github.com/Filosottile/go@v0.0.0-20170906193555-dbed9972d994/src/cmd/compile/internal/gc/dcl.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"cmd/compile/internal/types"
     9  	"cmd/internal/src"
    10  	"fmt"
    11  	"strings"
    12  )
    13  
    14  // Declaration stack & operations
    15  
    16  var externdcl []*Node
    17  
    18  func testdclstack() {
    19  	if !types.IsDclstackValid() {
    20  		if nerrors != 0 {
    21  			errorexit()
    22  		}
    23  		Fatalf("mark left on the dclstack")
    24  	}
    25  }
    26  
    27  // redeclare emits a diagnostic about symbol s being redeclared somewhere.
    28  func redeclare(s *types.Sym, where string) {
    29  	if !s.Lastlineno.IsKnown() {
    30  		var tmp string
    31  		if s.Origpkg != nil {
    32  			tmp = s.Origpkg.Path
    33  		} else {
    34  			tmp = s.Pkg.Path
    35  		}
    36  		pkgstr := tmp
    37  		yyerror("%v redeclared %s\n"+
    38  			"\tprevious declaration during import %q", s, where, pkgstr)
    39  	} else {
    40  		line1 := lineno
    41  		line2 := s.Lastlineno
    42  
    43  		// When an import and a declaration collide in separate files,
    44  		// present the import as the "redeclared", because the declaration
    45  		// is visible where the import is, but not vice versa.
    46  		// See issue 4510.
    47  		if s.Def == nil {
    48  			line2 = line1
    49  			line1 = s.Lastlineno
    50  		}
    51  
    52  		yyerrorl(line1, "%v redeclared %s\n"+
    53  			"\tprevious declaration at %v", s, where, linestr(line2))
    54  	}
    55  }
    56  
    57  var vargen int
    58  
    59  // declare individual names - var, typ, const
    60  
    61  var declare_typegen int
    62  
    63  // declare records that Node n declares symbol n.Sym in the specified
    64  // declaration context.
    65  func declare(n *Node, ctxt Class) {
    66  	if ctxt == PDISCARD {
    67  		return
    68  	}
    69  
    70  	if isblank(n) {
    71  		return
    72  	}
    73  
    74  	if n.Name == nil {
    75  		// named OLITERAL needs Name; most OLITERALs don't.
    76  		n.Name = new(Name)
    77  	}
    78  	n.Pos = lineno
    79  	s := n.Sym
    80  
    81  	// kludgy: typecheckok means we're past parsing. Eg genwrapper may declare out of package names later.
    82  	if !inimport && !typecheckok && s.Pkg != localpkg {
    83  		yyerror("cannot declare name %v", s)
    84  	}
    85  
    86  	if ctxt == PEXTERN && s.Name == "init" {
    87  		yyerror("cannot declare init - must be func")
    88  	}
    89  
    90  	gen := 0
    91  	if ctxt == PEXTERN {
    92  		externdcl = append(externdcl, n)
    93  	} else {
    94  		if Curfn == nil && ctxt == PAUTO {
    95  			Fatalf("automatic outside function")
    96  		}
    97  		if Curfn != nil {
    98  			Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
    99  		}
   100  		if n.Op == OTYPE {
   101  			declare_typegen++
   102  			gen = declare_typegen
   103  		} else if n.Op == ONAME && ctxt == PAUTO && !strings.Contains(s.Name, "·") {
   104  			vargen++
   105  			gen = vargen
   106  		}
   107  		types.Pushdcl(s)
   108  		n.Name.Curfn = Curfn
   109  	}
   110  
   111  	if ctxt == PAUTO {
   112  		n.Xoffset = 0
   113  	}
   114  
   115  	if s.Block == types.Block {
   116  		// functype will print errors about duplicate function arguments.
   117  		// Don't repeat the error here.
   118  		if ctxt != PPARAM && ctxt != PPARAMOUT {
   119  			redeclare(s, "in this block")
   120  		}
   121  	}
   122  
   123  	s.Block = types.Block
   124  	s.Lastlineno = lineno
   125  	s.Def = asTypesNode(n)
   126  	n.Name.Vargen = int32(gen)
   127  	n.Name.Funcdepth = funcdepth
   128  	n.SetClass(ctxt)
   129  
   130  	autoexport(n, ctxt)
   131  }
   132  
   133  func addvar(n *Node, t *types.Type, ctxt Class) {
   134  	if n == nil || n.Sym == nil || (n.Op != ONAME && n.Op != ONONAME) || t == nil {
   135  		Fatalf("addvar: n=%v t=%v nil", n, t)
   136  	}
   137  
   138  	n.Op = ONAME
   139  	declare(n, ctxt)
   140  	n.Type = t
   141  }
   142  
   143  // declare variables from grammar
   144  // new_name_list (type | [type] = expr_list)
   145  func variter(vl []*Node, t *Node, el []*Node) []*Node {
   146  	var init []*Node
   147  	doexpr := len(el) > 0
   148  
   149  	if len(el) == 1 && len(vl) > 1 {
   150  		e := el[0]
   151  		as2 := nod(OAS2, nil, nil)
   152  		as2.List.Set(vl)
   153  		as2.Rlist.Set1(e)
   154  		for _, v := range vl {
   155  			v.Op = ONAME
   156  			declare(v, dclcontext)
   157  			v.Name.Param.Ntype = t
   158  			v.Name.Defn = as2
   159  			if funcdepth > 0 {
   160  				init = append(init, nod(ODCL, v, nil))
   161  			}
   162  		}
   163  
   164  		return append(init, as2)
   165  	}
   166  
   167  	for _, v := range vl {
   168  		var e *Node
   169  		if doexpr {
   170  			if len(el) == 0 {
   171  				yyerror("missing expression in var declaration")
   172  				break
   173  			}
   174  			e = el[0]
   175  			el = el[1:]
   176  		}
   177  
   178  		v.Op = ONAME
   179  		declare(v, dclcontext)
   180  		v.Name.Param.Ntype = t
   181  
   182  		if e != nil || funcdepth > 0 || isblank(v) {
   183  			if funcdepth > 0 {
   184  				init = append(init, nod(ODCL, v, nil))
   185  			}
   186  			e = nod(OAS, v, e)
   187  			init = append(init, e)
   188  			if e.Right != nil {
   189  				v.Name.Defn = e
   190  			}
   191  		}
   192  	}
   193  
   194  	if len(el) != 0 {
   195  		yyerror("extra expression in var declaration")
   196  	}
   197  	return init
   198  }
   199  
   200  // newnoname returns a new ONONAME Node associated with symbol s.
   201  func newnoname(s *types.Sym) *Node {
   202  	if s == nil {
   203  		Fatalf("newnoname nil")
   204  	}
   205  	n := nod(ONONAME, nil, nil)
   206  	n.Sym = s
   207  	n.SetAddable(true)
   208  	n.Xoffset = 0
   209  	return n
   210  }
   211  
   212  // newfuncname generates a new name node for a function or method.
   213  // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360.
   214  func newfuncname(s *types.Sym) *Node {
   215  	return newfuncnamel(lineno, s)
   216  }
   217  
   218  // newfuncnamel generates a new name node for a function or method.
   219  // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360.
   220  func newfuncnamel(pos src.XPos, s *types.Sym) *Node {
   221  	n := newnamel(pos, s)
   222  	n.Func = new(Func)
   223  	n.Func.SetIsHiddenClosure(Curfn != nil)
   224  	return n
   225  }
   226  
   227  // this generates a new name node for a name
   228  // being declared.
   229  func dclname(s *types.Sym) *Node {
   230  	n := newname(s)
   231  	n.Op = ONONAME // caller will correct it
   232  	return n
   233  }
   234  
   235  func typenod(t *types.Type) *Node {
   236  	return typenodl(lineno, t)
   237  }
   238  
   239  func typenodl(pos src.XPos, t *types.Type) *Node {
   240  	// if we copied another type with *t = *u
   241  	// then t->nod might be out of date, so
   242  	// check t->nod->type too
   243  	if asNode(t.Nod) == nil || asNode(t.Nod).Type != t {
   244  		t.Nod = asTypesNode(nodl(pos, OTYPE, nil, nil))
   245  		asNode(t.Nod).Type = t
   246  		asNode(t.Nod).Sym = t.Sym
   247  	}
   248  
   249  	return asNode(t.Nod)
   250  }
   251  
   252  func anonfield(typ *types.Type) *Node {
   253  	return nod(ODCLFIELD, nil, typenod(typ))
   254  }
   255  
   256  func namedfield(s string, typ *types.Type) *Node {
   257  	return nod(ODCLFIELD, newname(lookup(s)), typenod(typ))
   258  }
   259  
   260  // oldname returns the Node that declares symbol s in the current scope.
   261  // If no such Node currently exists, an ONONAME Node is returned instead.
   262  func oldname(s *types.Sym) *Node {
   263  	n := asNode(s.Def)
   264  	if n == nil {
   265  		// Maybe a top-level declaration will come along later to
   266  		// define s. resolve will check s.Def again once all input
   267  		// source has been processed.
   268  		return newnoname(s)
   269  	}
   270  
   271  	if Curfn != nil && n.Op == ONAME && n.Name.Funcdepth > 0 && n.Name.Funcdepth != funcdepth {
   272  		// Inner func is referring to var in outer func.
   273  		//
   274  		// TODO(rsc): If there is an outer variable x and we
   275  		// are parsing x := 5 inside the closure, until we get to
   276  		// the := it looks like a reference to the outer x so we'll
   277  		// make x a closure variable unnecessarily.
   278  		c := n.Name.Param.Innermost
   279  		if c == nil || c.Name.Funcdepth != funcdepth {
   280  			// Do not have a closure var for the active closure yet; make one.
   281  			c = newname(s)
   282  			c.SetClass(PAUTOHEAP)
   283  			c.SetIsClosureVar(true)
   284  			c.SetIsddd(n.Isddd())
   285  			c.Name.Defn = n
   286  			c.SetAddable(false)
   287  			c.Name.Funcdepth = funcdepth
   288  
   289  			// Link into list of active closure variables.
   290  			// Popped from list in func closurebody.
   291  			c.Name.Param.Outer = n.Name.Param.Innermost
   292  			n.Name.Param.Innermost = c
   293  
   294  			Curfn.Func.Cvars.Append(c)
   295  		}
   296  
   297  		// return ref to closure var, not original
   298  		return c
   299  	}
   300  
   301  	return n
   302  }
   303  
   304  // := declarations
   305  func colasname(n *Node) bool {
   306  	switch n.Op {
   307  	case ONAME,
   308  		ONONAME,
   309  		OPACK,
   310  		OTYPE,
   311  		OLITERAL:
   312  		return n.Sym != nil
   313  	}
   314  
   315  	return false
   316  }
   317  
   318  func colasdefn(left []*Node, defn *Node) {
   319  	for _, n := range left {
   320  		if n.Sym != nil {
   321  			n.Sym.SetUniq(true)
   322  		}
   323  	}
   324  
   325  	var nnew, nerr int
   326  	for i, n := range left {
   327  		if isblank(n) {
   328  			continue
   329  		}
   330  		if !colasname(n) {
   331  			yyerrorl(defn.Pos, "non-name %v on left side of :=", n)
   332  			nerr++
   333  			continue
   334  		}
   335  
   336  		if !n.Sym.Uniq() {
   337  			yyerrorl(defn.Pos, "%v repeated on left side of :=", n.Sym)
   338  			n.SetDiag(true)
   339  			nerr++
   340  			continue
   341  		}
   342  
   343  		n.Sym.SetUniq(false)
   344  		if n.Sym.Block == types.Block {
   345  			continue
   346  		}
   347  
   348  		nnew++
   349  		n = newname(n.Sym)
   350  		declare(n, dclcontext)
   351  		n.Name.Defn = defn
   352  		defn.Ninit.Append(nod(ODCL, n, nil))
   353  		left[i] = n
   354  	}
   355  
   356  	if nnew == 0 && nerr == 0 {
   357  		yyerrorl(defn.Pos, "no new variables on left side of :=")
   358  	}
   359  }
   360  
   361  // declare the arguments in an
   362  // interface field declaration.
   363  func ifacedcl(n *Node) {
   364  	if n.Op != ODCLFIELD || n.Right == nil {
   365  		Fatalf("ifacedcl")
   366  	}
   367  
   368  	if isblank(n.Left) {
   369  		yyerror("methods must have a unique non-blank name")
   370  	}
   371  }
   372  
   373  // declare the function proper
   374  // and declare the arguments.
   375  // called in extern-declaration context
   376  // returns in auto-declaration context.
   377  func funchdr(n *Node) {
   378  	// change the declaration context from extern to auto
   379  	if funcdepth == 0 && dclcontext != PEXTERN {
   380  		Fatalf("funchdr: dclcontext = %d", dclcontext)
   381  	}
   382  
   383  	dclcontext = PAUTO
   384  	funcstart(n)
   385  
   386  	if n.Func.Nname != nil {
   387  		funcargs(n.Func.Nname.Name.Param.Ntype)
   388  	} else if n.Func.Ntype != nil {
   389  		funcargs(n.Func.Ntype)
   390  	} else {
   391  		funcargs2(n.Type)
   392  	}
   393  }
   394  
   395  func funcargs(nt *Node) {
   396  	if nt.Op != OTFUNC {
   397  		Fatalf("funcargs %v", nt.Op)
   398  	}
   399  
   400  	// re-start the variable generation number
   401  	// we want to use small numbers for the return variables,
   402  	// so let them have the chunk starting at 1.
   403  	vargen = nt.Rlist.Len()
   404  
   405  	// declare the receiver and in arguments.
   406  	// no n->defn because type checking of func header
   407  	// will not fill in the types until later
   408  	if nt.Left != nil {
   409  		n := nt.Left
   410  		if n.Op != ODCLFIELD {
   411  			Fatalf("funcargs receiver %v", n.Op)
   412  		}
   413  		if n.Left != nil {
   414  			n.Left.Op = ONAME
   415  			n.Left.Name.Param.Ntype = n.Right
   416  			declare(n.Left, PPARAM)
   417  			if dclcontext == PAUTO {
   418  				vargen++
   419  				n.Left.Name.Vargen = int32(vargen)
   420  			}
   421  		}
   422  	}
   423  
   424  	for _, n := range nt.List.Slice() {
   425  		if n.Op != ODCLFIELD {
   426  			Fatalf("funcargs in %v", n.Op)
   427  		}
   428  		if n.Left != nil {
   429  			n.Left.Op = ONAME
   430  			n.Left.Name.Param.Ntype = n.Right
   431  			declare(n.Left, PPARAM)
   432  			if dclcontext == PAUTO {
   433  				vargen++
   434  				n.Left.Name.Vargen = int32(vargen)
   435  			}
   436  		}
   437  	}
   438  
   439  	// declare the out arguments.
   440  	gen := nt.List.Len()
   441  	var i int = 0
   442  	for _, n := range nt.Rlist.Slice() {
   443  		if n.Op != ODCLFIELD {
   444  			Fatalf("funcargs out %v", n.Op)
   445  		}
   446  
   447  		if n.Left == nil {
   448  			// Name so that escape analysis can track it. ~r stands for 'result'.
   449  			n.Left = newname(lookupN("~r", gen))
   450  			gen++
   451  		}
   452  
   453  		// TODO: n->left->missing = 1;
   454  		n.Left.Op = ONAME
   455  
   456  		if isblank(n.Left) {
   457  			// Give it a name so we can assign to it during return. ~b stands for 'blank'.
   458  			// The name must be different from ~r above because if you have
   459  			//	func f() (_ int)
   460  			//	func g() int
   461  			// f is allowed to use a plain 'return' with no arguments, while g is not.
   462  			// So the two cases must be distinguished.
   463  			// We do not record a pointer to the original node (n->orig).
   464  			// Having multiple names causes too much confusion in later passes.
   465  			nn := *n.Left
   466  			nn.Orig = &nn
   467  			nn.Sym = lookupN("~b", gen)
   468  			gen++
   469  			n.Left = &nn
   470  		}
   471  
   472  		n.Left.Name.Param.Ntype = n.Right
   473  		declare(n.Left, PPARAMOUT)
   474  		if dclcontext == PAUTO {
   475  			i++
   476  			n.Left.Name.Vargen = int32(i)
   477  		}
   478  	}
   479  }
   480  
   481  // Same as funcargs, except run over an already constructed TFUNC.
   482  // This happens during import, where the hidden_fndcl rule has
   483  // used functype directly to parse the function's type.
   484  func funcargs2(t *types.Type) {
   485  	if t.Etype != TFUNC {
   486  		Fatalf("funcargs2 %v", t)
   487  	}
   488  
   489  	for _, ft := range t.Recvs().Fields().Slice() {
   490  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   491  			continue
   492  		}
   493  		n := asNode(ft.Nname) // no need for newname(ft->nname->sym)
   494  		n.Type = ft.Type
   495  		declare(n, PPARAM)
   496  	}
   497  
   498  	for _, ft := range t.Params().Fields().Slice() {
   499  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   500  			continue
   501  		}
   502  		n := asNode(ft.Nname)
   503  		n.Type = ft.Type
   504  		declare(n, PPARAM)
   505  	}
   506  
   507  	for _, ft := range t.Results().Fields().Slice() {
   508  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   509  			continue
   510  		}
   511  		n := asNode(ft.Nname)
   512  		n.Type = ft.Type
   513  		declare(n, PPARAMOUT)
   514  	}
   515  }
   516  
   517  var funcstack []*Node // stack of previous values of Curfn
   518  var funcdepth int32   // len(funcstack) during parsing, but then forced to be the same later during compilation
   519  
   520  // start the function.
   521  // called before funcargs; undone at end of funcbody.
   522  func funcstart(n *Node) {
   523  	types.Markdcl()
   524  	funcstack = append(funcstack, Curfn)
   525  	funcdepth++
   526  	Curfn = n
   527  }
   528  
   529  // finish the body.
   530  // called in auto-declaration context.
   531  // returns in extern-declaration context.
   532  func funcbody() {
   533  	// change the declaration context from auto to extern
   534  	if dclcontext != PAUTO {
   535  		Fatalf("funcbody: unexpected dclcontext %d", dclcontext)
   536  	}
   537  	types.Popdcl()
   538  	funcstack, Curfn = funcstack[:len(funcstack)-1], funcstack[len(funcstack)-1]
   539  	funcdepth--
   540  	if funcdepth == 0 {
   541  		dclcontext = PEXTERN
   542  	}
   543  }
   544  
   545  // structs, functions, and methods.
   546  // they don't belong here, but where do they belong?
   547  func checkembeddedtype(t *types.Type) {
   548  	if t == nil {
   549  		return
   550  	}
   551  
   552  	if t.Sym == nil && t.IsPtr() {
   553  		t = t.Elem()
   554  		if t.IsInterface() {
   555  			yyerror("embedded type cannot be a pointer to interface")
   556  		}
   557  	}
   558  
   559  	if t.IsPtr() || t.IsUnsafePtr() {
   560  		yyerror("embedded type cannot be a pointer")
   561  	} else if t.Etype == TFORW && !t.ForwardType().Embedlineno.IsKnown() {
   562  		t.ForwardType().Embedlineno = lineno
   563  	}
   564  }
   565  
   566  func structfield(n *Node) *types.Field {
   567  	lno := lineno
   568  	lineno = n.Pos
   569  
   570  	if n.Op != ODCLFIELD {
   571  		Fatalf("structfield: oops %v\n", n)
   572  	}
   573  
   574  	f := types.NewField()
   575  	f.SetIsddd(n.Isddd())
   576  
   577  	if n.Right != nil {
   578  		n.Right = typecheck(n.Right, Etype)
   579  		n.Type = n.Right.Type
   580  		if n.Left != nil {
   581  			n.Left.Type = n.Type
   582  		}
   583  		if n.Embedded() {
   584  			checkembeddedtype(n.Type)
   585  		}
   586  	}
   587  
   588  	n.Right = nil
   589  
   590  	f.Type = n.Type
   591  	if f.Type == nil {
   592  		f.SetBroke(true)
   593  	}
   594  
   595  	switch u := n.Val().U.(type) {
   596  	case string:
   597  		f.Note = u
   598  	default:
   599  		yyerror("field tag must be a string")
   600  	case nil:
   601  		// no-op
   602  	}
   603  
   604  	if n.Left != nil && n.Left.Op == ONAME {
   605  		f.Nname = asTypesNode(n.Left)
   606  		if n.Embedded() {
   607  			f.Embedded = 1
   608  		} else {
   609  			f.Embedded = 0
   610  		}
   611  		f.Sym = asNode(f.Nname).Sym
   612  	}
   613  
   614  	lineno = lno
   615  	return f
   616  }
   617  
   618  // checkdupfields emits errors for duplicately named fields or methods in
   619  // a list of struct or interface types.
   620  func checkdupfields(what string, ts ...*types.Type) {
   621  	seen := make(map[*types.Sym]bool)
   622  	for _, t := range ts {
   623  		for _, f := range t.Fields().Slice() {
   624  			if f.Sym == nil || f.Sym.IsBlank() || asNode(f.Nname) == nil {
   625  				continue
   626  			}
   627  			if seen[f.Sym] {
   628  				yyerrorl(asNode(f.Nname).Pos, "duplicate %s %s", what, f.Sym.Name)
   629  				continue
   630  			}
   631  			seen[f.Sym] = true
   632  		}
   633  	}
   634  }
   635  
   636  // convert a parsed id/type list into
   637  // a type for struct/interface/arglist
   638  func tostruct(l []*Node) *types.Type {
   639  	t := types.New(TSTRUCT)
   640  	tostruct0(t, l)
   641  	return t
   642  }
   643  
   644  func tostruct0(t *types.Type, l []*Node) {
   645  	if t == nil || !t.IsStruct() {
   646  		Fatalf("struct expected")
   647  	}
   648  
   649  	fields := make([]*types.Field, len(l))
   650  	for i, n := range l {
   651  		f := structfield(n)
   652  		if f.Broke() {
   653  			t.SetBroke(true)
   654  		}
   655  		fields[i] = f
   656  	}
   657  	t.SetFields(fields)
   658  
   659  	checkdupfields("field", t)
   660  
   661  	if !t.Broke() {
   662  		checkwidth(t)
   663  	}
   664  }
   665  
   666  func tofunargs(l []*Node, funarg types.Funarg) *types.Type {
   667  	t := types.New(TSTRUCT)
   668  	t.StructType().Funarg = funarg
   669  
   670  	fields := make([]*types.Field, len(l))
   671  	for i, n := range l {
   672  		f := structfield(n)
   673  		f.Funarg = funarg
   674  
   675  		// esc.go needs to find f given a PPARAM to add the tag.
   676  		if n.Left != nil && n.Left.Class() == PPARAM {
   677  			n.Left.Name.Param.Field = f
   678  		}
   679  		if f.Broke() {
   680  			t.SetBroke(true)
   681  		}
   682  		fields[i] = f
   683  	}
   684  	t.SetFields(fields)
   685  	return t
   686  }
   687  
   688  func tofunargsfield(fields []*types.Field, funarg types.Funarg) *types.Type {
   689  	t := types.New(TSTRUCT)
   690  	t.StructType().Funarg = funarg
   691  
   692  	for _, f := range fields {
   693  		f.Funarg = funarg
   694  
   695  		// esc.go needs to find f given a PPARAM to add the tag.
   696  		if asNode(f.Nname) != nil && asNode(f.Nname).Class() == PPARAM {
   697  			asNode(f.Nname).Name.Param.Field = f
   698  		}
   699  	}
   700  	t.SetFields(fields)
   701  	return t
   702  }
   703  
   704  func interfacefield(n *Node) *types.Field {
   705  	lno := lineno
   706  	lineno = n.Pos
   707  
   708  	if n.Op != ODCLFIELD {
   709  		Fatalf("interfacefield: oops %v\n", n)
   710  	}
   711  
   712  	if n.Val().Ctype() != CTxxx {
   713  		yyerror("interface method cannot have annotation")
   714  	}
   715  
   716  	// MethodSpec = MethodName Signature | InterfaceTypeName .
   717  	//
   718  	// If Left != nil, then Left is MethodName and Right is Signature.
   719  	// Otherwise, Right is InterfaceTypeName.
   720  
   721  	if n.Right != nil {
   722  		n.Right = typecheck(n.Right, Etype)
   723  		n.Type = n.Right.Type
   724  		n.Right = nil
   725  	}
   726  
   727  	f := types.NewField()
   728  	if n.Left != nil {
   729  		f.Nname = asTypesNode(n.Left)
   730  		f.Sym = asNode(f.Nname).Sym
   731  	} else {
   732  		// Placeholder ONAME just to hold Pos.
   733  		// TODO(mdempsky): Add Pos directly to Field instead.
   734  		f.Nname = asTypesNode(newname(nblank.Sym))
   735  	}
   736  
   737  	f.Type = n.Type
   738  	if f.Type == nil {
   739  		f.SetBroke(true)
   740  	}
   741  
   742  	lineno = lno
   743  	return f
   744  }
   745  
   746  func tointerface(l []*Node) *types.Type {
   747  	if len(l) == 0 {
   748  		return types.Types[TINTER]
   749  	}
   750  	t := types.New(TINTER)
   751  	tointerface0(t, l)
   752  	return t
   753  }
   754  
   755  func tointerface0(t *types.Type, l []*Node) {
   756  	if t == nil || !t.IsInterface() {
   757  		Fatalf("interface expected")
   758  	}
   759  
   760  	var fields []*types.Field
   761  	for _, n := range l {
   762  		f := interfacefield(n)
   763  		if f.Broke() {
   764  			t.SetBroke(true)
   765  		}
   766  		fields = append(fields, f)
   767  	}
   768  	t.SetInterface(fields)
   769  }
   770  
   771  func fakeRecv() *Node {
   772  	return anonfield(types.FakeRecvType())
   773  }
   774  
   775  func fakeRecvField() *types.Field {
   776  	f := types.NewField()
   777  	f.Type = types.FakeRecvType()
   778  	return f
   779  }
   780  
   781  // isifacemethod reports whether (field) m is
   782  // an interface method. Such methods have the
   783  // special receiver type types.FakeRecvType().
   784  func isifacemethod(f *types.Type) bool {
   785  	return f.Recv().Type == types.FakeRecvType()
   786  }
   787  
   788  // turn a parsed function declaration into a type
   789  func functype(this *Node, in, out []*Node) *types.Type {
   790  	t := types.New(TFUNC)
   791  	functype0(t, this, in, out)
   792  	return t
   793  }
   794  
   795  func functype0(t *types.Type, this *Node, in, out []*Node) {
   796  	if t == nil || t.Etype != TFUNC {
   797  		Fatalf("function type expected")
   798  	}
   799  
   800  	var rcvr []*Node
   801  	if this != nil {
   802  		rcvr = []*Node{this}
   803  	}
   804  	t.FuncType().Receiver = tofunargs(rcvr, types.FunargRcvr)
   805  	t.FuncType().Results = tofunargs(out, types.FunargResults)
   806  	t.FuncType().Params = tofunargs(in, types.FunargParams)
   807  
   808  	checkdupfields("argument", t.Recvs(), t.Results(), t.Params())
   809  
   810  	if t.Recvs().Broke() || t.Results().Broke() || t.Params().Broke() {
   811  		t.SetBroke(true)
   812  	}
   813  
   814  	t.FuncType().Outnamed = false
   815  	if len(out) > 0 && out[0].Left != nil && out[0].Left.Orig != nil {
   816  		s := out[0].Left.Orig.Sym
   817  		if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
   818  			t.FuncType().Outnamed = true
   819  		}
   820  	}
   821  }
   822  
   823  func functypefield(this *types.Field, in, out []*types.Field) *types.Type {
   824  	t := types.New(TFUNC)
   825  	functypefield0(t, this, in, out)
   826  	return t
   827  }
   828  
   829  func functypefield0(t *types.Type, this *types.Field, in, out []*types.Field) {
   830  	var rcvr []*types.Field
   831  	if this != nil {
   832  		rcvr = []*types.Field{this}
   833  	}
   834  	t.FuncType().Receiver = tofunargsfield(rcvr, types.FunargRcvr)
   835  	t.FuncType().Results = tofunargsfield(out, types.FunargRcvr)
   836  	t.FuncType().Params = tofunargsfield(in, types.FunargRcvr)
   837  
   838  	t.FuncType().Outnamed = false
   839  	if len(out) > 0 && asNode(out[0].Nname) != nil && asNode(out[0].Nname).Orig != nil {
   840  		s := asNode(out[0].Nname).Orig.Sym
   841  		if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
   842  			t.FuncType().Outnamed = true
   843  		}
   844  	}
   845  }
   846  
   847  var methodsym_toppkg *types.Pkg
   848  
   849  func methodsym(nsym *types.Sym, t0 *types.Type, iface bool) *types.Sym {
   850  	if t0 == nil {
   851  		Fatalf("methodsym: nil receiver type")
   852  	}
   853  
   854  	t := t0
   855  	s := t.Sym
   856  	if s == nil && t.IsPtr() {
   857  		t = t.Elem()
   858  		if t == nil {
   859  			Fatalf("methodsym: ptrto nil")
   860  		}
   861  		s = t.Sym
   862  	}
   863  
   864  	// if t0 == *t and t0 has a sym,
   865  	// we want to see *t, not t0, in the method name.
   866  	if t != t0 && t0.Sym != nil {
   867  		t0 = types.NewPtr(t)
   868  	}
   869  
   870  	suffix := ""
   871  	if iface {
   872  		dowidth(t0)
   873  		if t0.Width < int64(Widthptr) {
   874  			suffix = "·i"
   875  		}
   876  	}
   877  
   878  	var spkg *types.Pkg
   879  	if s != nil {
   880  		spkg = s.Pkg
   881  	}
   882  	pkgprefix := ""
   883  	if (spkg == nil || nsym.Pkg != spkg) && !exportname(nsym.Name) && nsym.Pkg.Prefix != `""` {
   884  		pkgprefix = "." + nsym.Pkg.Prefix
   885  	}
   886  	var p string
   887  	if t0.Sym == nil && t0.IsPtr() {
   888  		p = fmt.Sprintf("(%-S)%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
   889  	} else {
   890  		p = fmt.Sprintf("%-S%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
   891  	}
   892  
   893  	if spkg == nil {
   894  		if methodsym_toppkg == nil {
   895  			methodsym_toppkg = types.NewPkg("go", "")
   896  		}
   897  		spkg = methodsym_toppkg
   898  	}
   899  
   900  	return spkg.Lookup(p)
   901  }
   902  
   903  // methodname is a misnomer because this now returns a Sym, rather
   904  // than an ONAME.
   905  // TODO(mdempsky): Reconcile with methodsym.
   906  func methodname(s *types.Sym, recv *types.Type) *types.Sym {
   907  	star := false
   908  	if recv.IsPtr() {
   909  		star = true
   910  		recv = recv.Elem()
   911  	}
   912  
   913  	tsym := recv.Sym
   914  	if tsym == nil || s.IsBlank() {
   915  		return s
   916  	}
   917  
   918  	var p string
   919  	if star {
   920  		p = fmt.Sprintf("(*%v).%v", tsym.Name, s)
   921  	} else {
   922  		p = fmt.Sprintf("%v.%v", tsym, s)
   923  	}
   924  
   925  	s = tsym.Pkg.Lookup(p)
   926  
   927  	return s
   928  }
   929  
   930  // Add a method, declared as a function.
   931  // - msym is the method symbol
   932  // - t is function type (with receiver)
   933  func addmethod(msym *types.Sym, t *types.Type, local, nointerface bool) {
   934  	if msym == nil {
   935  		Fatalf("no method symbol")
   936  	}
   937  
   938  	// get parent type sym
   939  	rf := t.Recv() // ptr to this structure
   940  	if rf == nil {
   941  		yyerror("missing receiver")
   942  		return
   943  	}
   944  
   945  	mt := methtype(rf.Type)
   946  	if mt == nil || mt.Sym == nil {
   947  		pa := rf.Type
   948  		t := pa
   949  		if t != nil && t.IsPtr() {
   950  			if t.Sym != nil {
   951  				yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
   952  				return
   953  			}
   954  			t = t.Elem()
   955  		}
   956  
   957  		switch {
   958  		case t == nil || t.Broke():
   959  			// rely on typecheck having complained before
   960  		case t.Sym == nil:
   961  			yyerror("invalid receiver type %v (%v is an unnamed type)", pa, t)
   962  		case t.IsPtr():
   963  			yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
   964  		case t.IsInterface():
   965  			yyerror("invalid receiver type %v (%v is an interface type)", pa, t)
   966  		default:
   967  			// Should have picked off all the reasons above,
   968  			// but just in case, fall back to generic error.
   969  			yyerror("invalid receiver type %v (%L / %L)", pa, pa, t)
   970  		}
   971  		return
   972  	}
   973  
   974  	if local && !mt.Local() {
   975  		yyerror("cannot define new methods on non-local type %v", mt)
   976  		return
   977  	}
   978  
   979  	if msym.IsBlank() {
   980  		return
   981  	}
   982  
   983  	if mt.IsStruct() {
   984  		for _, f := range mt.Fields().Slice() {
   985  			if f.Sym == msym {
   986  				yyerror("type %v has both field and method named %v", mt, msym)
   987  				return
   988  			}
   989  		}
   990  	}
   991  
   992  	for _, f := range mt.Methods().Slice() {
   993  		if msym.Name != f.Sym.Name {
   994  			continue
   995  		}
   996  		// eqtype only checks that incoming and result parameters match,
   997  		// so explicitly check that the receiver parameters match too.
   998  		if !eqtype(t, f.Type) || !eqtype(t.Recv().Type, f.Type.Recv().Type) {
   999  			yyerror("method redeclared: %v.%v\n\t%v\n\t%v", mt, msym, f.Type, t)
  1000  		}
  1001  		return
  1002  	}
  1003  
  1004  	f := types.NewField()
  1005  	f.Sym = msym
  1006  	f.Nname = asTypesNode(newname(msym))
  1007  	f.Type = t
  1008  	f.SetNointerface(nointerface)
  1009  
  1010  	mt.Methods().Append(f)
  1011  }
  1012  
  1013  func funccompile(n *Node) {
  1014  	if n.Type == nil {
  1015  		if nerrors == 0 {
  1016  			Fatalf("funccompile missing type")
  1017  		}
  1018  		return
  1019  	}
  1020  
  1021  	// assign parameter offsets
  1022  	checkwidth(n.Type)
  1023  
  1024  	if Curfn != nil {
  1025  		Fatalf("funccompile %v inside %v", n.Func.Nname.Sym, Curfn.Func.Nname.Sym)
  1026  	}
  1027  
  1028  	dclcontext = PAUTO
  1029  	funcdepth = n.Func.Depth + 1
  1030  	compile(n)
  1031  	Curfn = nil
  1032  	funcdepth = 0
  1033  	dclcontext = PEXTERN
  1034  }
  1035  
  1036  func funcsymname(s *types.Sym) string {
  1037  	return s.Name + "·f"
  1038  }
  1039  
  1040  // funcsym returns s·f.
  1041  func funcsym(s *types.Sym) *types.Sym {
  1042  	// funcsymsmu here serves to protect not just mutations of funcsyms (below),
  1043  	// but also the package lookup of the func sym name,
  1044  	// since this function gets called concurrently from the backend.
  1045  	// There are no other concurrent package lookups in the backend,
  1046  	// except for the types package, which is protected separately.
  1047  	// Reusing funcsymsmu to also cover this package lookup
  1048  	// avoids a general, broader, expensive package lookup mutex.
  1049  	// Note makefuncsym also does package look-up of func sym names,
  1050  	// but that it is only called serially, from the front end.
  1051  	funcsymsmu.Lock()
  1052  	sf, existed := s.Pkg.LookupOK(funcsymname(s))
  1053  	// Don't export s·f when compiling for dynamic linking.
  1054  	// When dynamically linking, the necessary function
  1055  	// symbols will be created explicitly with makefuncsym.
  1056  	// See the makefuncsym comment for details.
  1057  	if !Ctxt.Flag_dynlink && !existed {
  1058  		funcsyms = append(funcsyms, s)
  1059  	}
  1060  	funcsymsmu.Unlock()
  1061  	return sf
  1062  }
  1063  
  1064  // makefuncsym ensures that s·f is exported.
  1065  // It is only used with -dynlink.
  1066  // When not compiling for dynamic linking,
  1067  // the funcsyms are created as needed by
  1068  // the packages that use them.
  1069  // Normally we emit the s·f stubs as DUPOK syms,
  1070  // but DUPOK doesn't work across shared library boundaries.
  1071  // So instead, when dynamic linking, we only create
  1072  // the s·f stubs in s's package.
  1073  func makefuncsym(s *types.Sym) {
  1074  	if !Ctxt.Flag_dynlink {
  1075  		Fatalf("makefuncsym dynlink")
  1076  	}
  1077  	if s.IsBlank() {
  1078  		return
  1079  	}
  1080  	if compiling_runtime && (s.Name == "getg" || s.Name == "getclosureptr") {
  1081  		// runtime.getg() and getclosureptr are not real functions and so do not
  1082  		// get funcsyms.
  1083  		return
  1084  	}
  1085  	if _, existed := s.Pkg.LookupOK(funcsymname(s)); !existed {
  1086  		funcsyms = append(funcsyms, s)
  1087  	}
  1088  }
  1089  
  1090  func dclfunc(sym *types.Sym, tfn *Node) *Node {
  1091  	if tfn.Op != OTFUNC {
  1092  		Fatalf("expected OTFUNC node, got %v", tfn)
  1093  	}
  1094  
  1095  	fn := nod(ODCLFUNC, nil, nil)
  1096  	fn.Func.Nname = newname(sym)
  1097  	fn.Func.Nname.Name.Defn = fn
  1098  	fn.Func.Nname.Name.Param.Ntype = tfn
  1099  	declare(fn.Func.Nname, PFUNC)
  1100  	funchdr(fn)
  1101  	fn.Func.Nname.Name.Param.Ntype = typecheck(fn.Func.Nname.Name.Param.Ntype, Etype)
  1102  	return fn
  1103  }
  1104  
  1105  type nowritebarrierrecChecker struct {
  1106  	curfn  *Node
  1107  	stable bool
  1108  
  1109  	// best maps from the ODCLFUNC of each visited function that
  1110  	// recursively invokes a write barrier to the called function
  1111  	// on the shortest path to a write barrier.
  1112  	best map[*Node]nowritebarrierrecCall
  1113  }
  1114  
  1115  type nowritebarrierrecCall struct {
  1116  	target *Node
  1117  	depth  int
  1118  	lineno src.XPos
  1119  }
  1120  
  1121  func checknowritebarrierrec() {
  1122  	c := nowritebarrierrecChecker{
  1123  		best: make(map[*Node]nowritebarrierrecCall),
  1124  	}
  1125  	visitBottomUp(xtop, func(list []*Node, recursive bool) {
  1126  		// Functions with write barriers have depth 0.
  1127  		for _, n := range list {
  1128  			if n.Func.WBPos.IsKnown() && n.Func.Pragma&Nowritebarrier != 0 {
  1129  				yyerrorl(n.Func.WBPos, "write barrier prohibited")
  1130  			}
  1131  			if n.Func.WBPos.IsKnown() && n.Func.Pragma&Yeswritebarrierrec == 0 {
  1132  				c.best[n] = nowritebarrierrecCall{target: nil, depth: 0, lineno: n.Func.WBPos}
  1133  			}
  1134  		}
  1135  
  1136  		// Propagate write barrier depth up from callees. In
  1137  		// the recursive case, we have to update this at most
  1138  		// len(list) times and can stop when we an iteration
  1139  		// that doesn't change anything.
  1140  		for _ = range list {
  1141  			c.stable = false
  1142  			for _, n := range list {
  1143  				if n.Func.Pragma&Yeswritebarrierrec != 0 {
  1144  					// Don't propagate write
  1145  					// barrier up to a
  1146  					// yeswritebarrierrec function.
  1147  					continue
  1148  				}
  1149  				if !n.Func.WBPos.IsKnown() {
  1150  					c.curfn = n
  1151  					c.visitcodelist(n.Nbody)
  1152  				}
  1153  			}
  1154  			if c.stable {
  1155  				break
  1156  			}
  1157  		}
  1158  
  1159  		// Check nowritebarrierrec functions.
  1160  		for _, n := range list {
  1161  			if n.Func.Pragma&Nowritebarrierrec == 0 {
  1162  				continue
  1163  			}
  1164  			call, hasWB := c.best[n]
  1165  			if !hasWB {
  1166  				continue
  1167  			}
  1168  
  1169  			// Build the error message in reverse.
  1170  			err := ""
  1171  			for call.target != nil {
  1172  				err = fmt.Sprintf("\n\t%v: called by %v%s", linestr(call.lineno), n.Func.Nname, err)
  1173  				n = call.target
  1174  				call = c.best[n]
  1175  			}
  1176  			err = fmt.Sprintf("write barrier prohibited by caller; %v%s", n.Func.Nname, err)
  1177  			yyerrorl(n.Func.WBPos, err)
  1178  		}
  1179  	})
  1180  }
  1181  
  1182  func (c *nowritebarrierrecChecker) visitcodelist(l Nodes) {
  1183  	for _, n := range l.Slice() {
  1184  		c.visitcode(n)
  1185  	}
  1186  }
  1187  
  1188  func (c *nowritebarrierrecChecker) visitcode(n *Node) {
  1189  	if n == nil {
  1190  		return
  1191  	}
  1192  
  1193  	if n.Op == OCALLFUNC || n.Op == OCALLMETH {
  1194  		c.visitcall(n)
  1195  	}
  1196  
  1197  	c.visitcodelist(n.Ninit)
  1198  	c.visitcode(n.Left)
  1199  	c.visitcode(n.Right)
  1200  	c.visitcodelist(n.List)
  1201  	c.visitcodelist(n.Nbody)
  1202  	c.visitcodelist(n.Rlist)
  1203  }
  1204  
  1205  func (c *nowritebarrierrecChecker) visitcall(n *Node) {
  1206  	fn := n.Left
  1207  	if n.Op == OCALLMETH {
  1208  		fn = asNode(n.Left.Sym.Def)
  1209  	}
  1210  	if fn == nil || fn.Op != ONAME || fn.Class() != PFUNC || fn.Name.Defn == nil {
  1211  		return
  1212  	}
  1213  	defn := fn.Name.Defn
  1214  
  1215  	fnbest, ok := c.best[defn]
  1216  	if !ok {
  1217  		return
  1218  	}
  1219  	best, ok := c.best[c.curfn]
  1220  	if ok && fnbest.depth+1 >= best.depth {
  1221  		return
  1222  	}
  1223  	c.best[c.curfn] = nowritebarrierrecCall{target: defn, depth: fnbest.depth + 1, lineno: n.Pos}
  1224  	c.stable = false
  1225  }