialized explicitly.
    27  //
    28  // Each Time has associated with it a Location, consulted when computing the
    29  // presentation form of the time, such as in the Format, Hour, and Year methods.
    30  // The methods Local, UTC, and In return a Time with a specific location.
    31  // Changing the location in this way changes only the presentation; it does not
    32  // change the instant in time being denoted and therefore does not affect the
    33  // computations described in earlier paragraphs.
    34  //
    35  // Note that the Go == operator compares not just the time instant but also the
    36  // Location. Therefore, Time values should not be used as map or database keys
    37  // without first guaranteeing that the identical Location has been set for all
    38  // values, which can be achieved through use of the UTC or Local method.
    39  //
    40  type Time struct {
    41  	// sec gives the number of seconds elapsed since
    42  	// January 1, year 1 00:00:00 UTC.
    43  	sec int64
    44  
    45  	// nsec specifies a non-negative nanosecond
    46  	// offset within the second named by Seconds.
    47  	// It must be in the range [0, 999999999].
    48  	nsec int32
    49  
    50  	// loc specifies the Location that should be used to
    51  	// determine the minute, hour, month, day, and year
    52  	// that correspond to this Time.
    53  	// The nil location means UTC.
    54  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
    55  	loc *Location
    56  }
    57  
    58  func (t *Time) setLoc(loc *Location) {
    59  	if loc == &utcLoc {
    60  		loc = nil
    61  	}
    62  	t.loc = loc
    63  }
    64  
    65  // After reports whether the time instant t is after u.
    66  func (t Time) After(u Time) bool {
    67  	return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
    68  }
    69  
    70  // Before reports whether the time instant t is before u.
    71  func (t Time) Before(u Time) bool {
    72  	return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
    73  }
    74  
    75  // Equal reports whether t and u represent the same time instant.
    76  // Two times can be equal even if they are in different locations.
    77  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
    78  // Do not use == with Time values.
    79  func (t Time) Equal(u Time) bool {
    80  	return t.sec == u.sec && t.nsec == u.nsec
    81  }
    82  
    83  // A Month specifies a month of the year (January = 1, ...).
    84  type Month int
    85  
    86  const (
    87  	January Month = 1 + iota
    88  	February
    89  	March
    90  	April
    91  	May
    92  	June
    93  	July
    94  	August
    95  	September
    96  	October
    97  	November
    98  	December
    99  )
   100  
   101  var months = [...]string{
   102  	"January",
   103  	"February",
   104  	"March",
   105  	"April",
   106  	"May",
   107  	"June",
   108  	"July",
   109  	"August",
   110  	"September",
   111  	"October",
   112  	"November",
   113  	"December",
   114  }
   115  
   116  // String returns the English name of the month ("January", "February", ...).
   117  func (m Month) String() string {
   118  	if January <= m && m <= December {
   119  		return months[m-1]
   120  	}
   121  	buf := make([]byte, 20)
   122  	n := fmtInt(buf, uint64(m))
   123  	return "%!Month(" + string(buf[n:]) + ")"
   124  }
   125  
   126  // A Weekday specifies a day of the week (Sunday = 0, ...).
   127  type Weekday int
   128  
   129  const (
   130  	Sunday Weekday = iota
   131  	Monday
   132  	Tuesday
   133  	Wednesday
   134  	Thursday
   135  	Friday
   136  	Saturday
   137  )
   138  
   139  var days = [...]string{
   140  	"Sunday",
   141  	"Monday",
   142  	"Tuesday",
   143  	"Wednesday",
   144  	"Thursday",
   145  	"Friday",
   146  	"Saturday",
   147  }
   148  
   149  // String returns the English name of the day ("Sunday", "Monday", ...).
   150  func (d Weekday) String() string { return days[d] }
   151  
   152  // Computations on time.
   153  //
   154  // The zero value for a Time is defined to be
   155  //	January 1, year 1, 00:00:00.000000000 UTC
   156  // which (1) looks like a zero, or as close as you can get in a date
   157  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   158  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   159  // non-negative year even in time zones west of UTC, unlike 1-1-0
   160  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   161  //
   162  // The zero Time value does not force a specific epoch for the time
   163  // representation. For example, to use the Unix epoch internally, we
   164  // could define that to distinguish a zero value from Jan 1 1970, that
   165  // time would be represented by sec=-1, nsec=1e9.  However, it does
   166  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   167  // epoch, and that's what we do.
   168  //
   169  // The Add and Sub computations are oblivious to the choice of epoch.
   170  //
   171  // The presentation computations - year, month, minute, and so on - all
   172  // rely heavily on division and modulus by positive constants. For
   173  // calendrical calculations we want these divisions to round down, even
   174  // for negative values, so that the remainder is always positive, but
   175  // Go's division (like most hardware division instructions) rounds to
   176  // zero. We can still do those computations and then adjust the result
   177  // for a negative numerator, but it's annoying to write the adjustment
   178  // over and over. Instead, we can change to a different epoch so long
   179  // ago that all the times we care about will be positive, and then round
   180  // to zero and round down coincide. These presentation routines already
   181  // have to add the zone offset, so adding the translation to the
   182  // alternate epoch is cheap. For example, having a non-negative time t
   183  // means that we can write
   184  //
   185  //	sec = t % 60
   186  //
   187  // instead of
   188  //
   189  //	sec = t % 60
   190  //	if sec < 0 {
   191  //		sec += 60
   192  //	}
   193  //
   194  // everywhere.
   195  //
   196  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   197  // printed for 1970-2469 will apply as well to 2370-2769.  Even the days
   198  // of the week match up. It simplifies the computations to choose the
   199  // cycle boundaries so that the exceptional years are always delayed as
   200  // long as possible. That means choosing a year equal to 1 mod 400, so
   201  // that the first leap year is the 4th year, the first missed leap year
   202  // is the 100th year, and the missed missed leap year is the 400th year.
   203  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   204  // for 2401-2800.
   205  //
   206  // Finally, it's convenient if the delta between the Unix epoch and
   207  // long-ago epoch is representable by an int64 constant.
   208  //
   209  // These three considerations—choose an epoch as early as possible, that
   210  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   211  // earlier than 1970—bring us to the year -292277022399.  We refer to
   212  // this year as the absolute zero year, and to times measured as a uint64
   213  // seconds since this year as absolute times.
   214  //
   215  // Times measured as an int64 seconds since the year 1—the representation
   216  // used for Time's sec field—are called internal times.
   217  //
   218  // Times measured as an int64 seconds since the year 1970 are called Unix
   219  // times.
   220  //
   221  // It is tempting to just use the year 1 as the absolute epoch, defining
   222  // that the routines are only valid for years >= 1.  However, the
   223  // routines would then be invalid when displaying the epoch in time zones
   224  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   225  // printing the zero time correctly isn't supported in half the time
   226  // zones. By comparison, it's reasonable to mishandle some times in
   227  // the year -292277022399.
   228  //
   229  // All this is opaque to clients of the API and can be changed if a
   230  // better implementation presents itself.
   231  
   232  const (
   233  	// The unsigned zero year for internal calculations.
   234  	// Must be 1 mod 400, and times before it will not compute correctly,
   235  	// but otherwise can be changed at will.
   236  	absoluteZeroYear = -292277022399
   237  
   238  	// The year of the zero Time.
   239  	// Assumed by the unixToInternal computation below.
   240  	internalYear = 1
   241  
   242  	// Offsets to convert between internal and absolute or Unix times.
   243  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   244  	internalToAbsolute       = -absoluteToInternal
   245  
   246  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   247  	internalToUnix int64 = -unixToInternal
   248  )
   249  
   250  // IsZero reports whether t represents the zero time instant,
   251  // January 1, year 1, 00:00:00 UTC.
   252  func (t Time) IsZero() bool {
   253  	return t.sec == 0 && t.nsec == 0
   254  }
   255  
   256  // abs returns the time t as an absolute time, adjusted by the zone offset.
   257  // It is called when computing a presentation property like Month or Hour.
   258  func (t Time) abs() uint64 {
   259  	l := t.loc
   260  	// Avoid function calls when possible.
   261  	if l == nil || l == &localLoc {
   262  		l = l.get()
   263  	}
   264  	sec := t.sec + internalToUnix
   265  	if l != &utcLoc {
   266  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   267  			sec += int64(l.cacheZone.offset)
   268  		} else {
   269  			_, offset, _, _, _ := l.lookup(sec)
   270  			sec += int64(offset)
   271  		}
   272  	}
   273  	return uint64(sec + (unixToInternal + internalToAbsolute))
   274  }
   275  
   276  // locabs is a combination of the Zone and abs methods,
   277  // extracting both return values from a single zone lookup.
   278  func (t Time) locabs() (name string, offset int, abs uint64) {
   279  	l := t.loc
   280  	if l == nil || l == &localLoc {
   281  		l = l.get()
   282  	}
   283  	// Avoid function call if we hit the local time cache.
   284  	sec := t.sec + internalToUnix
   285  	if l != &utcLoc {
   286  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   287  			name = l.cacheZone.name
   288  			offset = l.cacheZone.offset
   289  		} else {
   290  			name, offset, _, _, _ = l.lookup(sec)
   291  		}
   292  		sec += int64(offset)
   293  	} else {
   294  		name = "UTC"
   295  	}
   296  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   297  	return
   298  }
   299  
   300  // Date returns the year, month, and day in which t occurs.
   301  func (t Time) Date() (year int, month Month, day int) {
   302  	year, month, day, _ = t.date(true)
   303  	return
   304  }
   305  
   306  // Year returns the year in which t occurs.
   307  func (t Time) Year() int {
   308  	year, _, _, _ := t.date(false)
   309  	return year
   310  }
   311  
   312  // Month returns the month of the year specified by t.
   313  func (t Time) Month() Month {
   314  	_, month, _, _ := t.date(true)
   315  	return month
   316  }
   317  
   318  // Day returns the day of the month specified by t.
   319  func (t Time) Day() int {
   320  	_, _, day, _ := t.date(true)
   321  	return day
   322  }
   323  
   324  // Weekday returns the day of the week specified by t.
   325  func (t Time) Weekday() Weekday {
   326  	return absWeekday(t.abs())
   327  }
   328  
   329  // absWeekday is like Weekday but operates on an absolute time.
   330  func absWeekday(abs uint64) Weekday {
   331  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   332  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   333  	return Weekday(int(sec) / secondsPerDay)
   334  }
   335  
   336  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   337  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   338  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   339  // of year n+1.
   340  func (t Time) ISOWeek() (year, week int) {
   341  	year, month, day, yday := t.date(true)
   342  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   343  	const (
   344  		Mon int = iota
   345  		Tue
   346  		Wed
   347  		Thu
   348  		Fri
   349  		Sat
   350  		Sun
   351  	)
   352  
   353  	// Calculate week as number of Mondays in year up to
   354  	// and including today, plus 1 because the first week is week 0.
   355  	// Putting the + 1 inside the numerator as a + 7 keeps the
   356  	// numerator from being negative, which would cause it to
   357  	// round incorrectly.
   358  	week = (yday - wday + 7) / 7
   359  
   360  	// The week number is now correct under the assumption
   361  	// that the first Monday of the year is in week 1.
   362  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   363  	// is actually in week 2.
   364  	jan1wday := (wday - yday + 7*53) % 7
   365  	if Tue <= jan1wday && jan1wday <= Thu {
   366  		week++
   367  	}
   368  
   369  	// If the week number is still 0, we're in early January but in
   370  	// the last week of last year.
   371  	if week == 0 {
   372  		year--
   373  		week = 52
   374  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   375  		// meaning Jan 1 of the next year is a Friday
   376  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   377  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   378  			week++
   379  		}
   380  	}
   381  
   382  	// December 29 to 31 are in week 1 of next year if
   383  	// they are after the last Thursday of the year and
   384  	// December 31 is a Monday, Tuesday, or Wednesday.
   385  	if month == December && day >= 29 && wday < Thu {
   386  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   387  			year++
   388  			week = 1
   389  		}
   390  	}
   391  
   392  	return
   393  }
   394  
   395  // Clock returns the hour, minute, and second within the day specified by t.
   396  func (t Time) Clock() (hour, min, sec int) {
   397  	return absClock(t.abs())
   398  }
   399  
   400  // absClock is like clock but operates on an absolute time.
   401  func absClock(abs uint64) (hour, min, sec int) {
   402  	sec = int(abs % secondsPerDay)
   403  	hour = sec / secondsPerHour
   404  	sec -= hour * secondsPerHour
   405  	min = sec / secondsPerMinute
   406  	sec -= min * secondsPerMinute
   407  	return
   408  }
   409  
   410  // Hour returns the hour within the day specified by t, in the range [0, 23].
   411  func (t Time) Hour() int {
   412  	return int(t.abs()%secondsPerDay) / secondsPerHour
   413  }
   414  
   415  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   416  func (t Time) Minute() int {
   417  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   418  }
   419  
   420  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   421  func (t Time) Second() int {
   422  	return int(t.abs() % secondsPerMinute)
   423  }
   424  
   425  // Nanosecond returns the nanosecond offset within the second specified by t,
   426  // in the range [0, 999999999].
   427  func (t Time) Nanosecond() int {
   428  	return int(t.nsec)
   429  }
   430  
   431  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   432  // and [1,366] in leap years.
   433  func (t Time) YearDay() int {
   434  	_, _, _, yday := t.date(false)
   435  	return yday + 1
   436  }
   437  
   438  // A Duration represents the elapsed time between two instants
   439  // as an int64 nanosecond count. The representation limits the
   440  // largest representable duration to approximately 290 years.
   441  type Duration int64
   442  
   443  const (
   444  	minDuration Duration = -1 << 63
   445  	maxDuration Duration = 1<<63 - 1
   446  )
   447  
   448  // Common durations. There is no definition for units of Day or larger
   449  // to avoid confusion across daylight savings time zone transitions.
   450  //
   451  // To count the number of units in a Duration, divide:
   452  //	second := time.Second
   453  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   454  //
   455  // To convert an integer number of units to a Duration, multiply:
   456  //	seconds := 10
   457  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   458  //
   459  const (
   460  	Nanosecond  Duration = 1
   461  	Microsecond          = 1000 * Nanosecond
   462  	Millisecond          = 1000 * Microsecond
   463  	Second               = 1000 * Millisecond
   464  	Minute               = 60 * Second
   465  	Hour                 = 60 * Minute
   466  )
   467  
   468  // String returns a string representing the duration in the form "72h3m0.5s".
   469  // Leading zero units are omitted. As a special case, durations less than one
   470  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   471  // that the leading digit is non-zero. The zero duration formats as 0s.
   472  func (d Duration) String() string {
   473  	// Largest time is 2540400h10m10.000000000s
   474  	var buf [32]byte
   475  	w := len(buf)
   476  
   477  	u := uint64(d)
   478  	neg := d < 0
   479  	if neg {
   480  		u = -u
   481  	}
   482  
   483  	if u < uint64(Second) {
   484  		// Special case: if duration is smaller than a second,
   485  		// use smaller units, like 1.2ms
   486  		var prec int
   487  		w--
   488  		buf[w] = 's'
   489  		w--
   490  		switch {
   491  		case u == 0:
   492  			return "0s"
   493  		case u < uint64(Microsecond):
   494  			// print nanoseconds
   495  			prec = 0
   496  			buf[w] = 'n'
   497  		case u < uint64(Millisecond):
   498  			// print microseconds
   499  			prec = 3
   500  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   501  			w-- // Need room for two bytes.
   502  			copy(buf[w:], "µ")
   503  		default:
   504  			// print milliseconds
   505  			prec = 6
   506  			buf[w] = 'm'
   507  		}
   508  		w, u = fmtFrac(buf[:w], u, prec)
   509  		w = fmtInt(buf[:w], u)
   510  	} else {
   511  		w--
   512  		buf[w] = 's'
   513  
   514  		w, u = fmtFrac(buf[:w], u, 9)
   515  
   516  		// u is now integer seconds
   517  		w = fmtInt(buf[:w], u%60)
   518  		u /= 60
   519  
   520  		// u is now integer minutes
   521  		if u > 0 {
   522  			w--
   523  			buf[w] = 'm'
   524  			w = fmtInt(buf[:w], u%60)
   525  			u /= 60
   526  
   527  			// u is now integer hours
   528  			// Stop at hours because days can be different lengths.
   529  			if u > 0 {
   530  				w--
   531  				buf[w] = 'h'
   532  				w = fmtInt(buf[:w], u)
   533  			}
   534  		}
   535  	}
   536  
   537  	if neg {
   538  		w--
   539  		buf[w] = '-'
   540  	}
   541  
   542  	return string(buf[w:])
   543  }
   544  
   545  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   546  // tail of buf, omitting trailing zeros.  it omits the decimal
   547  // point too when the fraction is 0.  It returns the index where the
   548  // output bytes begin and the value v/10**prec.
   549  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   550  	// Omit trailing zeros up to and including decimal point.
   551  	w := len(buf)
   552  	print := false
   553  	for i := 0; i < prec; i++ {
   554  		digit := v % 10
   555  		print = print || digit != 0
   556  		if print {
   557  			w--
   558  			buf[w] = byte(digit) + '0'
   559  		}
   560  		v /= 10
   561  	}
   562  	if print {
   563  		w--
   564  		buf[w] = '.'
   565  	}
   566  	return w, v
   567  }
   568  
   569  // fmtInt formats v into the tail of buf.
   570  // It returns the index where the output begins.
   571  func fmtInt(buf []byte, v uint64) int {
   572  	w := len(buf)
   573  	if v == 0 {
   574  		w--
   575  		buf[w] = '0'
   576  	} else {
   577  		for v > 0 {
   578  			w--
   579  			buf[w] = byte(v%10) + '0'
   580  			v /= 10
   581  		}
   582  	}
   583  	return w
   584  }
   585  
   586  // Nanoseconds returns the duration as an integer nanosecond count.
   587  func (d Duration) Nanoseconds() int64 { return int64(d) }
   588  
   589  // These methods return float64 because the dominant
   590  // use case is for printing a floating point number like 1.5s, and
   591  // a truncation to integer would make them not useful in those cases.
   592  // Splitting the integer and fraction ourselves guarantees that
   593  // converting the returned float64 to an integer rounds the same
   594  // way that a pure integer conversion would have, even in cases
   595  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   596  // differently.
   597  
   598  // Seconds returns the duration as a floating point number of seconds.
   599  func (d Duration) Seconds() float64 {
   600  	sec := d / Second
   601  	nsec := d % Second
   602  	return float64(sec) + float64(nsec)/1e9
   603  }
   604  
   605  // Minutes returns the duration as a floating point number of minutes.
   606  func (d Duration) Minutes() float64 {
   607  	min := d / Minute
   608  	nsec := d % Minute
   609  	return float64(min) + float64(nsec)/(60*1e9)
   610  }
   611  
   612  // Hours returns the duration as a floating point number of hours.
   613  func (d Duration) Hours() float64 {
   614  	hour := d / Hour
   615  	nsec := d % Hour
   616  	return float64(hour) + float64(nsec)/(60*60*1e9)
   617  }
   618  
   619  // Add returns the time t+d.
   620  func (t Time) Add(d Duration) Time {
   621  	t.sec += int64(d / 1e9)
   622  	nsec := t.nsec + int32(d%1e9)
   623  	if nsec >= 1e9 {
   624  		t.sec++
   625  		nsec -= 1e9
   626  	} else if nsec < 0 {
   627  		t.sec--
   628  		nsec += 1e9
   629  	}
   630  	t.nsec = nsec
   631  	return t
   632  }
   633  
   634  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   635  // value that can be stored in a Duration, the maximum (or minimum) duration
   636  // will be returned.
   637  // To compute t-d for a duration d, use t.Add(-d).
   638  func (t Time) Sub(u Time) Duration {
   639  	d := Duration(t.sec-u.sec)*Second + Duration(t.nsec-u.nsec)
   640  	// Check for overflow or underflow.
   641  	switch {
   642  	case u.Add(d).Equal(t):
   643  		return d // d is correct
   644  	case t.Before(u):
   645  		return minDuration // t - u is negative out of range
   646  	default:
   647  		return maxDuration // t - u is positive out of range
   648  	}
   649  }
   650  
   651  // Since returns the time elapsed since t.
   652  // It is shorthand for time.Now().Sub(t).
   653  func Since(t Time) Duration {
   654  	return Now().Sub(t)
   655  }
   656  
   657  // Until returns the duration until t.
   658  // It is shorthand for t.Sub(time.Now()).
   659  func Until(t Time) Duration {
   660  	return t.Sub(Now())
   661  }
   662  
   663  // AddDate returns the time corresponding to adding the
   664  // given number of years, months, and days to t.
   665  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   666  // returns March 4, 2010.
   667  //
   668  // AddDate normalizes its result in the same way that Date does,
   669  // so, for example, adding one month to October 31 yields
   670  // December 1, the normalized form for November 31.
   671  func (t Time) AddDate(years int, months int, days int) Time {
   672  	year, month, day := t.Date()
   673  	hour, min, sec := t.Clock()
   674  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.Location())
   675  }
   676  
   677  const (
   678  	secondsPerMinute = 60
   679  	secondsPerHour   = 60 * 60
   680  	secondsPerDay    = 24 * secondsPerHour
   681  	secondsPerWeek   = 7 * secondsPerDay
   682  	daysPer400Years  = 365*400 + 97
   683  	daysPer100Years  = 365*100 + 24
   684  	daysPer4Years    = 365*4 + 1
   685  )
   686  
   687  // date computes the year, day of year, and when full=true,
   688  // the month and day in which t occurs.
   689  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   690  	return absDate(t.abs(), full)
   691  }
   692  
   693  // absDate is like date but operates on an absolute time.
   694  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   695  	// Split into time and day.
   696  	d := abs / secondsPerDay
   697  
   698  	// Account for 400 year cycles.
   699  	n := d / daysPer400Years
   700  	y := 400 * n
   701  	d -= daysPer400Years * n
   702  
   703  	// Cut off 100-year cycles.
   704  	// The last cycle has one extra leap year, so on the last day
   705  	// of that year, day / daysPer100Years will be 4 instead of 3.
   706  	// Cut it back down to 3 by subtracting n>>2.
   707  	n = d / daysPer100Years
   708  	n -= n >> 2
   709  	y += 100 * n
   710  	d -= daysPer100Years * n
   711  
   712  	// Cut off 4-year cycles.
   713  	// The last cycle has a missing leap year, which does not
   714  	// affect the computation.
   715  	n = d / daysPer4Years
   716  	y += 4 * n
   717  	d -= daysPer4Years * n
   718  
   719  	// Cut off years within a 4-year cycle.
   720  	// The last year is a leap year, so on the last day of that year,
   721  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   722  	// by subtracting n>>2.
   723  	n = d / 365
   724  	n -= n >> 2
   725  	y += n
   726  	d -= 365 * n
   727  
   728  	year = int(int64(y) + absoluteZeroYear)
   729  	yday = int(d)
   730  
   731  	if !full {
   732  		return
   733  	}
   734  
   735  	day = yday
   736  	if isLeap(year) {
   737  		// Leap year
   738  		switch {
   739  		case day > 31+29-1:
   740  			// After leap day; pretend it wasn't there.
   741  			day--
   742  		case day == 31+29-1:
   743  			// Leap day.
   744  			month = February
   745  			day = 29
   746  			return
   747  		}
   748  	}
   749  
   750  	// Estimate month on assumption that every month has 31 days.
   751  	// The estimate may be too low by at most one month, so adjust.
   752  	month = Month(day / 31)
   753  	end := int(daysBefore[month+1])
   754  	var begin int
   755  	if day >= end {
   756  		month++
   757  		begin = end
   758  	} else {
   759  		begin = int(daysBefore[month])
   760  	}
   761  
   762  	month++ // because January is 1
   763  	day = day - begin + 1
   764  	return
   765  }
   766  
   767  // daysBefore[m] counts the number of days in a non-leap year
   768  // before month m begins. There is an entry for m=12, counting
   769  // the number of days before January of next year (365).
   770  var daysBefore = [...]int32{
   771  	0,
   772  	31,
   773  	31 + 28,
   774  	31 + 28 + 31,
   775  	31 + 28 + 31 + 30,
   776  	31 + 28 + 31 + 30 + 31,
   777  	31 + 28 + 31 + 30 + 31 + 30,
   778  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   779  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   780  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   781  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   782  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   783  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   784  }
   785  
   786  func daysIn(m Month, year int) int {
   787  	if m == February && isLeap(year) {
   788  		return 29
   789  	}
   790  	return int(daysBefore[m] - daysBefore[m-1])
   791  }
   792  
   793  // Provided by package runtime.
   794  func now() (sec int64, nsec int32)
   795  
   796  // Now returns the current local time.
   797  func Now() Time {
   798  	sec, nsec := now()
   799  	return Time{sec + unixToInternal, nsec, Local}
   800  }
   801  
   802  // UTC returns t with the location set to UTC.
   803  func (t Time) UTC() Time {
   804  	t.setLoc(&utcLoc)
   805  	return t
   806  }
   807  
   808  // Local returns t with the location set to local time.
   809  func (t Time) Local() Time {
   810  	t.setLoc(Local)
   811  	return t
   812  }
   813  
   814  // In returns t with the location information set to loc.
   815  //
   816  // In panics if loc is nil.
   817  func (t Time) In(loc *Location) Time {
   818  	if loc == nil {
   819  		panic("time: missing Location in call to Time.In")
   820  	}
   821  	t.setLoc(loc)
   822  	return t
   823  }
   824  
   825  // Location returns the time zone information associated with t.
   826  func (t Time) Location() *Location {
   827  	l := t.loc
   828  	if l == nil {
   829  		l = UTC
   830  	}
   831  	return l
   832  }
   833  
   834  // Zone computes the time zone in effect at time t, returning the abbreviated
   835  // name of the zone (such as "CET") and its offset in seconds east of UTC.
   836  func (t Time) Zone() (name string, offset int) {
   837  	name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
   838  	return
   839  }
   840  
   841  // Unix returns t as a Unix time, the number of seconds elapsed
   842  // since January 1, 1970 UTC.
   843  func (t Time) Unix() int64 {
   844  	return t.sec + internalToUnix
   845  }
   846  
   847  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
   848  // since January 1, 1970 UTC. The result is undefined if the Unix time
   849  // in nanoseconds cannot be represented by an int64 (a date before the year
   850  // 1678 or after 2262). Note that this means the result of calling UnixNano
   851  // on the zero Time is undefined.
   852  func (t Time) UnixNano() int64 {
   853  	return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
   854  }
   855  
   856  const timeBinaryVersion byte = 1
   857  
   858  // MarshalBinary implements the encoding.BinaryMarshaler interface.
   859  func (t Time) MarshalBinary() ([]byte, error) {
   860  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
   861  
   862  	if t.Location() == UTC {
   863  		offsetMin = -1
   864  	} else {
   865  		_, offset := t.Zone()
   866  		if offset%60 != 0 {
   867  			return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
   868  		}
   869  		offset /= 60
   870  		if offset < -32768 || offset == -1 || offset > 32767 {
   871  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
   872  		}
   873  		offsetMin = int16(offset)
   874  	}
   875  
   876  	enc := []byte{
   877  		timeBinaryVersion, // byte 0 : version
   878  		byte(t.sec >> 56), // bytes 1-8: seconds
   879  		byte(t.sec >> 48),
   880  		byte(t.sec >> 40),
   881  		byte(t.sec >> 32),
   882  		byte(t.sec >> 24),
   883  		byte(t.sec >> 16),
   884  		byte(t.sec >> 8),
   885  		byte(t.sec),
   886  		byte(t.nsec >> 24), // bytes 9-12: nanoseconds
   887  		byte(t.nsec >> 16),
   888  		byte(t.nsec >> 8),
   889  		byte(t.nsec),
   890  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
   891  		byte(offsetMin),
   892  	}
   893  
   894  	return enc, nil
   895  }
   896  
   897  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
   898  func (t *Time) UnmarshalBinary(data []byte) error {
   899  	buf := data
   900  	if len(buf) == 0 {
   901  		return errors.New("Time.UnmarshalBinary: no data")
   902  	}
   903  
   904  	if buf[0] != timeBinaryVersion {
   905  		return errors.New("Time.UnmarshalBinary: unsupported version")
   906  	}
   907  
   908  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
   909  		return errors.New("Time.UnmarshalBinary: invalid length")
   910  	}
   911  
   912  	buf = buf[1:]
   913  	t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
   914  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
   915  
   916  	buf = buf[8:]
   917  	t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
   918  
   919  	buf = buf[4:]
   920  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
   921  
   922  	if offset == -1*60 {
   923  		t.setLoc(&utcLoc)
   924  	} else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
   925  		t.setLoc(Local)
   926  	} else {
   927  		t.setLoc(FixedZone("", offset))
   928  	}
   929  
   930  	return nil
   931  }
   932  
   933  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
   934  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
   935  // UnmarshalBinary, UnmarshalText.
   936  
   937  // GobEncode implements the gob.GobEncoder interface.
   938  func (t Time) GobEncode() ([]byte, error) {
   939  	return t.MarshalBinary()
   940  }
   941  
   942  // GobDecode implements the gob.GobDecoder interface.
   943  func (t *Time) GobDecode(data []byte) error {
   944  	return t.UnmarshalBinary(data)
   945  }
   946  
   947  // MarshalJSON implements the json.Marshaler interface.
   948  // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
   949  func (t Time) MarshalJSON() ([]byte, error) {
   950  	if y := t.Year(); y < 0 || y >= 10000 {
   951  		// RFC 3339 is clear that years are 4 digits exactly.
   952  		// See golang.org/issue/4556#c15 for more discussion.
   953  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
   954  	}
   955  
   956  	b := make([]byte, 0, len(RFC3339Nano)+2)
   957  	b = append(b, '"')
   958  	b = t.AppendFormat(b, RFC3339Nano)
   959  	b = append(b, '"')
   960  	return b, nil
   961  }
   962  
   963  // UnmarshalJSON implements the json.Unmarshaler interface.
   964  // The time is expected to be a quoted string in RFC 3339 format.
   965  func (t *Time) UnmarshalJSON(data []byte) error {
   966  	// Ignore null, like in the main JSON package.
   967  	if string(data) == "null" {
   968  		return nil
   969  	}
   970  	// Fractional seconds are handled implicitly by Parse.
   971  	var err error
   972  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
   973  	return err
   974  }
   975  
   976  // MarshalText implements the encoding.TextMarshaler interface.
   977  // The time is formatted in RFC 3339 format, with sub-second precision added if present.
   978  func (t Time) MarshalText() ([]byte, error) {
   979  	if y := t.Year(); y < 0 || y >= 10000 {
   980  		return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
   981  	}
   982  
   983  	b := make([]byte, 0, len(RFC3339Nano))
   984  	return t.AppendFormat(b, RFC3339Nano), nil
   985  }
   986  
   987  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   988  // The time is expected to be in RFC 3339 format.
   989  func (t *Time) UnmarshalText(data []byte) error {
   990  	// Fractional seconds are handled implicitly by Parse.
   991  	var err error
   992  	*t, err = Parse(RFC3339, string(data))
   993  	return err
   994  }
   995  
   996  // Unix returns the local Time corresponding to the given Unix time,
   997  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
   998  // It is valid to pass nsec outside the range [0, 999999999].
   999  // Not all sec values have a corresponding time value. One such
  1000  // value is 1<<63-1 (the largest int64 value).
  1001  func Unix(sec int64, nsec int64) Time {
  1002  	if nsec < 0 || nsec >= 1e9 {
  1003  		n := nsec / 1e9
  1004  		sec += n
  1005  		nsec -= n * 1e9
  1006  		if nsec < 0 {
  1007  			nsec += 1e9
  1008  			sec--
  1009  		}
  1010  	}
  1011  	return Time{sec + unixToInternal, int32(nsec), Local}
  1012  }
  1013  
  1014  func isLeap(year int) bool {
  1015  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1016  }
  1017  
  1018  // norm returns nhi, nlo such that
  1019  //	hi * base + lo == nhi * base + nlo
  1020  //	0 <= nlo < base
  1021  func norm(hi, lo, base int) (nhi, nlo int) {
  1022  	if lo < 0 {
  1023  		n := (-lo-1)/base + 1
  1024  		hi -= n
  1025  		lo += n * base
  1026  	}
  1027  	if lo >= base {
  1028  		n := lo / base
  1029  		hi += n
  1030  		lo -= n * base
  1031  	}
  1032  	return hi, lo
  1033  }
  1034  
  1035  // Date returns the Time corresponding to
  1036  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1037  // in the appropriate zone for that time in the given location.
  1038  //
  1039  // The month, day, hour, min, sec, and nsec values may be outside
  1040  // their usual ranges and will be normalized during the conversion.
  1041  // For example, October 32 converts to November 1.
  1042  //
  1043  // A daylight savings time transition skips or repeats times.
  1044  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1045  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1046  // choice of time zone, and therefore the time, is not well-defined.
  1047  // Date returns a time that is correct in one of the two zones involved
  1048  // in the transition, but it does not guarantee which.
  1049  //
  1050  // Date panics if loc is nil.
  1051  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1052  	if loc == nil {
  1053  		panic("time: missing Location in call to Date")
  1054  	}
  1055  
  1056  	// Normalize month, overflowing into year.
  1057  	m := int(month) - 1
  1058  	year, m = norm(year, m, 12)
  1059  	month = Month(m) + 1
  1060  
  1061  	// Normalize nsec, sec, min, hour, overflowing into day.
  1062  	sec, nsec = norm(sec, nsec, 1e9)
  1063  	min, sec = norm(min, sec, 60)
  1064  	hour, min = norm(hour, min, 60)
  1065  	day, hour = norm(day, hour, 24)
  1066  
  1067  	y := uint64(int64(year) - absoluteZeroYear)
  1068  
  1069  	// Compute days since the absolute epoch.
  1070  
  1071  	// Add in days from 400-year cycles.
  1072  	n := y / 400
  1073  	y -= 400 * n
  1074  	d := daysPer400Years * n
  1075  
  1076  	// Add in 100-year cycles.
  1077  	n = y / 100
  1078  	y -= 100 * n
  1079  	d += daysPer100Years * n
  1080  
  1081  	// Add in 4-year cycles.
  1082  	n = y / 4
  1083  	y -= 4 * n
  1084  	d += daysPer4Years * n
  1085  
  1086  	// Add in non-leap years.
  1087  	n = y
  1088  	d += 365 * n
  1089  
  1090  	// Add in days before this month.
  1091  	d += uint64(daysBefore[month-1])
  1092  	if isLeap(year) && month >= March {
  1093  		d++ // February 29
  1094  	}
  1095  
  1096  	// Add in days before today.
  1097  	d += uint64(day - 1)
  1098  
  1099  	// Add in time elapsed today.
  1100  	abs := d * secondsPerDay
  1101  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1102  
  1103  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1104  
  1105  	// Look for zone offset for t, so we can adjust to UTC.
  1106  	// The lookup function expects UTC, so we pass t in the
  1107  	// hope that it will not be too close to a zone transition,
  1108  	// and then adjust if it is.
  1109  	_, offset, _, start, end := loc.lookup(unix)
  1110  	if offset != 0 {
  1111  		switch utc := unix - int64(offset); {
  1112  		case utc < start:
  1113  			_, offset, _, _, _ = loc.lookup(start - 1)
  1114  		case utc >= end:
  1115  			_, offset, _, _, _ = loc.lookup(end)
  1116  		}
  1117  		unix -= int64(offset)
  1118  	}
  1119  
  1120  	t := Time{unix + unixToInternal, int32(nsec), nil}
  1121  	t.setLoc(loc)
  1122  	return t
  1123  }
  1124  
  1125  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1126  // If d <= 0, Truncate returns t unchanged.
  1127  //
  1128  // Truncate operates on the time as an absolute duration since the
  1129  // zero time; it does not operate on the presentation form of the
  1130  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1131  // minute, depending on the time's Location.
  1132  func (t Time) Truncate(d Duration) Time {
  1133  	if d <= 0 {
  1134  		return t
  1135  	}
  1136  	_, r := div(t, d)
  1137  	return t.Add(-r)
  1138  }
  1139  
  1140  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1141  // The rounding behavior for halfway values is to round up.
  1142  // If d <= 0, Round returns t unchanged.
  1143  //
  1144  // Round operates on the time as an absolute duration since the
  1145  // zero time; it does not operate on the presentation form of the
  1146  // time. Thus, Round(Hour) may return a time with a non-zero
  1147  // minute, depending on the time's Location.
  1148  func (t Time) Round(d Duration) Time {
  1149  	if d <= 0 {
  1150  		return t
  1151  	}
  1152  	_, r := div(t, d)
  1153  	if r+r < d {
  1154  		return t.Add(-r)
  1155  	}
  1156  	return t.Add(d - r)
  1157  }
  1158  
  1159  // div divides t by d and returns the quotient parity and remainder.
  1160  // We don't use the quotient parity anymore (round half up instead of round to even)
  1161  // but it's still here in case we change our minds.
  1162  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1163  	neg := false
  1164  	nsec := t.nsec
  1165  	if t.sec < 0 {
  1166  		// Operate on absolute value.
  1167  		neg = true
  1168  		t.sec = -t.sec
  1169  		nsec = -nsec
  1170  		if nsec < 0 {
  1171  			nsec += 1e9
  1172  			t.sec-- // t.sec >= 1 before the -- so safe
  1173  		}
  1174  	}
  1175  
  1176  	switch {
  1177  	// Special case: 2d divides 1 second.
  1178  	case d < Second && Second%(d+d) == 0:
  1179  		qmod2 = int(nsec/int32(d)) & 1
  1180  		r = Duration(nsec % int32(d))
  1181  
  1182  	// Special case: d is a multiple of 1 second.
  1183  	case d%Second == 0:
  1184  		d1 := int64(d / Second)
  1185  		qmod2 = int(t.sec/d1) & 1
  1186  		r = Duration(t.sec%d1)*Second + Duration(nsec)
  1187  
  1188  	// General case.
  1189  	// This could be faster if more cleverness were applied,
  1190  	// but it's really only here to avoid special case restrictions in the API.
  1191  	// No one will care about these cases.
  1192  	default:
  1193  		// Compute nanoseconds as 128-bit number.
  1194  		sec := uint64(t.sec)
  1195  		tmp := (sec >> 32) * 1e9
  1196  		u1 := tmp >> 32
  1197  		u0 := tmp << 32
  1198  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1199  		u0x, u0 := u0, u0+tmp
  1200  		if u0 < u0x {
  1201  			u1++
  1202  		}
  1203  		u0x, u0 = u0, u0+uint64(nsec)
  1204  		if u0 < u0x {
  1205  			u1++
  1206  		}
  1207  
  1208  		// Compute remainder by subtracting r<<k for decreasing k.
  1209  		// Quotient parity is whether we subtract on last round.
  1210  		d1 := uint64(d)
  1211  		for d1>>63 != 1 {
  1212  			d1 <<= 1
  1213  		}
  1214  		d0 := uint64(0)
  1215  		for {
  1216  			qmod2 = 0
  1217  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1218  				// subtract
  1219  				qmod2 = 1
  1220  				u0x, u0 = u0, u0-d0
  1221  				if u0 > u0x {
  1222  					u1--
  1223  				}
  1224  				u1 -= d1
  1225  			}
  1226  			if d1 == 0 && d0 == uint64(d) {
  1227  				break
  1228  			}
  1229  			d0 >>= 1
  1230  			d0 |= (d1 & 1) << 63
  1231  			d1 >>= 1
  1232  		}
  1233  		r = Duration(u0)
  1234  	}
  1235  
  1236  	if neg && r != 0 {
  1237  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1238  		//	q*d + r = -t
  1239  		// But the right answers are given by -(q-1), d-r:
  1240  		//	q*d + r = -t
  1241  		//	-q*d - r = t
  1242  		//	-(q-1)*d + (d - r) = t
  1243  		qmod2 ^= 1
  1244  		r = d - r
  1245  	}
  1246  	return
  1247  }