github.com/Filosottile/go@v0.0.0-20170906193555-dbed9972d994/src/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bytes" 9 "encoding/binary" 10 "fmt" 11 "html" 12 "os" 13 "sort" 14 15 "cmd/compile/internal/ssa" 16 "cmd/compile/internal/types" 17 "cmd/internal/obj" 18 "cmd/internal/objabi" 19 "cmd/internal/src" 20 "cmd/internal/sys" 21 ) 22 23 var ssaConfig *ssa.Config 24 var ssaCaches []ssa.Cache 25 26 func initssaconfig() { 27 types_ := ssa.Types{ 28 Bool: types.Types[TBOOL], 29 Int8: types.Types[TINT8], 30 Int16: types.Types[TINT16], 31 Int32: types.Types[TINT32], 32 Int64: types.Types[TINT64], 33 UInt8: types.Types[TUINT8], 34 UInt16: types.Types[TUINT16], 35 UInt32: types.Types[TUINT32], 36 UInt64: types.Types[TUINT64], 37 Float32: types.Types[TFLOAT32], 38 Float64: types.Types[TFLOAT64], 39 Int: types.Types[TINT], 40 Uintptr: types.Types[TUINTPTR], 41 String: types.Types[TSTRING], 42 BytePtr: types.NewPtr(types.Types[TUINT8]), 43 Int32Ptr: types.NewPtr(types.Types[TINT32]), 44 UInt32Ptr: types.NewPtr(types.Types[TUINT32]), 45 IntPtr: types.NewPtr(types.Types[TINT]), 46 UintptrPtr: types.NewPtr(types.Types[TUINTPTR]), 47 Float32Ptr: types.NewPtr(types.Types[TFLOAT32]), 48 Float64Ptr: types.NewPtr(types.Types[TFLOAT64]), 49 BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])), 50 } 51 // Generate a few pointer types that are uncommon in the frontend but common in the backend. 52 // Caching is disabled in the backend, so generating these here avoids allocations. 53 _ = types.NewPtr(types.Types[TINTER]) // *interface{} 54 _ = types.NewPtr(types.NewPtr(types.Types[TSTRING])) // **string 55 _ = types.NewPtr(types.NewPtr(types.Idealstring)) // **string 56 _ = types.NewPtr(types.NewSlice(types.Types[TINTER])) // *[]interface{} 57 _ = types.NewPtr(types.NewPtr(types.Bytetype)) // **byte 58 _ = types.NewPtr(types.NewSlice(types.Bytetype)) // *[]byte 59 _ = types.NewPtr(types.NewSlice(types.Types[TSTRING])) // *[]string 60 _ = types.NewPtr(types.NewSlice(types.Idealstring)) // *[]string 61 _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8 62 _ = types.NewPtr(types.Types[TINT16]) // *int16 63 _ = types.NewPtr(types.Types[TINT64]) // *int64 64 _ = types.NewPtr(types.Errortype) // *error 65 types.NewPtrCacheEnabled = false 66 ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0) 67 if thearch.LinkArch.Name == "386" { 68 ssaConfig.Set387(thearch.Use387) 69 } 70 ssaCaches = make([]ssa.Cache, nBackendWorkers) 71 72 // Set up some runtime functions we'll need to call. 73 Newproc = sysfunc("newproc") 74 Deferproc = sysfunc("deferproc") 75 Deferreturn = sysfunc("deferreturn") 76 Duffcopy = sysfunc("duffcopy") 77 Duffzero = sysfunc("duffzero") 78 panicindex = sysfunc("panicindex") 79 panicslice = sysfunc("panicslice") 80 panicdivide = sysfunc("panicdivide") 81 growslice = sysfunc("growslice") 82 panicdottypeE = sysfunc("panicdottypeE") 83 panicdottypeI = sysfunc("panicdottypeI") 84 panicnildottype = sysfunc("panicnildottype") 85 assertE2I = sysfunc("assertE2I") 86 assertE2I2 = sysfunc("assertE2I2") 87 assertI2I = sysfunc("assertI2I") 88 assertI2I2 = sysfunc("assertI2I2") 89 goschedguarded = sysfunc("goschedguarded") 90 writeBarrier = sysfunc("writeBarrier") 91 writebarrierptr = sysfunc("writebarrierptr") 92 typedmemmove = sysfunc("typedmemmove") 93 typedmemclr = sysfunc("typedmemclr") 94 Udiv = sysfunc("udiv") 95 96 // GO386=387 runtime functions 97 ControlWord64trunc = sysfunc("controlWord64trunc") 98 ControlWord32 = sysfunc("controlWord32") 99 } 100 101 // buildssa builds an SSA function for fn. 102 // worker indicates which of the backend workers is doing the processing. 103 func buildssa(fn *Node, worker int) *ssa.Func { 104 name := fn.funcname() 105 printssa := name == os.Getenv("GOSSAFUNC") 106 if printssa { 107 fmt.Println("generating SSA for", name) 108 dumplist("buildssa-enter", fn.Func.Enter) 109 dumplist("buildssa-body", fn.Nbody) 110 dumplist("buildssa-exit", fn.Func.Exit) 111 } 112 113 var s state 114 s.pushLine(fn.Pos) 115 defer s.popLine() 116 117 s.hasdefer = fn.Func.HasDefer() 118 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 119 s.cgoUnsafeArgs = true 120 } 121 122 fe := ssafn{ 123 curfn: fn, 124 log: printssa, 125 } 126 s.curfn = fn 127 128 s.f = ssa.NewFunc(&fe) 129 s.config = ssaConfig 130 s.f.Config = ssaConfig 131 s.f.Cache = &ssaCaches[worker] 132 s.f.Cache.Reset() 133 s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name) 134 s.f.Name = name 135 if fn.Func.Pragma&Nosplit != 0 { 136 s.f.NoSplit = true 137 } 138 defer func() { 139 if s.f.WBPos.IsKnown() { 140 fn.Func.WBPos = s.f.WBPos 141 } 142 }() 143 s.exitCode = fn.Func.Exit 144 s.panics = map[funcLine]*ssa.Block{} 145 146 if name == os.Getenv("GOSSAFUNC") { 147 s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name) 148 // TODO: generate and print a mapping from nodes to values and blocks 149 } 150 151 // Allocate starting block 152 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 153 154 // Allocate starting values 155 s.labels = map[string]*ssaLabel{} 156 s.labeledNodes = map[*Node]*ssaLabel{} 157 s.fwdVars = map[*Node]*ssa.Value{} 158 s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) 159 s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 160 s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR]) 161 162 s.startBlock(s.f.Entry) 163 s.vars[&memVar] = s.startmem 164 165 s.varsyms = map[*Node]interface{}{} 166 167 // Generate addresses of local declarations 168 s.decladdrs = map[*Node]*ssa.Value{} 169 for _, n := range fn.Func.Dcl { 170 switch n.Class() { 171 case PPARAM, PPARAMOUT: 172 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 173 s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sp) 174 if n.Class() == PPARAMOUT && s.canSSA(n) { 175 // Save ssa-able PPARAMOUT variables so we can 176 // store them back to the stack at the end of 177 // the function. 178 s.returns = append(s.returns, n) 179 } 180 case PAUTO: 181 // processed at each use, to prevent Addr coming 182 // before the decl. 183 case PAUTOHEAP: 184 // moved to heap - already handled by frontend 185 case PFUNC: 186 // local function - already handled by frontend 187 default: 188 s.Fatalf("local variable with class %s unimplemented", classnames[n.Class()]) 189 } 190 } 191 192 // Populate SSAable arguments. 193 for _, n := range fn.Func.Dcl { 194 if n.Class() == PPARAM && s.canSSA(n) { 195 s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n) 196 } 197 } 198 199 // Convert the AST-based IR to the SSA-based IR 200 s.stmtList(fn.Func.Enter) 201 s.stmtList(fn.Nbody) 202 203 // fallthrough to exit 204 if s.curBlock != nil { 205 s.pushLine(fn.Func.Endlineno) 206 s.exit() 207 s.popLine() 208 } 209 210 s.insertPhis() 211 212 // Don't carry reference this around longer than necessary 213 s.exitCode = Nodes{} 214 215 // Main call to ssa package to compile function 216 ssa.Compile(s.f) 217 return s.f 218 } 219 220 type state struct { 221 // configuration (arch) information 222 config *ssa.Config 223 224 // function we're building 225 f *ssa.Func 226 227 // Node for function 228 curfn *Node 229 230 // labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f 231 labels map[string]*ssaLabel 232 labeledNodes map[*Node]*ssaLabel 233 234 // Code that must precede any return 235 // (e.g., copying value of heap-escaped paramout back to true paramout) 236 exitCode Nodes 237 238 // unlabeled break and continue statement tracking 239 breakTo *ssa.Block // current target for plain break statement 240 continueTo *ssa.Block // current target for plain continue statement 241 242 // current location where we're interpreting the AST 243 curBlock *ssa.Block 244 245 // variable assignments in the current block (map from variable symbol to ssa value) 246 // *Node is the unique identifier (an ONAME Node) for the variable. 247 // TODO: keep a single varnum map, then make all of these maps slices instead? 248 vars map[*Node]*ssa.Value 249 250 // fwdVars are variables that are used before they are defined in the current block. 251 // This map exists just to coalesce multiple references into a single FwdRef op. 252 // *Node is the unique identifier (an ONAME Node) for the variable. 253 fwdVars map[*Node]*ssa.Value 254 255 // all defined variables at the end of each block. Indexed by block ID. 256 defvars []map[*Node]*ssa.Value 257 258 // addresses of PPARAM and PPARAMOUT variables. 259 decladdrs map[*Node]*ssa.Value 260 261 // symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused. 262 varsyms map[*Node]interface{} 263 264 // starting values. Memory, stack pointer, and globals pointer 265 startmem *ssa.Value 266 sp *ssa.Value 267 sb *ssa.Value 268 269 // line number stack. The current line number is top of stack 270 line []src.XPos 271 272 // list of panic calls by function name and line number. 273 // Used to deduplicate panic calls. 274 panics map[funcLine]*ssa.Block 275 276 // list of PPARAMOUT (return) variables. 277 returns []*Node 278 279 cgoUnsafeArgs bool 280 hasdefer bool // whether the function contains a defer statement 281 } 282 283 type funcLine struct { 284 f *obj.LSym 285 file string 286 line uint 287 } 288 289 type ssaLabel struct { 290 target *ssa.Block // block identified by this label 291 breakTarget *ssa.Block // block to break to in control flow node identified by this label 292 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 293 } 294 295 // label returns the label associated with sym, creating it if necessary. 296 func (s *state) label(sym *types.Sym) *ssaLabel { 297 lab := s.labels[sym.Name] 298 if lab == nil { 299 lab = new(ssaLabel) 300 s.labels[sym.Name] = lab 301 } 302 return lab 303 } 304 305 func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } 306 func (s *state) Log() bool { return s.f.Log() } 307 func (s *state) Fatalf(msg string, args ...interface{}) { 308 s.f.Frontend().Fatalf(s.peekPos(), msg, args...) 309 } 310 func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } 311 func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } 312 313 var ( 314 // dummy node for the memory variable 315 memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}} 316 317 // dummy nodes for temporary variables 318 ptrVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}} 319 lenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}} 320 newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}} 321 capVar = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}} 322 typVar = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}} 323 okVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}} 324 ) 325 326 // startBlock sets the current block we're generating code in to b. 327 func (s *state) startBlock(b *ssa.Block) { 328 if s.curBlock != nil { 329 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 330 } 331 s.curBlock = b 332 s.vars = map[*Node]*ssa.Value{} 333 for n := range s.fwdVars { 334 delete(s.fwdVars, n) 335 } 336 } 337 338 // endBlock marks the end of generating code for the current block. 339 // Returns the (former) current block. Returns nil if there is no current 340 // block, i.e. if no code flows to the current execution point. 341 func (s *state) endBlock() *ssa.Block { 342 b := s.curBlock 343 if b == nil { 344 return nil 345 } 346 for len(s.defvars) <= int(b.ID) { 347 s.defvars = append(s.defvars, nil) 348 } 349 s.defvars[b.ID] = s.vars 350 s.curBlock = nil 351 s.vars = nil 352 b.Pos = s.peekPos() 353 return b 354 } 355 356 // pushLine pushes a line number on the line number stack. 357 func (s *state) pushLine(line src.XPos) { 358 if !line.IsKnown() { 359 // the frontend may emit node with line number missing, 360 // use the parent line number in this case. 361 line = s.peekPos() 362 if Debug['K'] != 0 { 363 Warn("buildssa: unknown position (line 0)") 364 } 365 } 366 s.line = append(s.line, line) 367 } 368 369 // popLine pops the top of the line number stack. 370 func (s *state) popLine() { 371 s.line = s.line[:len(s.line)-1] 372 } 373 374 // peekPos peeks the top of the line number stack. 375 func (s *state) peekPos() src.XPos { 376 return s.line[len(s.line)-1] 377 } 378 379 // newValue0 adds a new value with no arguments to the current block. 380 func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { 381 return s.curBlock.NewValue0(s.peekPos(), op, t) 382 } 383 384 // newValue0A adds a new value with no arguments and an aux value to the current block. 385 func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 386 return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) 387 } 388 389 // newValue0I adds a new value with no arguments and an auxint value to the current block. 390 func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { 391 return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) 392 } 393 394 // newValue1 adds a new value with one argument to the current block. 395 func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 396 return s.curBlock.NewValue1(s.peekPos(), op, t, arg) 397 } 398 399 // newValue1A adds a new value with one argument and an aux value to the current block. 400 func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 401 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 402 } 403 404 // newValue1I adds a new value with one argument and an auxint value to the current block. 405 func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { 406 return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) 407 } 408 409 // newValue2 adds a new value with two arguments to the current block. 410 func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 411 return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) 412 } 413 414 // newValue2I adds a new value with two arguments and an auxint value to the current block. 415 func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 416 return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) 417 } 418 419 // newValue3 adds a new value with three arguments to the current block. 420 func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 421 return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) 422 } 423 424 // newValue3I adds a new value with three arguments and an auxint value to the current block. 425 func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 426 return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) 427 } 428 429 // newValue3A adds a new value with three arguments and an aux value to the current block. 430 func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 431 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 432 } 433 434 // newValue4 adds a new value with four arguments to the current block. 435 func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { 436 return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) 437 } 438 439 // entryNewValue0 adds a new value with no arguments to the entry block. 440 func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { 441 return s.f.Entry.NewValue0(src.NoXPos, op, t) 442 } 443 444 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 445 func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 446 return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux) 447 } 448 449 // entryNewValue1 adds a new value with one argument to the entry block. 450 func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 451 return s.f.Entry.NewValue1(s.peekPos(), op, t, arg) 452 } 453 454 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 455 func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { 456 return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg) 457 } 458 459 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 460 func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 461 return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg) 462 } 463 464 // entryNewValue2 adds a new value with two arguments to the entry block. 465 func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 466 return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1) 467 } 468 469 // const* routines add a new const value to the entry block. 470 func (s *state) constSlice(t *types.Type) *ssa.Value { 471 return s.f.ConstSlice(s.peekPos(), t) 472 } 473 func (s *state) constInterface(t *types.Type) *ssa.Value { 474 return s.f.ConstInterface(s.peekPos(), t) 475 } 476 func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) } 477 func (s *state) constEmptyString(t *types.Type) *ssa.Value { 478 return s.f.ConstEmptyString(s.peekPos(), t) 479 } 480 func (s *state) constBool(c bool) *ssa.Value { 481 return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c) 482 } 483 func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { 484 return s.f.ConstInt8(s.peekPos(), t, c) 485 } 486 func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { 487 return s.f.ConstInt16(s.peekPos(), t, c) 488 } 489 func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { 490 return s.f.ConstInt32(s.peekPos(), t, c) 491 } 492 func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { 493 return s.f.ConstInt64(s.peekPos(), t, c) 494 } 495 func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { 496 return s.f.ConstFloat32(s.peekPos(), t, c) 497 } 498 func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { 499 return s.f.ConstFloat64(s.peekPos(), t, c) 500 } 501 func (s *state) constInt(t *types.Type, c int64) *ssa.Value { 502 if s.config.PtrSize == 8 { 503 return s.constInt64(t, c) 504 } 505 if int64(int32(c)) != c { 506 s.Fatalf("integer constant too big %d", c) 507 } 508 return s.constInt32(t, int32(c)) 509 } 510 func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { 511 return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp) 512 } 513 514 // stmtList converts the statement list n to SSA and adds it to s. 515 func (s *state) stmtList(l Nodes) { 516 for _, n := range l.Slice() { 517 s.stmt(n) 518 } 519 } 520 521 // stmt converts the statement n to SSA and adds it to s. 522 func (s *state) stmt(n *Node) { 523 s.pushLine(n.Pos) 524 defer s.popLine() 525 526 // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), 527 // then this code is dead. Stop here. 528 if s.curBlock == nil && n.Op != OLABEL { 529 return 530 } 531 532 s.stmtList(n.Ninit) 533 switch n.Op { 534 535 case OBLOCK: 536 s.stmtList(n.List) 537 538 // No-ops 539 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 540 541 // Expression statements 542 case OCALLFUNC: 543 if isIntrinsicCall(n) { 544 s.intrinsicCall(n) 545 return 546 } 547 fallthrough 548 549 case OCALLMETH, OCALLINTER: 550 s.call(n, callNormal) 551 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC { 552 if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" || 553 n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") { 554 m := s.mem() 555 b := s.endBlock() 556 b.Kind = ssa.BlockExit 557 b.SetControl(m) 558 // TODO: never rewrite OPANIC to OCALLFUNC in the 559 // first place. Need to wait until all backends 560 // go through SSA. 561 } 562 } 563 case ODEFER: 564 s.call(n.Left, callDefer) 565 case OPROC: 566 s.call(n.Left, callGo) 567 568 case OAS2DOTTYPE: 569 res, resok := s.dottype(n.Rlist.First(), true) 570 deref := false 571 if !canSSAType(n.Rlist.First().Type) { 572 if res.Op != ssa.OpLoad { 573 s.Fatalf("dottype of non-load") 574 } 575 mem := s.mem() 576 if mem.Op == ssa.OpVarKill { 577 mem = mem.Args[0] 578 } 579 if res.Args[1] != mem { 580 s.Fatalf("memory no longer live from 2-result dottype load") 581 } 582 deref = true 583 res = res.Args[0] 584 } 585 s.assign(n.List.First(), res, deref, 0) 586 s.assign(n.List.Second(), resok, false, 0) 587 return 588 589 case OAS2FUNC: 590 // We come here only when it is an intrinsic call returning two values. 591 if !isIntrinsicCall(n.Rlist.First()) { 592 s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First()) 593 } 594 v := s.intrinsicCall(n.Rlist.First()) 595 v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v) 596 v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v) 597 s.assign(n.List.First(), v1, false, 0) 598 s.assign(n.List.Second(), v2, false, 0) 599 return 600 601 case ODCL: 602 if n.Left.Class() == PAUTOHEAP { 603 Fatalf("DCL %v", n) 604 } 605 606 case OLABEL: 607 sym := n.Left.Sym 608 lab := s.label(sym) 609 610 // Associate label with its control flow node, if any 611 if ctl := n.labeledControl(); ctl != nil { 612 s.labeledNodes[ctl] = lab 613 } 614 615 // The label might already have a target block via a goto. 616 if lab.target == nil { 617 lab.target = s.f.NewBlock(ssa.BlockPlain) 618 } 619 620 // Go to that label. 621 // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) 622 if s.curBlock != nil { 623 b := s.endBlock() 624 b.AddEdgeTo(lab.target) 625 } 626 s.startBlock(lab.target) 627 628 case OGOTO: 629 sym := n.Left.Sym 630 631 lab := s.label(sym) 632 if lab.target == nil { 633 lab.target = s.f.NewBlock(ssa.BlockPlain) 634 } 635 636 b := s.endBlock() 637 b.AddEdgeTo(lab.target) 638 639 case OAS: 640 if n.Left == n.Right && n.Left.Op == ONAME { 641 // An x=x assignment. No point in doing anything 642 // here. In addition, skipping this assignment 643 // prevents generating: 644 // VARDEF x 645 // COPY x -> x 646 // which is bad because x is incorrectly considered 647 // dead before the vardef. See issue #14904. 648 return 649 } 650 651 // Evaluate RHS. 652 rhs := n.Right 653 if rhs != nil { 654 switch rhs.Op { 655 case OSTRUCTLIT, OARRAYLIT, OSLICELIT: 656 // All literals with nonzero fields have already been 657 // rewritten during walk. Any that remain are just T{} 658 // or equivalents. Use the zero value. 659 if !iszero(rhs) { 660 Fatalf("literal with nonzero value in SSA: %v", rhs) 661 } 662 rhs = nil 663 case OAPPEND: 664 // Check whether we're writing the result of an append back to the same slice. 665 // If so, we handle it specially to avoid write barriers on the fast 666 // (non-growth) path. 667 if !samesafeexpr(n.Left, rhs.List.First()) { 668 break 669 } 670 // If the slice can be SSA'd, it'll be on the stack, 671 // so there will be no write barriers, 672 // so there's no need to attempt to prevent them. 673 if s.canSSA(n.Left) { 674 if Debug_append > 0 { // replicating old diagnostic message 675 Warnl(n.Pos, "append: len-only update (in local slice)") 676 } 677 break 678 } 679 if Debug_append > 0 { 680 Warnl(n.Pos, "append: len-only update") 681 } 682 s.append(rhs, true) 683 return 684 } 685 } 686 687 if isblank(n.Left) { 688 // _ = rhs 689 // Just evaluate rhs for side-effects. 690 if rhs != nil { 691 s.expr(rhs) 692 } 693 return 694 } 695 696 var t *types.Type 697 if n.Right != nil { 698 t = n.Right.Type 699 } else { 700 t = n.Left.Type 701 } 702 703 var r *ssa.Value 704 deref := !canSSAType(t) 705 if deref { 706 if rhs == nil { 707 r = nil // Signal assign to use OpZero. 708 } else { 709 r = s.addr(rhs, false) 710 } 711 } else { 712 if rhs == nil { 713 r = s.zeroVal(t) 714 } else { 715 r = s.expr(rhs) 716 } 717 } 718 719 var skip skipMask 720 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 721 // We're assigning a slicing operation back to its source. 722 // Don't write back fields we aren't changing. See issue #14855. 723 i, j, k := rhs.SliceBounds() 724 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 725 // [0:...] is the same as [:...] 726 i = nil 727 } 728 // TODO: detect defaults for len/cap also. 729 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 730 // tmp = len(*p) 731 // (*p)[:tmp] 732 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 733 // j = nil 734 //} 735 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 736 // k = nil 737 //} 738 if i == nil { 739 skip |= skipPtr 740 if j == nil { 741 skip |= skipLen 742 } 743 if k == nil { 744 skip |= skipCap 745 } 746 } 747 } 748 749 s.assign(n.Left, r, deref, skip) 750 751 case OIF: 752 bThen := s.f.NewBlock(ssa.BlockPlain) 753 bEnd := s.f.NewBlock(ssa.BlockPlain) 754 var bElse *ssa.Block 755 var likely int8 756 if n.Likely() { 757 likely = 1 758 } 759 if n.Rlist.Len() != 0 { 760 bElse = s.f.NewBlock(ssa.BlockPlain) 761 s.condBranch(n.Left, bThen, bElse, likely) 762 } else { 763 s.condBranch(n.Left, bThen, bEnd, likely) 764 } 765 766 s.startBlock(bThen) 767 s.stmtList(n.Nbody) 768 if b := s.endBlock(); b != nil { 769 b.AddEdgeTo(bEnd) 770 } 771 772 if n.Rlist.Len() != 0 { 773 s.startBlock(bElse) 774 s.stmtList(n.Rlist) 775 if b := s.endBlock(); b != nil { 776 b.AddEdgeTo(bEnd) 777 } 778 } 779 s.startBlock(bEnd) 780 781 case ORETURN: 782 s.stmtList(n.List) 783 s.exit() 784 case ORETJMP: 785 s.stmtList(n.List) 786 b := s.exit() 787 b.Kind = ssa.BlockRetJmp // override BlockRet 788 b.Aux = n.Left.Sym.Linksym() 789 790 case OCONTINUE, OBREAK: 791 var to *ssa.Block 792 if n.Left == nil { 793 // plain break/continue 794 switch n.Op { 795 case OCONTINUE: 796 to = s.continueTo 797 case OBREAK: 798 to = s.breakTo 799 } 800 } else { 801 // labeled break/continue; look up the target 802 sym := n.Left.Sym 803 lab := s.label(sym) 804 switch n.Op { 805 case OCONTINUE: 806 to = lab.continueTarget 807 case OBREAK: 808 to = lab.breakTarget 809 } 810 } 811 812 b := s.endBlock() 813 b.AddEdgeTo(to) 814 815 case OFOR, OFORUNTIL: 816 // OFOR: for Ninit; Left; Right { Nbody } 817 // For = cond; body; incr 818 // Foruntil = body; incr; cond 819 bCond := s.f.NewBlock(ssa.BlockPlain) 820 bBody := s.f.NewBlock(ssa.BlockPlain) 821 bIncr := s.f.NewBlock(ssa.BlockPlain) 822 bEnd := s.f.NewBlock(ssa.BlockPlain) 823 824 // first, jump to condition test (OFOR) or body (OFORUNTIL) 825 b := s.endBlock() 826 if n.Op == OFOR { 827 b.AddEdgeTo(bCond) 828 // generate code to test condition 829 s.startBlock(bCond) 830 if n.Left != nil { 831 s.condBranch(n.Left, bBody, bEnd, 1) 832 } else { 833 b := s.endBlock() 834 b.Kind = ssa.BlockPlain 835 b.AddEdgeTo(bBody) 836 } 837 838 } else { 839 b.AddEdgeTo(bBody) 840 } 841 842 // set up for continue/break in body 843 prevContinue := s.continueTo 844 prevBreak := s.breakTo 845 s.continueTo = bIncr 846 s.breakTo = bEnd 847 lab := s.labeledNodes[n] 848 if lab != nil { 849 // labeled for loop 850 lab.continueTarget = bIncr 851 lab.breakTarget = bEnd 852 } 853 854 // generate body 855 s.startBlock(bBody) 856 s.stmtList(n.Nbody) 857 858 // tear down continue/break 859 s.continueTo = prevContinue 860 s.breakTo = prevBreak 861 if lab != nil { 862 lab.continueTarget = nil 863 lab.breakTarget = nil 864 } 865 866 // done with body, goto incr 867 if b := s.endBlock(); b != nil { 868 b.AddEdgeTo(bIncr) 869 } 870 871 // generate incr 872 s.startBlock(bIncr) 873 if n.Right != nil { 874 s.stmt(n.Right) 875 } 876 if b := s.endBlock(); b != nil { 877 b.AddEdgeTo(bCond) 878 } 879 880 if n.Op == OFORUNTIL { 881 // generate code to test condition 882 s.startBlock(bCond) 883 if n.Left != nil { 884 s.condBranch(n.Left, bBody, bEnd, 1) 885 } else { 886 b := s.endBlock() 887 b.Kind = ssa.BlockPlain 888 b.AddEdgeTo(bBody) 889 } 890 } 891 892 s.startBlock(bEnd) 893 894 case OSWITCH, OSELECT: 895 // These have been mostly rewritten by the front end into their Nbody fields. 896 // Our main task is to correctly hook up any break statements. 897 bEnd := s.f.NewBlock(ssa.BlockPlain) 898 899 prevBreak := s.breakTo 900 s.breakTo = bEnd 901 lab := s.labeledNodes[n] 902 if lab != nil { 903 // labeled 904 lab.breakTarget = bEnd 905 } 906 907 // generate body code 908 s.stmtList(n.Nbody) 909 910 s.breakTo = prevBreak 911 if lab != nil { 912 lab.breakTarget = nil 913 } 914 915 // walk adds explicit OBREAK nodes to the end of all reachable code paths. 916 // If we still have a current block here, then mark it unreachable. 917 if s.curBlock != nil { 918 m := s.mem() 919 b := s.endBlock() 920 b.Kind = ssa.BlockExit 921 b.SetControl(m) 922 } 923 s.startBlock(bEnd) 924 925 case OVARKILL: 926 // Insert a varkill op to record that a variable is no longer live. 927 // We only care about liveness info at call sites, so putting the 928 // varkill in the store chain is enough to keep it correctly ordered 929 // with respect to call ops. 930 if !s.canSSA(n.Left) { 931 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, n.Left, s.mem()) 932 } 933 934 case OVARLIVE: 935 // Insert a varlive op to record that a variable is still live. 936 if !n.Left.Addrtaken() { 937 s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left) 938 } 939 var aux interface{} 940 switch n.Left.Class() { 941 case PAUTO: 942 aux = s.lookupSymbol(n.Left, &ssa.AutoSymbol{Node: n.Left}) 943 case PPARAM, PPARAMOUT: 944 aux = s.lookupSymbol(n.Left, &ssa.ArgSymbol{Node: n.Left}) 945 default: 946 s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left) 947 } 948 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, aux, s.mem()) 949 950 case OCHECKNIL: 951 p := s.expr(n.Left) 952 s.nilCheck(p) 953 954 default: 955 s.Fatalf("unhandled stmt %v", n.Op) 956 } 957 } 958 959 // exit processes any code that needs to be generated just before returning. 960 // It returns a BlockRet block that ends the control flow. Its control value 961 // will be set to the final memory state. 962 func (s *state) exit() *ssa.Block { 963 if s.hasdefer { 964 s.rtcall(Deferreturn, true, nil) 965 } 966 967 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 968 // variables back to the stack. 969 s.stmtList(s.exitCode) 970 971 // Store SSAable PPARAMOUT variables back to stack locations. 972 for _, n := range s.returns { 973 addr := s.decladdrs[n] 974 val := s.variable(n, n.Type) 975 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) 976 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, n.Type, addr, val, s.mem()) 977 // TODO: if val is ever spilled, we'd like to use the 978 // PPARAMOUT slot for spilling it. That won't happen 979 // currently. 980 } 981 982 // Do actual return. 983 m := s.mem() 984 b := s.endBlock() 985 b.Kind = ssa.BlockRet 986 b.SetControl(m) 987 return b 988 } 989 990 type opAndType struct { 991 op Op 992 etype types.EType 993 } 994 995 var opToSSA = map[opAndType]ssa.Op{ 996 opAndType{OADD, TINT8}: ssa.OpAdd8, 997 opAndType{OADD, TUINT8}: ssa.OpAdd8, 998 opAndType{OADD, TINT16}: ssa.OpAdd16, 999 opAndType{OADD, TUINT16}: ssa.OpAdd16, 1000 opAndType{OADD, TINT32}: ssa.OpAdd32, 1001 opAndType{OADD, TUINT32}: ssa.OpAdd32, 1002 opAndType{OADD, TPTR32}: ssa.OpAdd32, 1003 opAndType{OADD, TINT64}: ssa.OpAdd64, 1004 opAndType{OADD, TUINT64}: ssa.OpAdd64, 1005 opAndType{OADD, TPTR64}: ssa.OpAdd64, 1006 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 1007 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 1008 1009 opAndType{OSUB, TINT8}: ssa.OpSub8, 1010 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1011 opAndType{OSUB, TINT16}: ssa.OpSub16, 1012 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1013 opAndType{OSUB, TINT32}: ssa.OpSub32, 1014 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1015 opAndType{OSUB, TINT64}: ssa.OpSub64, 1016 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1017 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1018 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1019 1020 opAndType{ONOT, TBOOL}: ssa.OpNot, 1021 1022 opAndType{OMINUS, TINT8}: ssa.OpNeg8, 1023 opAndType{OMINUS, TUINT8}: ssa.OpNeg8, 1024 opAndType{OMINUS, TINT16}: ssa.OpNeg16, 1025 opAndType{OMINUS, TUINT16}: ssa.OpNeg16, 1026 opAndType{OMINUS, TINT32}: ssa.OpNeg32, 1027 opAndType{OMINUS, TUINT32}: ssa.OpNeg32, 1028 opAndType{OMINUS, TINT64}: ssa.OpNeg64, 1029 opAndType{OMINUS, TUINT64}: ssa.OpNeg64, 1030 opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, 1031 opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, 1032 1033 opAndType{OCOM, TINT8}: ssa.OpCom8, 1034 opAndType{OCOM, TUINT8}: ssa.OpCom8, 1035 opAndType{OCOM, TINT16}: ssa.OpCom16, 1036 opAndType{OCOM, TUINT16}: ssa.OpCom16, 1037 opAndType{OCOM, TINT32}: ssa.OpCom32, 1038 opAndType{OCOM, TUINT32}: ssa.OpCom32, 1039 opAndType{OCOM, TINT64}: ssa.OpCom64, 1040 opAndType{OCOM, TUINT64}: ssa.OpCom64, 1041 1042 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1043 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1044 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1045 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1046 1047 opAndType{OMUL, TINT8}: ssa.OpMul8, 1048 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1049 opAndType{OMUL, TINT16}: ssa.OpMul16, 1050 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1051 opAndType{OMUL, TINT32}: ssa.OpMul32, 1052 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1053 opAndType{OMUL, TINT64}: ssa.OpMul64, 1054 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1055 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1056 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1057 1058 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1059 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1060 1061 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1062 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1063 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1064 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1065 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1066 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1067 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1068 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1069 1070 opAndType{OMOD, TINT8}: ssa.OpMod8, 1071 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1072 opAndType{OMOD, TINT16}: ssa.OpMod16, 1073 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1074 opAndType{OMOD, TINT32}: ssa.OpMod32, 1075 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1076 opAndType{OMOD, TINT64}: ssa.OpMod64, 1077 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1078 1079 opAndType{OAND, TINT8}: ssa.OpAnd8, 1080 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1081 opAndType{OAND, TINT16}: ssa.OpAnd16, 1082 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1083 opAndType{OAND, TINT32}: ssa.OpAnd32, 1084 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1085 opAndType{OAND, TINT64}: ssa.OpAnd64, 1086 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1087 1088 opAndType{OOR, TINT8}: ssa.OpOr8, 1089 opAndType{OOR, TUINT8}: ssa.OpOr8, 1090 opAndType{OOR, TINT16}: ssa.OpOr16, 1091 opAndType{OOR, TUINT16}: ssa.OpOr16, 1092 opAndType{OOR, TINT32}: ssa.OpOr32, 1093 opAndType{OOR, TUINT32}: ssa.OpOr32, 1094 opAndType{OOR, TINT64}: ssa.OpOr64, 1095 opAndType{OOR, TUINT64}: ssa.OpOr64, 1096 1097 opAndType{OXOR, TINT8}: ssa.OpXor8, 1098 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1099 opAndType{OXOR, TINT16}: ssa.OpXor16, 1100 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1101 opAndType{OXOR, TINT32}: ssa.OpXor32, 1102 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1103 opAndType{OXOR, TINT64}: ssa.OpXor64, 1104 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1105 1106 opAndType{OEQ, TBOOL}: ssa.OpEqB, 1107 opAndType{OEQ, TINT8}: ssa.OpEq8, 1108 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1109 opAndType{OEQ, TINT16}: ssa.OpEq16, 1110 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1111 opAndType{OEQ, TINT32}: ssa.OpEq32, 1112 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1113 opAndType{OEQ, TINT64}: ssa.OpEq64, 1114 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1115 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1116 opAndType{OEQ, TSLICE}: ssa.OpEqSlice, 1117 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1118 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1119 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1120 opAndType{OEQ, TPTR32}: ssa.OpEqPtr, 1121 opAndType{OEQ, TPTR64}: ssa.OpEqPtr, 1122 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1123 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1124 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1125 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1126 1127 opAndType{ONE, TBOOL}: ssa.OpNeqB, 1128 opAndType{ONE, TINT8}: ssa.OpNeq8, 1129 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1130 opAndType{ONE, TINT16}: ssa.OpNeq16, 1131 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1132 opAndType{ONE, TINT32}: ssa.OpNeq32, 1133 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1134 opAndType{ONE, TINT64}: ssa.OpNeq64, 1135 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1136 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1137 opAndType{ONE, TSLICE}: ssa.OpNeqSlice, 1138 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1139 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1140 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1141 opAndType{ONE, TPTR32}: ssa.OpNeqPtr, 1142 opAndType{ONE, TPTR64}: ssa.OpNeqPtr, 1143 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1144 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1145 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1146 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1147 1148 opAndType{OLT, TINT8}: ssa.OpLess8, 1149 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1150 opAndType{OLT, TINT16}: ssa.OpLess16, 1151 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1152 opAndType{OLT, TINT32}: ssa.OpLess32, 1153 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1154 opAndType{OLT, TINT64}: ssa.OpLess64, 1155 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1156 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1157 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1158 1159 opAndType{OGT, TINT8}: ssa.OpGreater8, 1160 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1161 opAndType{OGT, TINT16}: ssa.OpGreater16, 1162 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1163 opAndType{OGT, TINT32}: ssa.OpGreater32, 1164 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1165 opAndType{OGT, TINT64}: ssa.OpGreater64, 1166 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1167 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1168 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1169 1170 opAndType{OLE, TINT8}: ssa.OpLeq8, 1171 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1172 opAndType{OLE, TINT16}: ssa.OpLeq16, 1173 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1174 opAndType{OLE, TINT32}: ssa.OpLeq32, 1175 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1176 opAndType{OLE, TINT64}: ssa.OpLeq64, 1177 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1178 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1179 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1180 1181 opAndType{OGE, TINT8}: ssa.OpGeq8, 1182 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1183 opAndType{OGE, TINT16}: ssa.OpGeq16, 1184 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1185 opAndType{OGE, TINT32}: ssa.OpGeq32, 1186 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1187 opAndType{OGE, TINT64}: ssa.OpGeq64, 1188 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1189 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1190 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1191 } 1192 1193 func (s *state) concreteEtype(t *types.Type) types.EType { 1194 e := t.Etype 1195 switch e { 1196 default: 1197 return e 1198 case TINT: 1199 if s.config.PtrSize == 8 { 1200 return TINT64 1201 } 1202 return TINT32 1203 case TUINT: 1204 if s.config.PtrSize == 8 { 1205 return TUINT64 1206 } 1207 return TUINT32 1208 case TUINTPTR: 1209 if s.config.PtrSize == 8 { 1210 return TUINT64 1211 } 1212 return TUINT32 1213 } 1214 } 1215 1216 func (s *state) ssaOp(op Op, t *types.Type) ssa.Op { 1217 etype := s.concreteEtype(t) 1218 x, ok := opToSSA[opAndType{op, etype}] 1219 if !ok { 1220 s.Fatalf("unhandled binary op %v %s", op, etype) 1221 } 1222 return x 1223 } 1224 1225 func floatForComplex(t *types.Type) *types.Type { 1226 if t.Size() == 8 { 1227 return types.Types[TFLOAT32] 1228 } else { 1229 return types.Types[TFLOAT64] 1230 } 1231 } 1232 1233 type opAndTwoTypes struct { 1234 op Op 1235 etype1 types.EType 1236 etype2 types.EType 1237 } 1238 1239 type twoTypes struct { 1240 etype1 types.EType 1241 etype2 types.EType 1242 } 1243 1244 type twoOpsAndType struct { 1245 op1 ssa.Op 1246 op2 ssa.Op 1247 intermediateType types.EType 1248 } 1249 1250 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1251 1252 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1253 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1254 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1255 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1256 1257 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1258 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1259 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1260 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1261 1262 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1263 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1264 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1265 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1266 1267 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1268 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1269 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1270 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1271 // unsigned 1272 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1273 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1274 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1275 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1276 1277 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1278 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1279 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1280 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1281 1282 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1283 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1284 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1285 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1286 1287 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1288 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1289 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1290 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1291 1292 // float 1293 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1294 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64}, 1295 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32}, 1296 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1297 } 1298 1299 // this map is used only for 32-bit arch, and only includes the difference 1300 // on 32-bit arch, don't use int64<->float conversion for uint32 1301 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ 1302 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, 1303 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, 1304 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, 1305 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, 1306 } 1307 1308 // uint64<->float conversions, only on machines that have intructions for that 1309 var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1310 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, 1311 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, 1312 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, 1313 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, 1314 } 1315 1316 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1317 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1318 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1319 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1320 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1321 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1322 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1323 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1324 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1325 1326 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1327 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1328 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1329 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1330 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1331 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1332 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1333 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1334 1335 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1336 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1337 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1338 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1339 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1340 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1341 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1342 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1343 1344 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1345 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1346 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1347 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1348 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1349 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1350 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1351 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1352 1353 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1354 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1355 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1356 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1357 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1358 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1359 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1360 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1361 1362 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1363 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1364 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1365 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1366 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1367 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1368 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1369 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1370 1371 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1372 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1373 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1374 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1375 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1376 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1377 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1378 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1379 1380 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1381 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1382 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1383 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1384 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1385 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1386 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1387 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1388 } 1389 1390 func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op { 1391 etype1 := s.concreteEtype(t) 1392 etype2 := s.concreteEtype(u) 1393 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1394 if !ok { 1395 s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) 1396 } 1397 return x 1398 } 1399 1400 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1401 func (s *state) expr(n *Node) *ssa.Value { 1402 if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { 1403 // ONAMEs and named OLITERALs have the line number 1404 // of the decl, not the use. See issue 14742. 1405 s.pushLine(n.Pos) 1406 defer s.popLine() 1407 } 1408 1409 s.stmtList(n.Ninit) 1410 switch n.Op { 1411 case OARRAYBYTESTRTMP: 1412 slice := s.expr(n.Left) 1413 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 1414 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 1415 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 1416 case OSTRARRAYBYTETMP: 1417 str := s.expr(n.Left) 1418 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) 1419 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str) 1420 return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len) 1421 case OCFUNC: 1422 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Left.Sym.Linksym()}) 1423 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1424 case ONAME: 1425 if n.Class() == PFUNC { 1426 // "value" of a function is the address of the function's closure 1427 sym := funcsym(n.Sym).Linksym() 1428 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: sym}) 1429 return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sb) 1430 } 1431 if s.canSSA(n) { 1432 return s.variable(n, n.Type) 1433 } 1434 addr := s.addr(n, false) 1435 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1436 case OCLOSUREVAR: 1437 addr := s.addr(n, false) 1438 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1439 case OLITERAL: 1440 switch u := n.Val().U.(type) { 1441 case *Mpint: 1442 i := u.Int64() 1443 switch n.Type.Size() { 1444 case 1: 1445 return s.constInt8(n.Type, int8(i)) 1446 case 2: 1447 return s.constInt16(n.Type, int16(i)) 1448 case 4: 1449 return s.constInt32(n.Type, int32(i)) 1450 case 8: 1451 return s.constInt64(n.Type, i) 1452 default: 1453 s.Fatalf("bad integer size %d", n.Type.Size()) 1454 return nil 1455 } 1456 case string: 1457 if u == "" { 1458 return s.constEmptyString(n.Type) 1459 } 1460 return s.entryNewValue0A(ssa.OpConstString, n.Type, u) 1461 case bool: 1462 return s.constBool(u) 1463 case *NilVal: 1464 t := n.Type 1465 switch { 1466 case t.IsSlice(): 1467 return s.constSlice(t) 1468 case t.IsInterface(): 1469 return s.constInterface(t) 1470 default: 1471 return s.constNil(t) 1472 } 1473 case *Mpflt: 1474 switch n.Type.Size() { 1475 case 4: 1476 return s.constFloat32(n.Type, u.Float32()) 1477 case 8: 1478 return s.constFloat64(n.Type, u.Float64()) 1479 default: 1480 s.Fatalf("bad float size %d", n.Type.Size()) 1481 return nil 1482 } 1483 case *Mpcplx: 1484 r := &u.Real 1485 i := &u.Imag 1486 switch n.Type.Size() { 1487 case 8: 1488 pt := types.Types[TFLOAT32] 1489 return s.newValue2(ssa.OpComplexMake, n.Type, 1490 s.constFloat32(pt, r.Float32()), 1491 s.constFloat32(pt, i.Float32())) 1492 case 16: 1493 pt := types.Types[TFLOAT64] 1494 return s.newValue2(ssa.OpComplexMake, n.Type, 1495 s.constFloat64(pt, r.Float64()), 1496 s.constFloat64(pt, i.Float64())) 1497 default: 1498 s.Fatalf("bad float size %d", n.Type.Size()) 1499 return nil 1500 } 1501 1502 default: 1503 s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype()) 1504 return nil 1505 } 1506 case OCONVNOP: 1507 to := n.Type 1508 from := n.Left.Type 1509 1510 // Assume everything will work out, so set up our return value. 1511 // Anything interesting that happens from here is a fatal. 1512 x := s.expr(n.Left) 1513 1514 // Special case for not confusing GC and liveness. 1515 // We don't want pointers accidentally classified 1516 // as not-pointers or vice-versa because of copy 1517 // elision. 1518 if to.IsPtrShaped() != from.IsPtrShaped() { 1519 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 1520 } 1521 1522 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 1523 1524 // CONVNOP closure 1525 if to.Etype == TFUNC && from.IsPtrShaped() { 1526 return v 1527 } 1528 1529 // named <--> unnamed type or typed <--> untyped const 1530 if from.Etype == to.Etype { 1531 return v 1532 } 1533 1534 // unsafe.Pointer <--> *T 1535 if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { 1536 return v 1537 } 1538 1539 dowidth(from) 1540 dowidth(to) 1541 if from.Width != to.Width { 1542 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 1543 return nil 1544 } 1545 if etypesign(from.Etype) != etypesign(to.Etype) { 1546 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) 1547 return nil 1548 } 1549 1550 if instrumenting { 1551 // These appear to be fine, but they fail the 1552 // integer constraint below, so okay them here. 1553 // Sample non-integer conversion: map[string]string -> *uint8 1554 return v 1555 } 1556 1557 if etypesign(from.Etype) == 0 { 1558 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 1559 return nil 1560 } 1561 1562 // integer, same width, same sign 1563 return v 1564 1565 case OCONV: 1566 x := s.expr(n.Left) 1567 ft := n.Left.Type // from type 1568 tt := n.Type // to type 1569 if ft.IsBoolean() && tt.IsKind(TUINT8) { 1570 // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. 1571 return s.newValue1(ssa.OpCopy, n.Type, x) 1572 } 1573 if ft.IsInteger() && tt.IsInteger() { 1574 var op ssa.Op 1575 if tt.Size() == ft.Size() { 1576 op = ssa.OpCopy 1577 } else if tt.Size() < ft.Size() { 1578 // truncation 1579 switch 10*ft.Size() + tt.Size() { 1580 case 21: 1581 op = ssa.OpTrunc16to8 1582 case 41: 1583 op = ssa.OpTrunc32to8 1584 case 42: 1585 op = ssa.OpTrunc32to16 1586 case 81: 1587 op = ssa.OpTrunc64to8 1588 case 82: 1589 op = ssa.OpTrunc64to16 1590 case 84: 1591 op = ssa.OpTrunc64to32 1592 default: 1593 s.Fatalf("weird integer truncation %v -> %v", ft, tt) 1594 } 1595 } else if ft.IsSigned() { 1596 // sign extension 1597 switch 10*ft.Size() + tt.Size() { 1598 case 12: 1599 op = ssa.OpSignExt8to16 1600 case 14: 1601 op = ssa.OpSignExt8to32 1602 case 18: 1603 op = ssa.OpSignExt8to64 1604 case 24: 1605 op = ssa.OpSignExt16to32 1606 case 28: 1607 op = ssa.OpSignExt16to64 1608 case 48: 1609 op = ssa.OpSignExt32to64 1610 default: 1611 s.Fatalf("bad integer sign extension %v -> %v", ft, tt) 1612 } 1613 } else { 1614 // zero extension 1615 switch 10*ft.Size() + tt.Size() { 1616 case 12: 1617 op = ssa.OpZeroExt8to16 1618 case 14: 1619 op = ssa.OpZeroExt8to32 1620 case 18: 1621 op = ssa.OpZeroExt8to64 1622 case 24: 1623 op = ssa.OpZeroExt16to32 1624 case 28: 1625 op = ssa.OpZeroExt16to64 1626 case 48: 1627 op = ssa.OpZeroExt32to64 1628 default: 1629 s.Fatalf("weird integer sign extension %v -> %v", ft, tt) 1630 } 1631 } 1632 return s.newValue1(op, n.Type, x) 1633 } 1634 1635 if ft.IsFloat() || tt.IsFloat() { 1636 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 1637 if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS { 1638 if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1639 conv = conv1 1640 } 1641 } 1642 if thearch.LinkArch.Family == sys.ARM64 { 1643 if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1644 conv = conv1 1645 } 1646 } 1647 1648 if thearch.LinkArch.Family == sys.MIPS { 1649 if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { 1650 // tt is float32 or float64, and ft is also unsigned 1651 if tt.Size() == 4 { 1652 return s.uint32Tofloat32(n, x, ft, tt) 1653 } 1654 if tt.Size() == 8 { 1655 return s.uint32Tofloat64(n, x, ft, tt) 1656 } 1657 } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { 1658 // ft is float32 or float64, and tt is unsigned integer 1659 if ft.Size() == 4 { 1660 return s.float32ToUint32(n, x, ft, tt) 1661 } 1662 if ft.Size() == 8 { 1663 return s.float64ToUint32(n, x, ft, tt) 1664 } 1665 } 1666 } 1667 1668 if !ok { 1669 s.Fatalf("weird float conversion %v -> %v", ft, tt) 1670 } 1671 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 1672 1673 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 1674 // normal case, not tripping over unsigned 64 1675 if op1 == ssa.OpCopy { 1676 if op2 == ssa.OpCopy { 1677 return x 1678 } 1679 return s.newValue1(op2, n.Type, x) 1680 } 1681 if op2 == ssa.OpCopy { 1682 return s.newValue1(op1, n.Type, x) 1683 } 1684 return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x)) 1685 } 1686 // Tricky 64-bit unsigned cases. 1687 if ft.IsInteger() { 1688 // tt is float32 or float64, and ft is also unsigned 1689 if tt.Size() == 4 { 1690 return s.uint64Tofloat32(n, x, ft, tt) 1691 } 1692 if tt.Size() == 8 { 1693 return s.uint64Tofloat64(n, x, ft, tt) 1694 } 1695 s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) 1696 } 1697 // ft is float32 or float64, and tt is unsigned integer 1698 if ft.Size() == 4 { 1699 return s.float32ToUint64(n, x, ft, tt) 1700 } 1701 if ft.Size() == 8 { 1702 return s.float64ToUint64(n, x, ft, tt) 1703 } 1704 s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) 1705 return nil 1706 } 1707 1708 if ft.IsComplex() && tt.IsComplex() { 1709 var op ssa.Op 1710 if ft.Size() == tt.Size() { 1711 switch ft.Size() { 1712 case 8: 1713 op = ssa.OpRound32F 1714 case 16: 1715 op = ssa.OpRound64F 1716 default: 1717 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1718 } 1719 } else if ft.Size() == 8 && tt.Size() == 16 { 1720 op = ssa.OpCvt32Fto64F 1721 } else if ft.Size() == 16 && tt.Size() == 8 { 1722 op = ssa.OpCvt64Fto32F 1723 } else { 1724 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1725 } 1726 ftp := floatForComplex(ft) 1727 ttp := floatForComplex(tt) 1728 return s.newValue2(ssa.OpComplexMake, tt, 1729 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 1730 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 1731 } 1732 1733 s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) 1734 return nil 1735 1736 case ODOTTYPE: 1737 res, _ := s.dottype(n, false) 1738 return res 1739 1740 // binary ops 1741 case OLT, OEQ, ONE, OLE, OGE, OGT: 1742 a := s.expr(n.Left) 1743 b := s.expr(n.Right) 1744 if n.Left.Type.IsComplex() { 1745 pt := floatForComplex(n.Left.Type) 1746 op := s.ssaOp(OEQ, pt) 1747 r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 1748 i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 1749 c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i) 1750 switch n.Op { 1751 case OEQ: 1752 return c 1753 case ONE: 1754 return s.newValue1(ssa.OpNot, types.Types[TBOOL], c) 1755 default: 1756 s.Fatalf("ordered complex compare %v", n.Op) 1757 } 1758 } 1759 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 1760 case OMUL: 1761 a := s.expr(n.Left) 1762 b := s.expr(n.Right) 1763 if n.Type.IsComplex() { 1764 mulop := ssa.OpMul64F 1765 addop := ssa.OpAdd64F 1766 subop := ssa.OpSub64F 1767 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1768 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1769 1770 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1771 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1772 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1773 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1774 1775 if pt != wt { // Widen for calculation 1776 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1777 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1778 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1779 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1780 } 1781 1782 xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1783 ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) 1784 1785 if pt != wt { // Narrow to store back 1786 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1787 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1788 } 1789 1790 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1791 } 1792 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1793 1794 case ODIV: 1795 a := s.expr(n.Left) 1796 b := s.expr(n.Right) 1797 if n.Type.IsComplex() { 1798 // TODO this is not executed because the front-end substitutes a runtime call. 1799 // That probably ought to change; with modest optimization the widen/narrow 1800 // conversions could all be elided in larger expression trees. 1801 mulop := ssa.OpMul64F 1802 addop := ssa.OpAdd64F 1803 subop := ssa.OpSub64F 1804 divop := ssa.OpDiv64F 1805 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1806 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1807 1808 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1809 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1810 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1811 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1812 1813 if pt != wt { // Widen for calculation 1814 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1815 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1816 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1817 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1818 } 1819 1820 denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) 1821 xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1822 ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) 1823 1824 // TODO not sure if this is best done in wide precision or narrow 1825 // Double-rounding might be an issue. 1826 // Note that the pre-SSA implementation does the entire calculation 1827 // in wide format, so wide is compatible. 1828 xreal = s.newValue2(divop, wt, xreal, denom) 1829 ximag = s.newValue2(divop, wt, ximag, denom) 1830 1831 if pt != wt { // Narrow to store back 1832 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1833 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1834 } 1835 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1836 } 1837 if n.Type.IsFloat() { 1838 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1839 } 1840 return s.intDivide(n, a, b) 1841 case OMOD: 1842 a := s.expr(n.Left) 1843 b := s.expr(n.Right) 1844 return s.intDivide(n, a, b) 1845 case OADD, OSUB: 1846 a := s.expr(n.Left) 1847 b := s.expr(n.Right) 1848 if n.Type.IsComplex() { 1849 pt := floatForComplex(n.Type) 1850 op := s.ssaOp(n.Op, pt) 1851 return s.newValue2(ssa.OpComplexMake, n.Type, 1852 s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 1853 s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 1854 } 1855 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1856 case OAND, OOR, OXOR: 1857 a := s.expr(n.Left) 1858 b := s.expr(n.Right) 1859 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1860 case OLSH, ORSH: 1861 a := s.expr(n.Left) 1862 b := s.expr(n.Right) 1863 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) 1864 case OANDAND, OOROR: 1865 // To implement OANDAND (and OOROR), we introduce a 1866 // new temporary variable to hold the result. The 1867 // variable is associated with the OANDAND node in the 1868 // s.vars table (normally variables are only 1869 // associated with ONAME nodes). We convert 1870 // A && B 1871 // to 1872 // var = A 1873 // if var { 1874 // var = B 1875 // } 1876 // Using var in the subsequent block introduces the 1877 // necessary phi variable. 1878 el := s.expr(n.Left) 1879 s.vars[n] = el 1880 1881 b := s.endBlock() 1882 b.Kind = ssa.BlockIf 1883 b.SetControl(el) 1884 // In theory, we should set b.Likely here based on context. 1885 // However, gc only gives us likeliness hints 1886 // in a single place, for plain OIF statements, 1887 // and passing around context is finnicky, so don't bother for now. 1888 1889 bRight := s.f.NewBlock(ssa.BlockPlain) 1890 bResult := s.f.NewBlock(ssa.BlockPlain) 1891 if n.Op == OANDAND { 1892 b.AddEdgeTo(bRight) 1893 b.AddEdgeTo(bResult) 1894 } else if n.Op == OOROR { 1895 b.AddEdgeTo(bResult) 1896 b.AddEdgeTo(bRight) 1897 } 1898 1899 s.startBlock(bRight) 1900 er := s.expr(n.Right) 1901 s.vars[n] = er 1902 1903 b = s.endBlock() 1904 b.AddEdgeTo(bResult) 1905 1906 s.startBlock(bResult) 1907 return s.variable(n, types.Types[TBOOL]) 1908 case OCOMPLEX: 1909 r := s.expr(n.Left) 1910 i := s.expr(n.Right) 1911 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 1912 1913 // unary ops 1914 case OMINUS: 1915 a := s.expr(n.Left) 1916 if n.Type.IsComplex() { 1917 tp := floatForComplex(n.Type) 1918 negop := s.ssaOp(n.Op, tp) 1919 return s.newValue2(ssa.OpComplexMake, n.Type, 1920 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 1921 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 1922 } 1923 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1924 case ONOT, OCOM: 1925 a := s.expr(n.Left) 1926 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1927 case OIMAG, OREAL: 1928 a := s.expr(n.Left) 1929 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 1930 case OPLUS: 1931 return s.expr(n.Left) 1932 1933 case OADDR: 1934 return s.addr(n.Left, n.Bounded()) 1935 1936 case OINDREGSP: 1937 addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset) 1938 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1939 1940 case OIND: 1941 p := s.exprPtr(n.Left, false, n.Pos) 1942 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1943 1944 case ODOT: 1945 t := n.Left.Type 1946 if canSSAType(t) { 1947 v := s.expr(n.Left) 1948 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 1949 } 1950 if n.Left.Op == OSTRUCTLIT { 1951 // All literals with nonzero fields have already been 1952 // rewritten during walk. Any that remain are just T{} 1953 // or equivalents. Use the zero value. 1954 if !iszero(n.Left) { 1955 Fatalf("literal with nonzero value in SSA: %v", n.Left) 1956 } 1957 return s.zeroVal(n.Type) 1958 } 1959 p := s.addr(n, false) 1960 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1961 1962 case ODOTPTR: 1963 p := s.exprPtr(n.Left, false, n.Pos) 1964 p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p) 1965 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1966 1967 case OINDEX: 1968 switch { 1969 case n.Left.Type.IsString(): 1970 if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) { 1971 // Replace "abc"[1] with 'b'. 1972 // Delayed until now because "abc"[1] is not an ideal constant. 1973 // See test/fixedbugs/issue11370.go. 1974 return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()]))) 1975 } 1976 a := s.expr(n.Left) 1977 i := s.expr(n.Right) 1978 i = s.extendIndex(i, panicindex) 1979 if !n.Bounded() { 1980 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a) 1981 s.boundsCheck(i, len) 1982 } 1983 ptrtyp := s.f.Config.Types.BytePtr 1984 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 1985 if Isconst(n.Right, CTINT) { 1986 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 1987 } else { 1988 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 1989 } 1990 return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem()) 1991 case n.Left.Type.IsSlice(): 1992 p := s.addr(n, false) 1993 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 1994 case n.Left.Type.IsArray(): 1995 if bound := n.Left.Type.NumElem(); bound <= 1 { 1996 // SSA can handle arrays of length at most 1. 1997 a := s.expr(n.Left) 1998 i := s.expr(n.Right) 1999 if bound == 0 { 2000 // Bounds check will never succeed. Might as well 2001 // use constants for the bounds check. 2002 z := s.constInt(types.Types[TINT], 0) 2003 s.boundsCheck(z, z) 2004 // The return value won't be live, return junk. 2005 return s.newValue0(ssa.OpUnknown, n.Type) 2006 } 2007 i = s.extendIndex(i, panicindex) 2008 if !n.Bounded() { 2009 s.boundsCheck(i, s.constInt(types.Types[TINT], bound)) 2010 } 2011 return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a) 2012 } 2013 p := s.addr(n, false) 2014 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 2015 default: 2016 s.Fatalf("bad type for index %v", n.Left.Type) 2017 return nil 2018 } 2019 2020 case OLEN, OCAP: 2021 switch { 2022 case n.Left.Type.IsSlice(): 2023 op := ssa.OpSliceLen 2024 if n.Op == OCAP { 2025 op = ssa.OpSliceCap 2026 } 2027 return s.newValue1(op, types.Types[TINT], s.expr(n.Left)) 2028 case n.Left.Type.IsString(): // string; not reachable for OCAP 2029 return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left)) 2030 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 2031 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 2032 default: // array 2033 return s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 2034 } 2035 2036 case OSPTR: 2037 a := s.expr(n.Left) 2038 if n.Left.Type.IsSlice() { 2039 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 2040 } else { 2041 return s.newValue1(ssa.OpStringPtr, n.Type, a) 2042 } 2043 2044 case OITAB: 2045 a := s.expr(n.Left) 2046 return s.newValue1(ssa.OpITab, n.Type, a) 2047 2048 case OIDATA: 2049 a := s.expr(n.Left) 2050 return s.newValue1(ssa.OpIData, n.Type, a) 2051 2052 case OEFACE: 2053 tab := s.expr(n.Left) 2054 data := s.expr(n.Right) 2055 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2056 2057 case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: 2058 v := s.expr(n.Left) 2059 var i, j, k *ssa.Value 2060 low, high, max := n.SliceBounds() 2061 if low != nil { 2062 i = s.extendIndex(s.expr(low), panicslice) 2063 } 2064 if high != nil { 2065 j = s.extendIndex(s.expr(high), panicslice) 2066 } 2067 if max != nil { 2068 k = s.extendIndex(s.expr(max), panicslice) 2069 } 2070 p, l, c := s.slice(n.Left.Type, v, i, j, k) 2071 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2072 2073 case OSLICESTR: 2074 v := s.expr(n.Left) 2075 var i, j *ssa.Value 2076 low, high, _ := n.SliceBounds() 2077 if low != nil { 2078 i = s.extendIndex(s.expr(low), panicslice) 2079 } 2080 if high != nil { 2081 j = s.extendIndex(s.expr(high), panicslice) 2082 } 2083 p, l, _ := s.slice(n.Left.Type, v, i, j, nil) 2084 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2085 2086 case OCALLFUNC: 2087 if isIntrinsicCall(n) { 2088 return s.intrinsicCall(n) 2089 } 2090 fallthrough 2091 2092 case OCALLINTER, OCALLMETH: 2093 a := s.call(n, callNormal) 2094 return s.newValue2(ssa.OpLoad, n.Type, a, s.mem()) 2095 2096 case OGETG: 2097 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2098 2099 case OAPPEND: 2100 return s.append(n, false) 2101 2102 case OSTRUCTLIT, OARRAYLIT: 2103 // All literals with nonzero fields have already been 2104 // rewritten during walk. Any that remain are just T{} 2105 // or equivalents. Use the zero value. 2106 if !iszero(n) { 2107 Fatalf("literal with nonzero value in SSA: %v", n) 2108 } 2109 return s.zeroVal(n.Type) 2110 2111 default: 2112 s.Fatalf("unhandled expr %v", n.Op) 2113 return nil 2114 } 2115 } 2116 2117 // append converts an OAPPEND node to SSA. 2118 // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, 2119 // adds it to s, and returns the Value. 2120 // If inplace is true, it writes the result of the OAPPEND expression n 2121 // back to the slice being appended to, and returns nil. 2122 // inplace MUST be set to false if the slice can be SSA'd. 2123 func (s *state) append(n *Node, inplace bool) *ssa.Value { 2124 // If inplace is false, process as expression "append(s, e1, e2, e3)": 2125 // 2126 // ptr, len, cap := s 2127 // newlen := len + 3 2128 // if newlen > cap { 2129 // ptr, len, cap = growslice(s, newlen) 2130 // newlen = len + 3 // recalculate to avoid a spill 2131 // } 2132 // // with write barriers, if needed: 2133 // *(ptr+len) = e1 2134 // *(ptr+len+1) = e2 2135 // *(ptr+len+2) = e3 2136 // return makeslice(ptr, newlen, cap) 2137 // 2138 // 2139 // If inplace is true, process as statement "s = append(s, e1, e2, e3)": 2140 // 2141 // a := &s 2142 // ptr, len, cap := s 2143 // newlen := len + 3 2144 // if newlen > cap { 2145 // newptr, len, newcap = growslice(ptr, len, cap, newlen) 2146 // vardef(a) // if necessary, advise liveness we are writing a new a 2147 // *a.cap = newcap // write before ptr to avoid a spill 2148 // *a.ptr = newptr // with write barrier 2149 // } 2150 // newlen = len + 3 // recalculate to avoid a spill 2151 // *a.len = newlen 2152 // // with write barriers, if needed: 2153 // *(ptr+len) = e1 2154 // *(ptr+len+1) = e2 2155 // *(ptr+len+2) = e3 2156 2157 et := n.Type.Elem() 2158 pt := types.NewPtr(et) 2159 2160 // Evaluate slice 2161 sn := n.List.First() // the slice node is the first in the list 2162 2163 var slice, addr *ssa.Value 2164 if inplace { 2165 addr = s.addr(sn, false) 2166 slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 2167 } else { 2168 slice = s.expr(sn) 2169 } 2170 2171 // Allocate new blocks 2172 grow := s.f.NewBlock(ssa.BlockPlain) 2173 assign := s.f.NewBlock(ssa.BlockPlain) 2174 2175 // Decide if we need to grow 2176 nargs := int64(n.List.Len() - 1) 2177 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2178 l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2179 c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice) 2180 nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2181 2182 cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c) 2183 s.vars[&ptrVar] = p 2184 2185 if !inplace { 2186 s.vars[&newlenVar] = nl 2187 s.vars[&capVar] = c 2188 } else { 2189 s.vars[&lenVar] = l 2190 } 2191 2192 b := s.endBlock() 2193 b.Kind = ssa.BlockIf 2194 b.Likely = ssa.BranchUnlikely 2195 b.SetControl(cmp) 2196 b.AddEdgeTo(grow) 2197 b.AddEdgeTo(assign) 2198 2199 // Call growslice 2200 s.startBlock(grow) 2201 taddr := s.expr(n.Left) 2202 r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl) 2203 2204 if inplace { 2205 if sn.Op == ONAME { 2206 // Tell liveness we're about to build a new slice 2207 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) 2208 } 2209 capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr) 2210 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capaddr, r[2], s.mem()) 2211 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, pt, addr, r[0], s.mem()) 2212 // load the value we just stored to avoid having to spill it 2213 s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem()) 2214 s.vars[&lenVar] = r[1] // avoid a spill in the fast path 2215 } else { 2216 s.vars[&ptrVar] = r[0] 2217 s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs)) 2218 s.vars[&capVar] = r[2] 2219 } 2220 2221 b = s.endBlock() 2222 b.AddEdgeTo(assign) 2223 2224 // assign new elements to slots 2225 s.startBlock(assign) 2226 2227 if inplace { 2228 l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len 2229 nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2230 lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr) 2231 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenaddr, nl, s.mem()) 2232 } 2233 2234 // Evaluate args 2235 type argRec struct { 2236 // if store is true, we're appending the value v. If false, we're appending the 2237 // value at *v. 2238 v *ssa.Value 2239 store bool 2240 } 2241 args := make([]argRec, 0, nargs) 2242 for _, n := range n.List.Slice()[1:] { 2243 if canSSAType(n.Type) { 2244 args = append(args, argRec{v: s.expr(n), store: true}) 2245 } else { 2246 v := s.addr(n, false) 2247 args = append(args, argRec{v: v}) 2248 } 2249 } 2250 2251 p = s.variable(&ptrVar, pt) // generates phi for ptr 2252 if !inplace { 2253 nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl 2254 c = s.variable(&capVar, types.Types[TINT]) // generates phi for cap 2255 } 2256 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2257 for i, arg := range args { 2258 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i))) 2259 if arg.store { 2260 s.storeType(et, addr, arg.v, 0) 2261 } else { 2262 store := s.newValue3I(ssa.OpMove, types.TypeMem, et.Size(), addr, arg.v, s.mem()) 2263 store.Aux = et 2264 s.vars[&memVar] = store 2265 } 2266 } 2267 2268 delete(s.vars, &ptrVar) 2269 if inplace { 2270 delete(s.vars, &lenVar) 2271 return nil 2272 } 2273 delete(s.vars, &newlenVar) 2274 delete(s.vars, &capVar) 2275 // make result 2276 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2277 } 2278 2279 // condBranch evaluates the boolean expression cond and branches to yes 2280 // if cond is true and no if cond is false. 2281 // This function is intended to handle && and || better than just calling 2282 // s.expr(cond) and branching on the result. 2283 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2284 if cond.Op == OANDAND { 2285 mid := s.f.NewBlock(ssa.BlockPlain) 2286 s.stmtList(cond.Ninit) 2287 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2288 s.startBlock(mid) 2289 s.condBranch(cond.Right, yes, no, likely) 2290 return 2291 // Note: if likely==1, then both recursive calls pass 1. 2292 // If likely==-1, then we don't have enough information to decide 2293 // whether the first branch is likely or not. So we pass 0 for 2294 // the likeliness of the first branch. 2295 // TODO: have the frontend give us branch prediction hints for 2296 // OANDAND and OOROR nodes (if it ever has such info). 2297 } 2298 if cond.Op == OOROR { 2299 mid := s.f.NewBlock(ssa.BlockPlain) 2300 s.stmtList(cond.Ninit) 2301 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2302 s.startBlock(mid) 2303 s.condBranch(cond.Right, yes, no, likely) 2304 return 2305 // Note: if likely==-1, then both recursive calls pass -1. 2306 // If likely==1, then we don't have enough info to decide 2307 // the likelihood of the first branch. 2308 } 2309 if cond.Op == ONOT { 2310 s.stmtList(cond.Ninit) 2311 s.condBranch(cond.Left, no, yes, -likely) 2312 return 2313 } 2314 c := s.expr(cond) 2315 b := s.endBlock() 2316 b.Kind = ssa.BlockIf 2317 b.SetControl(c) 2318 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2319 b.AddEdgeTo(yes) 2320 b.AddEdgeTo(no) 2321 } 2322 2323 type skipMask uint8 2324 2325 const ( 2326 skipPtr skipMask = 1 << iota 2327 skipLen 2328 skipCap 2329 ) 2330 2331 // assign does left = right. 2332 // Right has already been evaluated to ssa, left has not. 2333 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2334 // If deref is true and right == nil, just do left = 0. 2335 // skip indicates assignments (at the top level) that can be avoided. 2336 func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) { 2337 if left.Op == ONAME && isblank(left) { 2338 return 2339 } 2340 t := left.Type 2341 dowidth(t) 2342 if s.canSSA(left) { 2343 if deref { 2344 s.Fatalf("can SSA LHS %v but not RHS %s", left, right) 2345 } 2346 if left.Op == ODOT { 2347 // We're assigning to a field of an ssa-able value. 2348 // We need to build a new structure with the new value for the 2349 // field we're assigning and the old values for the other fields. 2350 // For instance: 2351 // type T struct {a, b, c int} 2352 // var T x 2353 // x.b = 5 2354 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2355 2356 // Grab information about the structure type. 2357 t := left.Left.Type 2358 nf := t.NumFields() 2359 idx := fieldIdx(left) 2360 2361 // Grab old value of structure. 2362 old := s.expr(left.Left) 2363 2364 // Make new structure. 2365 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2366 2367 // Add fields as args. 2368 for i := 0; i < nf; i++ { 2369 if i == idx { 2370 new.AddArg(right) 2371 } else { 2372 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2373 } 2374 } 2375 2376 // Recursively assign the new value we've made to the base of the dot op. 2377 s.assign(left.Left, new, false, 0) 2378 // TODO: do we need to update named values here? 2379 return 2380 } 2381 if left.Op == OINDEX && left.Left.Type.IsArray() { 2382 // We're assigning to an element of an ssa-able array. 2383 // a[i] = v 2384 t := left.Left.Type 2385 n := t.NumElem() 2386 2387 i := s.expr(left.Right) // index 2388 if n == 0 { 2389 // The bounds check must fail. Might as well 2390 // ignore the actual index and just use zeros. 2391 z := s.constInt(types.Types[TINT], 0) 2392 s.boundsCheck(z, z) 2393 return 2394 } 2395 if n != 1 { 2396 s.Fatalf("assigning to non-1-length array") 2397 } 2398 // Rewrite to a = [1]{v} 2399 i = s.extendIndex(i, panicindex) 2400 s.boundsCheck(i, s.constInt(types.Types[TINT], 1)) 2401 v := s.newValue1(ssa.OpArrayMake1, t, right) 2402 s.assign(left.Left, v, false, 0) 2403 return 2404 } 2405 // Update variable assignment. 2406 s.vars[left] = right 2407 s.addNamedValue(left, right) 2408 return 2409 } 2410 // Left is not ssa-able. Compute its address. 2411 addr := s.addr(left, false) 2412 if left.Op == ONAME && skip == 0 { 2413 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, left, s.mem()) 2414 } 2415 if isReflectHeaderDataField(left) { 2416 // Package unsafe's documentation says storing pointers into 2417 // reflect.SliceHeader and reflect.StringHeader's Data fields 2418 // is valid, even though they have type uintptr (#19168). 2419 // Mark it pointer type to signal the writebarrier pass to 2420 // insert a write barrier. 2421 t = types.Types[TUNSAFEPTR] 2422 } 2423 if deref { 2424 // Treat as a mem->mem move. 2425 var store *ssa.Value 2426 if right == nil { 2427 store = s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), addr, s.mem()) 2428 } else { 2429 store = s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), addr, right, s.mem()) 2430 } 2431 store.Aux = t 2432 s.vars[&memVar] = store 2433 return 2434 } 2435 // Treat as a store. 2436 s.storeType(t, addr, right, skip) 2437 } 2438 2439 // zeroVal returns the zero value for type t. 2440 func (s *state) zeroVal(t *types.Type) *ssa.Value { 2441 switch { 2442 case t.IsInteger(): 2443 switch t.Size() { 2444 case 1: 2445 return s.constInt8(t, 0) 2446 case 2: 2447 return s.constInt16(t, 0) 2448 case 4: 2449 return s.constInt32(t, 0) 2450 case 8: 2451 return s.constInt64(t, 0) 2452 default: 2453 s.Fatalf("bad sized integer type %v", t) 2454 } 2455 case t.IsFloat(): 2456 switch t.Size() { 2457 case 4: 2458 return s.constFloat32(t, 0) 2459 case 8: 2460 return s.constFloat64(t, 0) 2461 default: 2462 s.Fatalf("bad sized float type %v", t) 2463 } 2464 case t.IsComplex(): 2465 switch t.Size() { 2466 case 8: 2467 z := s.constFloat32(types.Types[TFLOAT32], 0) 2468 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2469 case 16: 2470 z := s.constFloat64(types.Types[TFLOAT64], 0) 2471 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2472 default: 2473 s.Fatalf("bad sized complex type %v", t) 2474 } 2475 2476 case t.IsString(): 2477 return s.constEmptyString(t) 2478 case t.IsPtrShaped(): 2479 return s.constNil(t) 2480 case t.IsBoolean(): 2481 return s.constBool(false) 2482 case t.IsInterface(): 2483 return s.constInterface(t) 2484 case t.IsSlice(): 2485 return s.constSlice(t) 2486 case t.IsStruct(): 2487 n := t.NumFields() 2488 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 2489 for i := 0; i < n; i++ { 2490 v.AddArg(s.zeroVal(t.FieldType(i))) 2491 } 2492 return v 2493 case t.IsArray(): 2494 switch t.NumElem() { 2495 case 0: 2496 return s.entryNewValue0(ssa.OpArrayMake0, t) 2497 case 1: 2498 return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) 2499 } 2500 } 2501 s.Fatalf("zero for type %v not implemented", t) 2502 return nil 2503 } 2504 2505 type callKind int8 2506 2507 const ( 2508 callNormal callKind = iota 2509 callDefer 2510 callGo 2511 ) 2512 2513 var intrinsics map[intrinsicKey]intrinsicBuilder 2514 2515 // An intrinsicBuilder converts a call node n into an ssa value that 2516 // implements that call as an intrinsic. args is a list of arguments to the func. 2517 type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value 2518 2519 type intrinsicKey struct { 2520 arch *sys.Arch 2521 pkg string 2522 fn string 2523 } 2524 2525 func init() { 2526 intrinsics = map[intrinsicKey]intrinsicBuilder{} 2527 2528 var all []*sys.Arch 2529 var p4 []*sys.Arch 2530 var p8 []*sys.Arch 2531 for _, a := range sys.Archs { 2532 all = append(all, a) 2533 if a.PtrSize == 4 { 2534 p4 = append(p4, a) 2535 } else { 2536 p8 = append(p8, a) 2537 } 2538 } 2539 2540 // add adds the intrinsic b for pkg.fn for the given list of architectures. 2541 add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { 2542 for _, a := range archs { 2543 intrinsics[intrinsicKey{a, pkg, fn}] = b 2544 } 2545 } 2546 // addF does the same as add but operates on architecture families. 2547 addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { 2548 m := 0 2549 for _, f := range archFamilies { 2550 if f >= 32 { 2551 panic("too many architecture families") 2552 } 2553 m |= 1 << uint(f) 2554 } 2555 for _, a := range all { 2556 if m>>uint(a.Family)&1 != 0 { 2557 intrinsics[intrinsicKey{a, pkg, fn}] = b 2558 } 2559 } 2560 } 2561 // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. 2562 alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { 2563 for _, a := range archs { 2564 if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { 2565 intrinsics[intrinsicKey{a, pkg, fn}] = b 2566 } 2567 } 2568 } 2569 2570 /******** runtime ********/ 2571 if !instrumenting { 2572 add("runtime", "slicebytetostringtmp", 2573 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2574 // Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes 2575 // for the backend instead of slicebytetostringtmp calls 2576 // when not instrumenting. 2577 slice := args[0] 2578 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 2579 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2580 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 2581 }, 2582 all...) 2583 } 2584 add("runtime", "KeepAlive", 2585 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2586 data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) 2587 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) 2588 return nil 2589 }, 2590 all...) 2591 add("runtime", "getclosureptr", 2592 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2593 return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr) 2594 }, 2595 all...) 2596 2597 /******** runtime/internal/sys ********/ 2598 addF("runtime/internal/sys", "Ctz32", 2599 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2600 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 2601 }, 2602 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS) 2603 addF("runtime/internal/sys", "Ctz64", 2604 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2605 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 2606 }, 2607 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS) 2608 addF("runtime/internal/sys", "Bswap32", 2609 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2610 return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0]) 2611 }, 2612 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2613 addF("runtime/internal/sys", "Bswap64", 2614 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2615 return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0]) 2616 }, 2617 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2618 2619 /******** runtime/internal/atomic ********/ 2620 addF("runtime/internal/atomic", "Load", 2621 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2622 v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 2623 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2624 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2625 }, 2626 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2627 2628 addF("runtime/internal/atomic", "Load64", 2629 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2630 v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem()) 2631 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2632 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2633 }, 2634 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2635 addF("runtime/internal/atomic", "Loadp", 2636 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2637 v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) 2638 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2639 return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) 2640 }, 2641 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2642 2643 addF("runtime/internal/atomic", "Store", 2644 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2645 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) 2646 return nil 2647 }, 2648 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2649 addF("runtime/internal/atomic", "Store64", 2650 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2651 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) 2652 return nil 2653 }, 2654 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2655 addF("runtime/internal/atomic", "StorepNoWB", 2656 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2657 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) 2658 return nil 2659 }, 2660 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS) 2661 2662 addF("runtime/internal/atomic", "Xchg", 2663 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2664 v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 2665 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2666 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2667 }, 2668 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2669 addF("runtime/internal/atomic", "Xchg64", 2670 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2671 v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 2672 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2673 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2674 }, 2675 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2676 2677 addF("runtime/internal/atomic", "Xadd", 2678 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2679 v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 2680 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2681 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2682 }, 2683 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2684 addF("runtime/internal/atomic", "Xadd64", 2685 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2686 v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 2687 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2688 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2689 }, 2690 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2691 2692 addF("runtime/internal/atomic", "Cas", 2693 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2694 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 2695 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2696 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 2697 }, 2698 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2699 addF("runtime/internal/atomic", "Cas64", 2700 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2701 v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 2702 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2703 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 2704 }, 2705 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2706 2707 addF("runtime/internal/atomic", "And8", 2708 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2709 s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) 2710 return nil 2711 }, 2712 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 2713 addF("runtime/internal/atomic", "Or8", 2714 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2715 s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) 2716 return nil 2717 }, 2718 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 2719 2720 alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) 2721 alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) 2722 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) 2723 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) 2724 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) 2725 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) 2726 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) 2727 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) 2728 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) 2729 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) 2730 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) 2731 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) 2732 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) 2733 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) 2734 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) 2735 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) 2736 2737 /******** math ********/ 2738 addF("math", "Sqrt", 2739 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2740 return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0]) 2741 }, 2742 sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X) 2743 addF("math", "Trunc", 2744 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2745 return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0]) 2746 }, 2747 sys.PPC64) 2748 addF("math", "Ceil", 2749 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2750 return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0]) 2751 }, 2752 sys.PPC64) 2753 addF("math", "Floor", 2754 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2755 return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0]) 2756 }, 2757 sys.PPC64) 2758 2759 /******** math/bits ********/ 2760 addF("math/bits", "TrailingZeros64", 2761 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2762 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 2763 }, 2764 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2765 addF("math/bits", "TrailingZeros32", 2766 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2767 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 2768 }, 2769 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2770 addF("math/bits", "TrailingZeros16", 2771 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2772 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 2773 c := s.constInt32(types.Types[TUINT32], 1<<16) 2774 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 2775 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 2776 }, 2777 sys.ARM, sys.MIPS) 2778 addF("math/bits", "TrailingZeros16", 2779 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2780 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 2781 c := s.constInt64(types.Types[TUINT64], 1<<16) 2782 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 2783 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 2784 }, 2785 sys.AMD64, sys.ARM64, sys.S390X) 2786 addF("math/bits", "TrailingZeros8", 2787 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2788 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 2789 c := s.constInt32(types.Types[TUINT32], 1<<8) 2790 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 2791 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 2792 }, 2793 sys.ARM, sys.MIPS) 2794 addF("math/bits", "TrailingZeros8", 2795 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2796 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 2797 c := s.constInt64(types.Types[TUINT64], 1<<8) 2798 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 2799 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 2800 }, 2801 sys.AMD64, sys.ARM64, sys.S390X) 2802 alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) 2803 alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) 2804 // ReverseBytes inlines correctly, no need to intrinsify it. 2805 // ReverseBytes16 lowers to a rotate, no need for anything special here. 2806 addF("math/bits", "Len64", 2807 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2808 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 2809 }, 2810 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2811 addF("math/bits", "Len32", 2812 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2813 if s.config.PtrSize == 4 { 2814 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 2815 } 2816 x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0]) 2817 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2818 }, 2819 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2820 addF("math/bits", "Len16", 2821 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2822 if s.config.PtrSize == 4 { 2823 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 2824 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 2825 } 2826 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 2827 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2828 }, 2829 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2830 // Note: disabled on AMD64 because the Go code is faster! 2831 addF("math/bits", "Len8", 2832 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2833 if s.config.PtrSize == 4 { 2834 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 2835 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 2836 } 2837 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 2838 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2839 }, 2840 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2841 2842 addF("math/bits", "Len", 2843 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2844 if s.config.PtrSize == 4 { 2845 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 2846 } 2847 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 2848 }, 2849 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2850 // LeadingZeros is handled because it trivially calls Len. 2851 addF("math/bits", "Reverse64", 2852 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2853 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 2854 }, 2855 sys.ARM64) 2856 addF("math/bits", "Reverse32", 2857 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2858 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 2859 }, 2860 sys.ARM64) 2861 addF("math/bits", "Reverse16", 2862 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2863 return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0]) 2864 }, 2865 sys.ARM64) 2866 addF("math/bits", "Reverse8", 2867 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2868 return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0]) 2869 }, 2870 sys.ARM64) 2871 addF("math/bits", "Reverse", 2872 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2873 if s.config.PtrSize == 4 { 2874 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 2875 } 2876 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 2877 }, 2878 sys.ARM64) 2879 makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2880 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2881 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: syslook("support_popcnt").Sym.Linksym()}) 2882 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb) 2883 v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem()) 2884 b := s.endBlock() 2885 b.Kind = ssa.BlockIf 2886 b.SetControl(v) 2887 bTrue := s.f.NewBlock(ssa.BlockPlain) 2888 bFalse := s.f.NewBlock(ssa.BlockPlain) 2889 bEnd := s.f.NewBlock(ssa.BlockPlain) 2890 b.AddEdgeTo(bTrue) 2891 b.AddEdgeTo(bFalse) 2892 b.Likely = ssa.BranchLikely // most machines have popcnt nowadays 2893 2894 // We have the intrinsic - use it directly. 2895 s.startBlock(bTrue) 2896 op := op64 2897 if s.config.PtrSize == 4 { 2898 op = op32 2899 } 2900 s.vars[n] = s.newValue1(op, types.Types[TINT], args[0]) 2901 s.endBlock().AddEdgeTo(bEnd) 2902 2903 // Call the pure Go version. 2904 s.startBlock(bFalse) 2905 a := s.call(n, callNormal) 2906 s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem()) 2907 s.endBlock().AddEdgeTo(bEnd) 2908 2909 // Merge results. 2910 s.startBlock(bEnd) 2911 return s.variable(n, types.Types[TINT]) 2912 } 2913 } 2914 addF("math/bits", "OnesCount64", 2915 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64), 2916 sys.AMD64) 2917 addF("math/bits", "OnesCount64", 2918 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2919 return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0]) 2920 }, 2921 sys.PPC64) 2922 addF("math/bits", "OnesCount32", 2923 makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32), 2924 sys.AMD64) 2925 addF("math/bits", "OnesCount32", 2926 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2927 return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0]) 2928 }, 2929 sys.PPC64) 2930 addF("math/bits", "OnesCount16", 2931 makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16), 2932 sys.AMD64) 2933 // Note: no OnesCount8, the Go implementation is faster - just a table load. 2934 addF("math/bits", "OnesCount", 2935 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32), 2936 sys.AMD64) 2937 2938 /******** sync/atomic ********/ 2939 2940 // Note: these are disabled by flag_race in findIntrinsic below. 2941 alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) 2942 alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) 2943 alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) 2944 alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) 2945 alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) 2946 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) 2947 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) 2948 2949 alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) 2950 alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) 2951 // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. 2952 alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) 2953 alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) 2954 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) 2955 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) 2956 2957 alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) 2958 alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) 2959 alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) 2960 alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) 2961 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) 2962 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) 2963 2964 alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) 2965 alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) 2966 alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) 2967 alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) 2968 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) 2969 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) 2970 2971 alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) 2972 alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) 2973 alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) 2974 alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) 2975 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) 2976 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) 2977 2978 /******** math/big ********/ 2979 add("math/big", "mulWW", 2980 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2981 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 2982 }, 2983 sys.ArchAMD64) 2984 add("math/big", "divWW", 2985 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2986 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 2987 }, 2988 sys.ArchAMD64) 2989 } 2990 2991 // findIntrinsic returns a function which builds the SSA equivalent of the 2992 // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. 2993 func findIntrinsic(sym *types.Sym) intrinsicBuilder { 2994 if ssa.IntrinsicsDisable { 2995 return nil 2996 } 2997 if sym == nil || sym.Pkg == nil { 2998 return nil 2999 } 3000 pkg := sym.Pkg.Path 3001 if sym.Pkg == localpkg { 3002 pkg = myimportpath 3003 } 3004 if flag_race && pkg == "sync/atomic" { 3005 // The race detector needs to be able to intercept these calls. 3006 // We can't intrinsify them. 3007 return nil 3008 } 3009 fn := sym.Name 3010 return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}] 3011 } 3012 3013 func isIntrinsicCall(n *Node) bool { 3014 if n == nil || n.Left == nil { 3015 return false 3016 } 3017 return findIntrinsic(n.Left.Sym) != nil 3018 } 3019 3020 // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. 3021 func (s *state) intrinsicCall(n *Node) *ssa.Value { 3022 v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n)) 3023 if ssa.IntrinsicsDebug > 0 { 3024 x := v 3025 if x == nil { 3026 x = s.mem() 3027 } 3028 if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { 3029 x = x.Args[0] 3030 } 3031 Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString()) 3032 } 3033 return v 3034 } 3035 3036 type callArg struct { 3037 offset int64 3038 v *ssa.Value 3039 } 3040 type byOffset []callArg 3041 3042 func (x byOffset) Len() int { return len(x) } 3043 func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 3044 func (x byOffset) Less(i, j int) bool { 3045 return x[i].offset < x[j].offset 3046 } 3047 3048 // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. 3049 func (s *state) intrinsicArgs(n *Node) []*ssa.Value { 3050 // This code is complicated because of how walk transforms calls. For a call node, 3051 // each entry in n.List is either an assignment to OINDREGSP which actually 3052 // stores an arg, or an assignment to a temporary which computes an arg 3053 // which is later assigned. 3054 // The args can also be out of order. 3055 // TODO: when walk goes away someday, this code can go away also. 3056 var args []callArg 3057 temps := map[*Node]*ssa.Value{} 3058 for _, a := range n.List.Slice() { 3059 if a.Op != OAS { 3060 s.Fatalf("non-assignment as a function argument %s", opnames[a.Op]) 3061 } 3062 l, r := a.Left, a.Right 3063 switch l.Op { 3064 case ONAME: 3065 // Evaluate and store to "temporary". 3066 // Walk ensures these temporaries are dead outside of n. 3067 temps[l] = s.expr(r) 3068 case OINDREGSP: 3069 // Store a value to an argument slot. 3070 var v *ssa.Value 3071 if x, ok := temps[r]; ok { 3072 // This is a previously computed temporary. 3073 v = x 3074 } else { 3075 // This is an explicit value; evaluate it. 3076 v = s.expr(r) 3077 } 3078 args = append(args, callArg{l.Xoffset, v}) 3079 default: 3080 s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op]) 3081 } 3082 } 3083 sort.Sort(byOffset(args)) 3084 res := make([]*ssa.Value, len(args)) 3085 for i, a := range args { 3086 res[i] = a.v 3087 } 3088 return res 3089 } 3090 3091 // Calls the function n using the specified call type. 3092 // Returns the address of the return value (or nil if none). 3093 func (s *state) call(n *Node, k callKind) *ssa.Value { 3094 var sym *types.Sym // target symbol (if static) 3095 var closure *ssa.Value // ptr to closure to run (if dynamic) 3096 var codeptr *ssa.Value // ptr to target code (if dynamic) 3097 var rcvr *ssa.Value // receiver to set 3098 fn := n.Left 3099 switch n.Op { 3100 case OCALLFUNC: 3101 if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC { 3102 sym = fn.Sym 3103 break 3104 } 3105 closure = s.expr(fn) 3106 case OCALLMETH: 3107 if fn.Op != ODOTMETH { 3108 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 3109 } 3110 if k == callNormal { 3111 sym = fn.Sym 3112 break 3113 } 3114 // Make a name n2 for the function. 3115 // fn.Sym might be sync.(*Mutex).Unlock. 3116 // Make a PFUNC node out of that, then evaluate it. 3117 // We get back an SSA value representing &sync.(*Mutex).Unlock·f. 3118 // We can then pass that to defer or go. 3119 n2 := newnamel(fn.Pos, fn.Sym) 3120 n2.Name.Curfn = s.curfn 3121 n2.SetClass(PFUNC) 3122 n2.Pos = fn.Pos 3123 n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it. 3124 closure = s.expr(n2) 3125 // Note: receiver is already assigned in n.List, so we don't 3126 // want to set it here. 3127 case OCALLINTER: 3128 if fn.Op != ODOTINTER { 3129 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 3130 } 3131 i := s.expr(fn.Left) 3132 itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i) 3133 if k != callNormal { 3134 s.nilCheck(itab) 3135 } 3136 itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab 3137 itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab) 3138 if k == callNormal { 3139 codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem()) 3140 } else { 3141 closure = itab 3142 } 3143 rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i) 3144 } 3145 dowidth(fn.Type) 3146 stksize := fn.Type.ArgWidth() // includes receiver 3147 3148 // Run all argument assignments. The arg slots have already 3149 // been offset by the appropriate amount (+2*widthptr for go/defer, 3150 // +widthptr for interface calls). 3151 // For OCALLMETH, the receiver is set in these statements. 3152 s.stmtList(n.List) 3153 3154 // Set receiver (for interface calls) 3155 if rcvr != nil { 3156 argStart := Ctxt.FixedFrameSize() 3157 if k != callNormal { 3158 argStart += int64(2 * Widthptr) 3159 } 3160 addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart) 3161 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem()) 3162 } 3163 3164 // Defer/go args 3165 if k != callNormal { 3166 // Write argsize and closure (args to Newproc/Deferproc). 3167 argStart := Ctxt.FixedFrameSize() 3168 argsize := s.constInt32(types.Types[TUINT32], int32(stksize)) 3169 addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart) 3170 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINT32], addr, argsize, s.mem()) 3171 addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr)) 3172 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem()) 3173 stksize += 2 * int64(Widthptr) 3174 } 3175 3176 // call target 3177 var call *ssa.Value 3178 switch { 3179 case k == callDefer: 3180 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Deferproc, s.mem()) 3181 case k == callGo: 3182 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem()) 3183 case closure != nil: 3184 codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem()) 3185 call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem()) 3186 case codeptr != nil: 3187 call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem()) 3188 case sym != nil: 3189 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem()) 3190 default: 3191 Fatalf("bad call type %v %v", n.Op, n) 3192 } 3193 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 3194 s.vars[&memVar] = call 3195 3196 // Finish block for defers 3197 if k == callDefer { 3198 b := s.endBlock() 3199 b.Kind = ssa.BlockDefer 3200 b.SetControl(call) 3201 bNext := s.f.NewBlock(ssa.BlockPlain) 3202 b.AddEdgeTo(bNext) 3203 // Add recover edge to exit code. 3204 r := s.f.NewBlock(ssa.BlockPlain) 3205 s.startBlock(r) 3206 s.exit() 3207 b.AddEdgeTo(r) 3208 b.Likely = ssa.BranchLikely 3209 s.startBlock(bNext) 3210 } 3211 3212 res := n.Left.Type.Results() 3213 if res.NumFields() == 0 || k != callNormal { 3214 // call has no return value. Continue with the next statement. 3215 return nil 3216 } 3217 fp := res.Field(0) 3218 return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize()) 3219 } 3220 3221 // etypesign returns the signed-ness of e, for integer/pointer etypes. 3222 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 3223 func etypesign(e types.EType) int8 { 3224 switch e { 3225 case TINT8, TINT16, TINT32, TINT64, TINT: 3226 return -1 3227 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 3228 return +1 3229 } 3230 return 0 3231 } 3232 3233 // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node. 3234 // This improves the effectiveness of cse by using the same Aux values for the 3235 // same symbols. 3236 func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} { 3237 switch sym.(type) { 3238 default: 3239 s.Fatalf("sym %v is of unknown type %T", sym, sym) 3240 case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol: 3241 // these are the only valid types 3242 } 3243 3244 if lsym, ok := s.varsyms[n]; ok { 3245 return lsym 3246 } 3247 s.varsyms[n] = sym 3248 return sym 3249 } 3250 3251 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 3252 // The value that the returned Value represents is guaranteed to be non-nil. 3253 // If bounded is true then this address does not require a nil check for its operand 3254 // even if that would otherwise be implied. 3255 func (s *state) addr(n *Node, bounded bool) *ssa.Value { 3256 t := types.NewPtr(n.Type) 3257 switch n.Op { 3258 case ONAME: 3259 switch n.Class() { 3260 case PEXTERN: 3261 // global variable 3262 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Sym.Linksym()}) 3263 v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb) 3264 // TODO: Make OpAddr use AuxInt as well as Aux. 3265 if n.Xoffset != 0 { 3266 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 3267 } 3268 return v 3269 case PPARAM: 3270 // parameter slot 3271 v := s.decladdrs[n] 3272 if v != nil { 3273 return v 3274 } 3275 if n == nodfp { 3276 // Special arg that points to the frame pointer (Used by ORECOVER). 3277 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 3278 return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp) 3279 } 3280 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 3281 return nil 3282 case PAUTO: 3283 aux := s.lookupSymbol(n, &ssa.AutoSymbol{Node: n}) 3284 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 3285 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 3286 // ensure that we reuse symbols for out parameters so 3287 // that cse works on their addresses 3288 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 3289 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 3290 default: 3291 s.Fatalf("variable address class %v not implemented", classnames[n.Class()]) 3292 return nil 3293 } 3294 case OINDREGSP: 3295 // indirect off REGSP 3296 // used for storing/loading arguments/returns to/from callees 3297 return s.constOffPtrSP(t, n.Xoffset) 3298 case OINDEX: 3299 if n.Left.Type.IsSlice() { 3300 a := s.expr(n.Left) 3301 i := s.expr(n.Right) 3302 i = s.extendIndex(i, panicindex) 3303 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a) 3304 if !n.Bounded() { 3305 s.boundsCheck(i, len) 3306 } 3307 p := s.newValue1(ssa.OpSlicePtr, t, a) 3308 return s.newValue2(ssa.OpPtrIndex, t, p, i) 3309 } else { // array 3310 a := s.addr(n.Left, bounded) 3311 i := s.expr(n.Right) 3312 i = s.extendIndex(i, panicindex) 3313 len := s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 3314 if !n.Bounded() { 3315 s.boundsCheck(i, len) 3316 } 3317 return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i) 3318 } 3319 case OIND: 3320 return s.exprPtr(n.Left, bounded, n.Pos) 3321 case ODOT: 3322 p := s.addr(n.Left, bounded) 3323 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3324 case ODOTPTR: 3325 p := s.exprPtr(n.Left, bounded, n.Pos) 3326 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3327 case OCLOSUREVAR: 3328 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 3329 s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)) 3330 case OCONVNOP: 3331 addr := s.addr(n.Left, bounded) 3332 return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type 3333 case OCALLFUNC, OCALLINTER, OCALLMETH: 3334 return s.call(n, callNormal) 3335 case ODOTTYPE: 3336 v, _ := s.dottype(n, false) 3337 if v.Op != ssa.OpLoad { 3338 s.Fatalf("dottype of non-load") 3339 } 3340 if v.Args[1] != s.mem() { 3341 s.Fatalf("memory no longer live from dottype load") 3342 } 3343 return v.Args[0] 3344 default: 3345 s.Fatalf("unhandled addr %v", n.Op) 3346 return nil 3347 } 3348 } 3349 3350 // canSSA reports whether n is SSA-able. 3351 // n must be an ONAME (or an ODOT sequence with an ONAME base). 3352 func (s *state) canSSA(n *Node) bool { 3353 if Debug['N'] != 0 { 3354 return false 3355 } 3356 for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) { 3357 n = n.Left 3358 } 3359 if n.Op != ONAME { 3360 return false 3361 } 3362 if n.Addrtaken() { 3363 return false 3364 } 3365 if n.isParamHeapCopy() { 3366 return false 3367 } 3368 if n.Class() == PAUTOHEAP { 3369 Fatalf("canSSA of PAUTOHEAP %v", n) 3370 } 3371 switch n.Class() { 3372 case PEXTERN: 3373 return false 3374 case PPARAMOUT: 3375 if s.hasdefer { 3376 // TODO: handle this case? Named return values must be 3377 // in memory so that the deferred function can see them. 3378 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 3379 // Or maybe not, see issue 18860. Even unnamed return values 3380 // must be written back so if a defer recovers, the caller can see them. 3381 return false 3382 } 3383 if s.cgoUnsafeArgs { 3384 // Cgo effectively takes the address of all result args, 3385 // but the compiler can't see that. 3386 return false 3387 } 3388 } 3389 if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" { 3390 // wrappers generated by genwrapper need to update 3391 // the .this pointer in place. 3392 // TODO: treat as a PPARMOUT? 3393 return false 3394 } 3395 return canSSAType(n.Type) 3396 // TODO: try to make more variables SSAable? 3397 } 3398 3399 // canSSA reports whether variables of type t are SSA-able. 3400 func canSSAType(t *types.Type) bool { 3401 dowidth(t) 3402 if t.Width > int64(4*Widthptr) { 3403 // 4*Widthptr is an arbitrary constant. We want it 3404 // to be at least 3*Widthptr so slices can be registerized. 3405 // Too big and we'll introduce too much register pressure. 3406 return false 3407 } 3408 switch t.Etype { 3409 case TARRAY: 3410 // We can't do larger arrays because dynamic indexing is 3411 // not supported on SSA variables. 3412 // TODO: allow if all indexes are constant. 3413 if t.NumElem() <= 1 { 3414 return canSSAType(t.Elem()) 3415 } 3416 return false 3417 case TSTRUCT: 3418 if t.NumFields() > ssa.MaxStruct { 3419 return false 3420 } 3421 for _, t1 := range t.Fields().Slice() { 3422 if !canSSAType(t1.Type) { 3423 return false 3424 } 3425 } 3426 return true 3427 default: 3428 return true 3429 } 3430 } 3431 3432 // exprPtr evaluates n to a pointer and nil-checks it. 3433 func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value { 3434 p := s.expr(n) 3435 if bounded || n.NonNil() { 3436 if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { 3437 s.f.Warnl(lineno, "removed nil check") 3438 } 3439 return p 3440 } 3441 s.nilCheck(p) 3442 return p 3443 } 3444 3445 // nilCheck generates nil pointer checking code. 3446 // Used only for automatically inserted nil checks, 3447 // not for user code like 'x != nil'. 3448 func (s *state) nilCheck(ptr *ssa.Value) { 3449 if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() { 3450 return 3451 } 3452 s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem()) 3453 } 3454 3455 // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. 3456 // Starts a new block on return. 3457 // idx is already converted to full int width. 3458 func (s *state) boundsCheck(idx, len *ssa.Value) { 3459 if Debug['B'] != 0 { 3460 return 3461 } 3462 3463 // bounds check 3464 cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len) 3465 s.check(cmp, panicindex) 3466 } 3467 3468 // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. 3469 // Starts a new block on return. 3470 // idx and len are already converted to full int width. 3471 func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { 3472 if Debug['B'] != 0 { 3473 return 3474 } 3475 3476 // bounds check 3477 cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len) 3478 s.check(cmp, panicslice) 3479 } 3480 3481 // If cmp (a bool) is false, panic using the given function. 3482 func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { 3483 b := s.endBlock() 3484 b.Kind = ssa.BlockIf 3485 b.SetControl(cmp) 3486 b.Likely = ssa.BranchLikely 3487 bNext := s.f.NewBlock(ssa.BlockPlain) 3488 line := s.peekPos() 3489 pos := Ctxt.PosTable.Pos(line) 3490 fl := funcLine{f: fn, file: pos.Filename(), line: pos.Line()} 3491 bPanic := s.panics[fl] 3492 if bPanic == nil { 3493 bPanic = s.f.NewBlock(ssa.BlockPlain) 3494 s.panics[fl] = bPanic 3495 s.startBlock(bPanic) 3496 // The panic call takes/returns memory to ensure that the right 3497 // memory state is observed if the panic happens. 3498 s.rtcall(fn, false, nil) 3499 } 3500 b.AddEdgeTo(bNext) 3501 b.AddEdgeTo(bPanic) 3502 s.startBlock(bNext) 3503 } 3504 3505 func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value { 3506 needcheck := true 3507 switch b.Op { 3508 case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: 3509 if b.AuxInt != 0 { 3510 needcheck = false 3511 } 3512 } 3513 if needcheck { 3514 // do a size-appropriate check for zero 3515 cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type)) 3516 s.check(cmp, panicdivide) 3517 } 3518 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 3519 } 3520 3521 // rtcall issues a call to the given runtime function fn with the listed args. 3522 // Returns a slice of results of the given result types. 3523 // The call is added to the end of the current block. 3524 // If returns is false, the block is marked as an exit block. 3525 func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { 3526 // Write args to the stack 3527 off := Ctxt.FixedFrameSize() 3528 for _, arg := range args { 3529 t := arg.Type 3530 off = Rnd(off, t.Alignment()) 3531 ptr := s.constOffPtrSP(t.PtrTo(), off) 3532 size := t.Size() 3533 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, ptr, arg, s.mem()) 3534 off += size 3535 } 3536 off = Rnd(off, int64(Widthreg)) 3537 3538 // Issue call 3539 call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem()) 3540 s.vars[&memVar] = call 3541 3542 if !returns { 3543 // Finish block 3544 b := s.endBlock() 3545 b.Kind = ssa.BlockExit 3546 b.SetControl(call) 3547 call.AuxInt = off - Ctxt.FixedFrameSize() 3548 if len(results) > 0 { 3549 Fatalf("panic call can't have results") 3550 } 3551 return nil 3552 } 3553 3554 // Load results 3555 res := make([]*ssa.Value, len(results)) 3556 for i, t := range results { 3557 off = Rnd(off, t.Alignment()) 3558 ptr := s.constOffPtrSP(types.NewPtr(t), off) 3559 res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem()) 3560 off += t.Size() 3561 } 3562 off = Rnd(off, int64(Widthptr)) 3563 3564 // Remember how much callee stack space we needed. 3565 call.AuxInt = off 3566 3567 return res 3568 } 3569 3570 // do *left = right for type t. 3571 func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) { 3572 if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) { 3573 // Known to not have write barrier. Store the whole type. 3574 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3575 return 3576 } 3577 3578 // store scalar fields first, so write barrier stores for 3579 // pointer fields can be grouped together, and scalar values 3580 // don't need to be live across the write barrier call. 3581 // TODO: if the writebarrier pass knows how to reorder stores, 3582 // we can do a single store here as long as skip==0. 3583 s.storeTypeScalars(t, left, right, skip) 3584 if skip&skipPtr == 0 && types.Haspointers(t) { 3585 s.storeTypePtrs(t, left, right) 3586 } 3587 } 3588 3589 // do *left = right for all scalar (non-pointer) parts of t. 3590 func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { 3591 switch { 3592 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 3593 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3594 case t.IsPtrShaped(): 3595 // no scalar fields. 3596 case t.IsString(): 3597 if skip&skipLen != 0 { 3598 return 3599 } 3600 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right) 3601 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 3602 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem()) 3603 case t.IsSlice(): 3604 if skip&skipLen == 0 { 3605 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right) 3606 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 3607 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem()) 3608 } 3609 if skip&skipCap == 0 { 3610 cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right) 3611 capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) 3612 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capAddr, cap, s.mem()) 3613 } 3614 case t.IsInterface(): 3615 // itab field doesn't need a write barrier (even though it is a pointer). 3616 itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) 3617 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], left, itab, s.mem()) 3618 case t.IsStruct(): 3619 n := t.NumFields() 3620 for i := 0; i < n; i++ { 3621 ft := t.FieldType(i) 3622 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3623 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3624 s.storeTypeScalars(ft, addr, val, 0) 3625 } 3626 case t.IsArray() && t.NumElem() == 0: 3627 // nothing 3628 case t.IsArray() && t.NumElem() == 1: 3629 s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) 3630 default: 3631 s.Fatalf("bad write barrier type %v", t) 3632 } 3633 } 3634 3635 // do *left = right for all pointer parts of t. 3636 func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { 3637 switch { 3638 case t.IsPtrShaped(): 3639 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3640 case t.IsString(): 3641 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) 3642 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem()) 3643 case t.IsSlice(): 3644 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, right) 3645 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem()) 3646 case t.IsInterface(): 3647 // itab field is treated as a scalar. 3648 idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) 3649 idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) 3650 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem()) 3651 case t.IsStruct(): 3652 n := t.NumFields() 3653 for i := 0; i < n; i++ { 3654 ft := t.FieldType(i) 3655 if !types.Haspointers(ft) { 3656 continue 3657 } 3658 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3659 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3660 s.storeTypePtrs(ft, addr, val) 3661 } 3662 case t.IsArray() && t.NumElem() == 0: 3663 // nothing 3664 case t.IsArray() && t.NumElem() == 1: 3665 s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) 3666 default: 3667 s.Fatalf("bad write barrier type %v", t) 3668 } 3669 } 3670 3671 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 3672 // i,j,k may be nil, in which case they are set to their default value. 3673 // t is a slice, ptr to array, or string type. 3674 func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) { 3675 var elemtype *types.Type 3676 var ptrtype *types.Type 3677 var ptr *ssa.Value 3678 var len *ssa.Value 3679 var cap *ssa.Value 3680 zero := s.constInt(types.Types[TINT], 0) 3681 switch { 3682 case t.IsSlice(): 3683 elemtype = t.Elem() 3684 ptrtype = types.NewPtr(elemtype) 3685 ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) 3686 len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v) 3687 cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v) 3688 case t.IsString(): 3689 elemtype = types.Types[TUINT8] 3690 ptrtype = types.NewPtr(elemtype) 3691 ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) 3692 len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v) 3693 cap = len 3694 case t.IsPtr(): 3695 if !t.Elem().IsArray() { 3696 s.Fatalf("bad ptr to array in slice %v\n", t) 3697 } 3698 elemtype = t.Elem().Elem() 3699 ptrtype = types.NewPtr(elemtype) 3700 s.nilCheck(v) 3701 ptr = v 3702 len = s.constInt(types.Types[TINT], t.Elem().NumElem()) 3703 cap = len 3704 default: 3705 s.Fatalf("bad type in slice %v\n", t) 3706 } 3707 3708 // Set default values 3709 if i == nil { 3710 i = zero 3711 } 3712 if j == nil { 3713 j = len 3714 } 3715 if k == nil { 3716 k = cap 3717 } 3718 3719 // Panic if slice indices are not in bounds. 3720 s.sliceBoundsCheck(i, j) 3721 if j != k { 3722 s.sliceBoundsCheck(j, k) 3723 } 3724 if k != cap { 3725 s.sliceBoundsCheck(k, cap) 3726 } 3727 3728 // Generate the following code assuming that indexes are in bounds. 3729 // The masking is to make sure that we don't generate a slice 3730 // that points to the next object in memory. 3731 // rlen = j - i 3732 // rcap = k - i 3733 // delta = i * elemsize 3734 // rptr = p + delta&mask(rcap) 3735 // result = (SliceMake rptr rlen rcap) 3736 // where mask(x) is 0 if x==0 and -1 if x>0. 3737 subOp := s.ssaOp(OSUB, types.Types[TINT]) 3738 mulOp := s.ssaOp(OMUL, types.Types[TINT]) 3739 andOp := s.ssaOp(OAND, types.Types[TINT]) 3740 rlen := s.newValue2(subOp, types.Types[TINT], j, i) 3741 var rcap *ssa.Value 3742 switch { 3743 case t.IsString(): 3744 // Capacity of the result is unimportant. However, we use 3745 // rcap to test if we've generated a zero-length slice. 3746 // Use length of strings for that. 3747 rcap = rlen 3748 case j == k: 3749 rcap = rlen 3750 default: 3751 rcap = s.newValue2(subOp, types.Types[TINT], k, i) 3752 } 3753 3754 var rptr *ssa.Value 3755 if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { 3756 // No pointer arithmetic necessary. 3757 rptr = ptr 3758 } else { 3759 // delta = # of bytes to offset pointer by. 3760 delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width)) 3761 // If we're slicing to the point where the capacity is zero, 3762 // zero out the delta. 3763 mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap) 3764 delta = s.newValue2(andOp, types.Types[TINT], delta, mask) 3765 // Compute rptr = ptr + delta 3766 rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta) 3767 } 3768 3769 return rptr, rlen, rcap 3770 } 3771 3772 type u642fcvtTab struct { 3773 geq, cvt2F, and, rsh, or, add ssa.Op 3774 one func(*state, *types.Type, int64) *ssa.Value 3775 } 3776 3777 var u64_f64 u642fcvtTab = u642fcvtTab{ 3778 geq: ssa.OpGeq64, 3779 cvt2F: ssa.OpCvt64to64F, 3780 and: ssa.OpAnd64, 3781 rsh: ssa.OpRsh64Ux64, 3782 or: ssa.OpOr64, 3783 add: ssa.OpAdd64F, 3784 one: (*state).constInt64, 3785 } 3786 3787 var u64_f32 u642fcvtTab = u642fcvtTab{ 3788 geq: ssa.OpGeq64, 3789 cvt2F: ssa.OpCvt64to32F, 3790 and: ssa.OpAnd64, 3791 rsh: ssa.OpRsh64Ux64, 3792 or: ssa.OpOr64, 3793 add: ssa.OpAdd32F, 3794 one: (*state).constInt64, 3795 } 3796 3797 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3798 return s.uint64Tofloat(&u64_f64, n, x, ft, tt) 3799 } 3800 3801 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3802 return s.uint64Tofloat(&u64_f32, n, x, ft, tt) 3803 } 3804 3805 func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3806 // if x >= 0 { 3807 // result = (floatY) x 3808 // } else { 3809 // y = uintX(x) ; y = x & 1 3810 // z = uintX(x) ; z = z >> 1 3811 // z = z >> 1 3812 // z = z | y 3813 // result = floatY(z) 3814 // result = result + result 3815 // } 3816 // 3817 // Code borrowed from old code generator. 3818 // What's going on: large 64-bit "unsigned" looks like 3819 // negative number to hardware's integer-to-float 3820 // conversion. However, because the mantissa is only 3821 // 63 bits, we don't need the LSB, so instead we do an 3822 // unsigned right shift (divide by two), convert, and 3823 // double. However, before we do that, we need to be 3824 // sure that we do not lose a "1" if that made the 3825 // difference in the resulting rounding. Therefore, we 3826 // preserve it, and OR (not ADD) it back in. The case 3827 // that matters is when the eleven discarded bits are 3828 // equal to 10000000001; that rounds up, and the 1 cannot 3829 // be lost else it would round down if the LSB of the 3830 // candidate mantissa is 0. 3831 cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft)) 3832 b := s.endBlock() 3833 b.Kind = ssa.BlockIf 3834 b.SetControl(cmp) 3835 b.Likely = ssa.BranchLikely 3836 3837 bThen := s.f.NewBlock(ssa.BlockPlain) 3838 bElse := s.f.NewBlock(ssa.BlockPlain) 3839 bAfter := s.f.NewBlock(ssa.BlockPlain) 3840 3841 b.AddEdgeTo(bThen) 3842 s.startBlock(bThen) 3843 a0 := s.newValue1(cvttab.cvt2F, tt, x) 3844 s.vars[n] = a0 3845 s.endBlock() 3846 bThen.AddEdgeTo(bAfter) 3847 3848 b.AddEdgeTo(bElse) 3849 s.startBlock(bElse) 3850 one := cvttab.one(s, ft, 1) 3851 y := s.newValue2(cvttab.and, ft, x, one) 3852 z := s.newValue2(cvttab.rsh, ft, x, one) 3853 z = s.newValue2(cvttab.or, ft, z, y) 3854 a := s.newValue1(cvttab.cvt2F, tt, z) 3855 a1 := s.newValue2(cvttab.add, tt, a, a) 3856 s.vars[n] = a1 3857 s.endBlock() 3858 bElse.AddEdgeTo(bAfter) 3859 3860 s.startBlock(bAfter) 3861 return s.variable(n, n.Type) 3862 } 3863 3864 type u322fcvtTab struct { 3865 cvtI2F, cvtF2F ssa.Op 3866 } 3867 3868 var u32_f64 u322fcvtTab = u322fcvtTab{ 3869 cvtI2F: ssa.OpCvt32to64F, 3870 cvtF2F: ssa.OpCopy, 3871 } 3872 3873 var u32_f32 u322fcvtTab = u322fcvtTab{ 3874 cvtI2F: ssa.OpCvt32to32F, 3875 cvtF2F: ssa.OpCvt64Fto32F, 3876 } 3877 3878 func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3879 return s.uint32Tofloat(&u32_f64, n, x, ft, tt) 3880 } 3881 3882 func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3883 return s.uint32Tofloat(&u32_f32, n, x, ft, tt) 3884 } 3885 3886 func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3887 // if x >= 0 { 3888 // result = floatY(x) 3889 // } else { 3890 // result = floatY(float64(x) + (1<<32)) 3891 // } 3892 cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft)) 3893 b := s.endBlock() 3894 b.Kind = ssa.BlockIf 3895 b.SetControl(cmp) 3896 b.Likely = ssa.BranchLikely 3897 3898 bThen := s.f.NewBlock(ssa.BlockPlain) 3899 bElse := s.f.NewBlock(ssa.BlockPlain) 3900 bAfter := s.f.NewBlock(ssa.BlockPlain) 3901 3902 b.AddEdgeTo(bThen) 3903 s.startBlock(bThen) 3904 a0 := s.newValue1(cvttab.cvtI2F, tt, x) 3905 s.vars[n] = a0 3906 s.endBlock() 3907 bThen.AddEdgeTo(bAfter) 3908 3909 b.AddEdgeTo(bElse) 3910 s.startBlock(bElse) 3911 a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x) 3912 twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32)) 3913 a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32) 3914 a3 := s.newValue1(cvttab.cvtF2F, tt, a2) 3915 3916 s.vars[n] = a3 3917 s.endBlock() 3918 bElse.AddEdgeTo(bAfter) 3919 3920 s.startBlock(bAfter) 3921 return s.variable(n, n.Type) 3922 } 3923 3924 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 3925 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 3926 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 3927 s.Fatalf("node must be a map or a channel") 3928 } 3929 // if n == nil { 3930 // return 0 3931 // } else { 3932 // // len 3933 // return *((*int)n) 3934 // // cap 3935 // return *(((*int)n)+1) 3936 // } 3937 lenType := n.Type 3938 nilValue := s.constNil(types.Types[TUINTPTR]) 3939 cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue) 3940 b := s.endBlock() 3941 b.Kind = ssa.BlockIf 3942 b.SetControl(cmp) 3943 b.Likely = ssa.BranchUnlikely 3944 3945 bThen := s.f.NewBlock(ssa.BlockPlain) 3946 bElse := s.f.NewBlock(ssa.BlockPlain) 3947 bAfter := s.f.NewBlock(ssa.BlockPlain) 3948 3949 // length/capacity of a nil map/chan is zero 3950 b.AddEdgeTo(bThen) 3951 s.startBlock(bThen) 3952 s.vars[n] = s.zeroVal(lenType) 3953 s.endBlock() 3954 bThen.AddEdgeTo(bAfter) 3955 3956 b.AddEdgeTo(bElse) 3957 s.startBlock(bElse) 3958 if n.Op == OLEN { 3959 // length is stored in the first word for map/chan 3960 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) 3961 } else if n.Op == OCAP { 3962 // capacity is stored in the second word for chan 3963 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 3964 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) 3965 } else { 3966 s.Fatalf("op must be OLEN or OCAP") 3967 } 3968 s.endBlock() 3969 bElse.AddEdgeTo(bAfter) 3970 3971 s.startBlock(bAfter) 3972 return s.variable(n, lenType) 3973 } 3974 3975 type f2uCvtTab struct { 3976 ltf, cvt2U, subf, or ssa.Op 3977 floatValue func(*state, *types.Type, float64) *ssa.Value 3978 intValue func(*state, *types.Type, int64) *ssa.Value 3979 cutoff uint64 3980 } 3981 3982 var f32_u64 f2uCvtTab = f2uCvtTab{ 3983 ltf: ssa.OpLess32F, 3984 cvt2U: ssa.OpCvt32Fto64, 3985 subf: ssa.OpSub32F, 3986 or: ssa.OpOr64, 3987 floatValue: (*state).constFloat32, 3988 intValue: (*state).constInt64, 3989 cutoff: 9223372036854775808, 3990 } 3991 3992 var f64_u64 f2uCvtTab = f2uCvtTab{ 3993 ltf: ssa.OpLess64F, 3994 cvt2U: ssa.OpCvt64Fto64, 3995 subf: ssa.OpSub64F, 3996 or: ssa.OpOr64, 3997 floatValue: (*state).constFloat64, 3998 intValue: (*state).constInt64, 3999 cutoff: 9223372036854775808, 4000 } 4001 4002 var f32_u32 f2uCvtTab = f2uCvtTab{ 4003 ltf: ssa.OpLess32F, 4004 cvt2U: ssa.OpCvt32Fto32, 4005 subf: ssa.OpSub32F, 4006 or: ssa.OpOr32, 4007 floatValue: (*state).constFloat32, 4008 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 4009 cutoff: 2147483648, 4010 } 4011 4012 var f64_u32 f2uCvtTab = f2uCvtTab{ 4013 ltf: ssa.OpLess64F, 4014 cvt2U: ssa.OpCvt64Fto32, 4015 subf: ssa.OpSub64F, 4016 or: ssa.OpOr32, 4017 floatValue: (*state).constFloat64, 4018 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 4019 cutoff: 2147483648, 4020 } 4021 4022 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4023 return s.floatToUint(&f32_u64, n, x, ft, tt) 4024 } 4025 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4026 return s.floatToUint(&f64_u64, n, x, ft, tt) 4027 } 4028 4029 func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4030 return s.floatToUint(&f32_u32, n, x, ft, tt) 4031 } 4032 4033 func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4034 return s.floatToUint(&f64_u32, n, x, ft, tt) 4035 } 4036 4037 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4038 // cutoff:=1<<(intY_Size-1) 4039 // if x < floatX(cutoff) { 4040 // result = uintY(x) 4041 // } else { 4042 // y = x - floatX(cutoff) 4043 // z = uintY(y) 4044 // result = z | -(cutoff) 4045 // } 4046 cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) 4047 cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff) 4048 b := s.endBlock() 4049 b.Kind = ssa.BlockIf 4050 b.SetControl(cmp) 4051 b.Likely = ssa.BranchLikely 4052 4053 bThen := s.f.NewBlock(ssa.BlockPlain) 4054 bElse := s.f.NewBlock(ssa.BlockPlain) 4055 bAfter := s.f.NewBlock(ssa.BlockPlain) 4056 4057 b.AddEdgeTo(bThen) 4058 s.startBlock(bThen) 4059 a0 := s.newValue1(cvttab.cvt2U, tt, x) 4060 s.vars[n] = a0 4061 s.endBlock() 4062 bThen.AddEdgeTo(bAfter) 4063 4064 b.AddEdgeTo(bElse) 4065 s.startBlock(bElse) 4066 y := s.newValue2(cvttab.subf, ft, x, cutoff) 4067 y = s.newValue1(cvttab.cvt2U, tt, y) 4068 z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) 4069 a1 := s.newValue2(cvttab.or, tt, y, z) 4070 s.vars[n] = a1 4071 s.endBlock() 4072 bElse.AddEdgeTo(bAfter) 4073 4074 s.startBlock(bAfter) 4075 return s.variable(n, n.Type) 4076 } 4077 4078 // dottype generates SSA for a type assertion node. 4079 // commaok indicates whether to panic or return a bool. 4080 // If commaok is false, resok will be nil. 4081 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 4082 iface := s.expr(n.Left) // input interface 4083 target := s.expr(n.Right) // target type 4084 byteptr := s.f.Config.Types.BytePtr 4085 4086 if n.Type.IsInterface() { 4087 if n.Type.IsEmptyInterface() { 4088 // Converting to an empty interface. 4089 // Input could be an empty or nonempty interface. 4090 if Debug_typeassert > 0 { 4091 Warnl(n.Pos, "type assertion inlined") 4092 } 4093 4094 // Get itab/type field from input. 4095 itab := s.newValue1(ssa.OpITab, byteptr, iface) 4096 // Conversion succeeds iff that field is not nil. 4097 cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr)) 4098 4099 if n.Left.Type.IsEmptyInterface() && commaok { 4100 // Converting empty interface to empty interface with ,ok is just a nil check. 4101 return iface, cond 4102 } 4103 4104 // Branch on nilness. 4105 b := s.endBlock() 4106 b.Kind = ssa.BlockIf 4107 b.SetControl(cond) 4108 b.Likely = ssa.BranchLikely 4109 bOk := s.f.NewBlock(ssa.BlockPlain) 4110 bFail := s.f.NewBlock(ssa.BlockPlain) 4111 b.AddEdgeTo(bOk) 4112 b.AddEdgeTo(bFail) 4113 4114 if !commaok { 4115 // On failure, panic by calling panicnildottype. 4116 s.startBlock(bFail) 4117 s.rtcall(panicnildottype, false, nil, target) 4118 4119 // On success, return (perhaps modified) input interface. 4120 s.startBlock(bOk) 4121 if n.Left.Type.IsEmptyInterface() { 4122 res = iface // Use input interface unchanged. 4123 return 4124 } 4125 // Load type out of itab, build interface with existing idata. 4126 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4127 typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 4128 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4129 res = s.newValue2(ssa.OpIMake, n.Type, typ, idata) 4130 return 4131 } 4132 4133 s.startBlock(bOk) 4134 // nonempty -> empty 4135 // Need to load type from itab 4136 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4137 s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 4138 s.endBlock() 4139 4140 // itab is nil, might as well use that as the nil result. 4141 s.startBlock(bFail) 4142 s.vars[&typVar] = itab 4143 s.endBlock() 4144 4145 // Merge point. 4146 bEnd := s.f.NewBlock(ssa.BlockPlain) 4147 bOk.AddEdgeTo(bEnd) 4148 bFail.AddEdgeTo(bEnd) 4149 s.startBlock(bEnd) 4150 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4151 res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata) 4152 resok = cond 4153 delete(s.vars, &typVar) 4154 return 4155 } 4156 // converting to a nonempty interface needs a runtime call. 4157 if Debug_typeassert > 0 { 4158 Warnl(n.Pos, "type assertion not inlined") 4159 } 4160 if n.Left.Type.IsEmptyInterface() { 4161 if commaok { 4162 call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4163 return call[0], call[1] 4164 } 4165 return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4166 } 4167 if commaok { 4168 call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4169 return call[0], call[1] 4170 } 4171 return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4172 } 4173 4174 if Debug_typeassert > 0 { 4175 Warnl(n.Pos, "type assertion inlined") 4176 } 4177 4178 // Converting to a concrete type. 4179 direct := isdirectiface(n.Type) 4180 itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface 4181 if Debug_typeassert > 0 { 4182 Warnl(n.Pos, "type assertion inlined") 4183 } 4184 var targetITab *ssa.Value 4185 if n.Left.Type.IsEmptyInterface() { 4186 // Looking for pointer to target type. 4187 targetITab = target 4188 } else { 4189 // Looking for pointer to itab for target type and source interface. 4190 targetITab = s.expr(n.List.First()) 4191 } 4192 4193 var tmp *Node // temporary for use with large types 4194 var addr *ssa.Value // address of tmp 4195 if commaok && !canSSAType(n.Type) { 4196 // unSSAable type, use temporary. 4197 // TODO: get rid of some of these temporaries. 4198 tmp = tempAt(n.Pos, s.curfn, n.Type) 4199 addr = s.addr(tmp, false) 4200 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) 4201 } 4202 4203 cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab) 4204 b := s.endBlock() 4205 b.Kind = ssa.BlockIf 4206 b.SetControl(cond) 4207 b.Likely = ssa.BranchLikely 4208 4209 bOk := s.f.NewBlock(ssa.BlockPlain) 4210 bFail := s.f.NewBlock(ssa.BlockPlain) 4211 b.AddEdgeTo(bOk) 4212 b.AddEdgeTo(bFail) 4213 4214 if !commaok { 4215 // on failure, panic by calling panicdottype 4216 s.startBlock(bFail) 4217 taddr := s.expr(n.Right.Right) 4218 if n.Left.Type.IsEmptyInterface() { 4219 s.rtcall(panicdottypeE, false, nil, itab, target, taddr) 4220 } else { 4221 s.rtcall(panicdottypeI, false, nil, itab, target, taddr) 4222 } 4223 4224 // on success, return data from interface 4225 s.startBlock(bOk) 4226 if direct { 4227 return s.newValue1(ssa.OpIData, n.Type, iface), nil 4228 } 4229 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4230 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil 4231 } 4232 4233 // commaok is the more complicated case because we have 4234 // a control flow merge point. 4235 bEnd := s.f.NewBlock(ssa.BlockPlain) 4236 // Note that we need a new valVar each time (unlike okVar where we can 4237 // reuse the variable) because it might have a different type every time. 4238 valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}} 4239 4240 // type assertion succeeded 4241 s.startBlock(bOk) 4242 if tmp == nil { 4243 if direct { 4244 s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface) 4245 } else { 4246 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4247 s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 4248 } 4249 } else { 4250 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4251 store := s.newValue3I(ssa.OpMove, types.TypeMem, n.Type.Size(), addr, p, s.mem()) 4252 store.Aux = n.Type 4253 s.vars[&memVar] = store 4254 } 4255 s.vars[&okVar] = s.constBool(true) 4256 s.endBlock() 4257 bOk.AddEdgeTo(bEnd) 4258 4259 // type assertion failed 4260 s.startBlock(bFail) 4261 if tmp == nil { 4262 s.vars[valVar] = s.zeroVal(n.Type) 4263 } else { 4264 store := s.newValue2I(ssa.OpZero, types.TypeMem, n.Type.Size(), addr, s.mem()) 4265 store.Aux = n.Type 4266 s.vars[&memVar] = store 4267 } 4268 s.vars[&okVar] = s.constBool(false) 4269 s.endBlock() 4270 bFail.AddEdgeTo(bEnd) 4271 4272 // merge point 4273 s.startBlock(bEnd) 4274 if tmp == nil { 4275 res = s.variable(valVar, n.Type) 4276 delete(s.vars, valVar) 4277 } else { 4278 res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 4279 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem()) 4280 } 4281 resok = s.variable(&okVar, types.Types[TBOOL]) 4282 delete(s.vars, &okVar) 4283 return res, resok 4284 } 4285 4286 // variable returns the value of a variable at the current location. 4287 func (s *state) variable(name *Node, t *types.Type) *ssa.Value { 4288 v := s.vars[name] 4289 if v != nil { 4290 return v 4291 } 4292 v = s.fwdVars[name] 4293 if v != nil { 4294 return v 4295 } 4296 4297 if s.curBlock == s.f.Entry { 4298 // No variable should be live at entry. 4299 s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v) 4300 } 4301 // Make a FwdRef, which records a value that's live on block input. 4302 // We'll find the matching definition as part of insertPhis. 4303 v = s.newValue0A(ssa.OpFwdRef, t, name) 4304 s.fwdVars[name] = v 4305 s.addNamedValue(name, v) 4306 return v 4307 } 4308 4309 func (s *state) mem() *ssa.Value { 4310 return s.variable(&memVar, types.TypeMem) 4311 } 4312 4313 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 4314 if n.Class() == Pxxx { 4315 // Don't track our dummy nodes (&memVar etc.). 4316 return 4317 } 4318 if n.IsAutoTmp() { 4319 // Don't track temporary variables. 4320 return 4321 } 4322 if n.Class() == PPARAMOUT { 4323 // Don't track named output values. This prevents return values 4324 // from being assigned too early. See #14591 and #14762. TODO: allow this. 4325 return 4326 } 4327 if n.Class() == PAUTO && n.Xoffset != 0 { 4328 s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset) 4329 } 4330 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 4331 values, ok := s.f.NamedValues[loc] 4332 if !ok { 4333 s.f.Names = append(s.f.Names, loc) 4334 } 4335 s.f.NamedValues[loc] = append(values, v) 4336 } 4337 4338 // Branch is an unresolved branch. 4339 type Branch struct { 4340 P *obj.Prog // branch instruction 4341 B *ssa.Block // target 4342 } 4343 4344 // SSAGenState contains state needed during Prog generation. 4345 type SSAGenState struct { 4346 pp *Progs 4347 4348 // Branches remembers all the branch instructions we've seen 4349 // and where they would like to go. 4350 Branches []Branch 4351 4352 // bstart remembers where each block starts (indexed by block ID) 4353 bstart []*obj.Prog 4354 4355 // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) 4356 SSEto387 map[int16]int16 4357 // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. 4358 ScratchFpMem *Node 4359 4360 maxarg int64 // largest frame size for arguments to calls made by the function 4361 4362 // Map from GC safe points to stack map index, generated by 4363 // liveness analysis. 4364 stackMapIndex map[*ssa.Value]int 4365 } 4366 4367 // Prog appends a new Prog. 4368 func (s *SSAGenState) Prog(as obj.As) *obj.Prog { 4369 return s.pp.Prog(as) 4370 } 4371 4372 // Pc returns the current Prog. 4373 func (s *SSAGenState) Pc() *obj.Prog { 4374 return s.pp.next 4375 } 4376 4377 // SetPos sets the current source position. 4378 func (s *SSAGenState) SetPos(pos src.XPos) { 4379 s.pp.pos = pos 4380 } 4381 4382 // DebugFriendlySetPos sets the position subject to heuristics 4383 // that reduce "jumpy" line number churn when debugging. 4384 // Spill/fill/copy instructions from the register allocator, 4385 // phi functions, and instructions with a no-pos position 4386 // are examples of instructions that can cause churn. 4387 func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) { 4388 // The two choices here are either to leave lineno unchanged, 4389 // or to explicitly set it to src.NoXPos. Leaving it unchanged 4390 // (reusing the preceding line number) produces slightly better- 4391 // looking assembly language output from the compiler, and is 4392 // expected by some already-existing tests. 4393 // The debug information appears to be the same in either case 4394 switch v.Op { 4395 case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: 4396 // leave the position unchanged from beginning of block 4397 // or previous line number. 4398 default: 4399 if v.Pos != src.NoXPos { 4400 s.SetPos(v.Pos) 4401 } 4402 } 4403 } 4404 4405 // genssa appends entries to pp for each instruction in f. 4406 func genssa(f *ssa.Func, pp *Progs) { 4407 var s SSAGenState 4408 4409 e := f.Frontend().(*ssafn) 4410 4411 // Generate GC bitmaps, except if the stack is too large, 4412 // in which compilation will fail later anyway (issue 20529). 4413 if e.stksize < maxStackSize { 4414 s.stackMapIndex = liveness(e, f) 4415 } 4416 4417 // Remember where each block starts. 4418 s.bstart = make([]*obj.Prog, f.NumBlocks()) 4419 s.pp = pp 4420 var progToValue map[*obj.Prog]*ssa.Value 4421 var progToBlock map[*obj.Prog]*ssa.Block 4422 var valueToProg []*obj.Prog 4423 var logProgs = e.log 4424 if logProgs { 4425 progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 4426 progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 4427 f.Logf("genssa %s\n", f.Name) 4428 progToBlock[s.pp.next] = f.Blocks[0] 4429 } 4430 4431 if thearch.Use387 { 4432 s.SSEto387 = map[int16]int16{} 4433 } 4434 4435 s.ScratchFpMem = e.scratchFpMem 4436 4437 logLocationLists := Debug_locationlist != 0 4438 if Ctxt.Flag_locationlists { 4439 e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(f, logLocationLists) 4440 valueToProg = make([]*obj.Prog, f.NumValues()) 4441 } 4442 // Emit basic blocks 4443 for i, b := range f.Blocks { 4444 s.bstart[b.ID] = s.pp.next 4445 // Emit values in block 4446 thearch.SSAMarkMoves(&s, b) 4447 for _, v := range b.Values { 4448 x := s.pp.next 4449 s.DebugFriendlySetPosFrom(v) 4450 switch v.Op { 4451 case ssa.OpInitMem: 4452 // memory arg needs no code 4453 case ssa.OpArg: 4454 // input args need no code 4455 case ssa.OpSP, ssa.OpSB: 4456 // nothing to do 4457 case ssa.OpSelect0, ssa.OpSelect1: 4458 // nothing to do 4459 case ssa.OpGetG: 4460 // nothing to do when there's a g register, 4461 // and checkLower complains if there's not 4462 case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive: 4463 // nothing to do; already used by liveness 4464 case ssa.OpVarKill: 4465 // Zero variable if it is ambiguously live. 4466 // After the VARKILL anything this variable references 4467 // might be collected. If it were to become live again later, 4468 // the GC will see references to already-collected objects. 4469 // See issue 20029. 4470 n := v.Aux.(*Node) 4471 if n.Name.Needzero() { 4472 if n.Class() != PAUTO { 4473 v.Fatalf("zero of variable which isn't PAUTO %v", n) 4474 } 4475 if n.Type.Size()%int64(Widthptr) != 0 { 4476 v.Fatalf("zero of variable not a multiple of ptr size %v", n) 4477 } 4478 thearch.ZeroAuto(s.pp, n) 4479 } 4480 case ssa.OpPhi: 4481 CheckLoweredPhi(v) 4482 case ssa.OpRegKill: 4483 // nothing to do 4484 default: 4485 // let the backend handle it 4486 thearch.SSAGenValue(&s, v) 4487 } 4488 4489 if Ctxt.Flag_locationlists { 4490 valueToProg[v.ID] = x 4491 } 4492 if logProgs { 4493 for ; x != s.pp.next; x = x.Link { 4494 progToValue[x] = v 4495 } 4496 } 4497 } 4498 // Emit control flow instructions for block 4499 var next *ssa.Block 4500 if i < len(f.Blocks)-1 && Debug['N'] == 0 { 4501 // If -N, leave next==nil so every block with successors 4502 // ends in a JMP (except call blocks - plive doesn't like 4503 // select{send,recv} followed by a JMP call). Helps keep 4504 // line numbers for otherwise empty blocks. 4505 next = f.Blocks[i+1] 4506 } 4507 x := s.pp.next 4508 s.SetPos(b.Pos) 4509 thearch.SSAGenBlock(&s, b, next) 4510 if logProgs { 4511 for ; x != s.pp.next; x = x.Link { 4512 progToBlock[x] = b 4513 } 4514 } 4515 } 4516 4517 if Ctxt.Flag_locationlists { 4518 for _, locList := range e.curfn.Func.DebugInfo.Variables { 4519 for _, loc := range locList.Locations { 4520 loc.StartProg = valueToProg[loc.Start.ID] 4521 if loc.End == nil { 4522 Fatalf("empty loc %v compiling %v", loc, f.Name) 4523 } 4524 loc.EndProg = valueToProg[loc.End.ID] 4525 if !logLocationLists { 4526 loc.Start = nil 4527 loc.End = nil 4528 } 4529 } 4530 } 4531 } 4532 4533 // Resolve branches 4534 for _, br := range s.Branches { 4535 br.P.To.Val = s.bstart[br.B.ID] 4536 } 4537 4538 if logProgs { 4539 for p := pp.Text; p != nil; p = p.Link { 4540 var s string 4541 if v, ok := progToValue[p]; ok { 4542 s = v.String() 4543 } else if b, ok := progToBlock[p]; ok { 4544 s = b.String() 4545 } else { 4546 s = " " // most value and branch strings are 2-3 characters long 4547 } 4548 f.Logf("%s\t%s\n", s, p) 4549 } 4550 if f.HTMLWriter != nil { 4551 // LineHist is defunct now - this code won't do 4552 // anything. 4553 // TODO: fix this (ideally without a global variable) 4554 // saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly 4555 // pp.Text.Ctxt.LineHist.PrintFilenameOnly = true 4556 var buf bytes.Buffer 4557 buf.WriteString("<code>") 4558 buf.WriteString("<dl class=\"ssa-gen\">") 4559 for p := pp.Text; p != nil; p = p.Link { 4560 buf.WriteString("<dt class=\"ssa-prog-src\">") 4561 if v, ok := progToValue[p]; ok { 4562 buf.WriteString(v.HTML()) 4563 } else if b, ok := progToBlock[p]; ok { 4564 buf.WriteString(b.HTML()) 4565 } 4566 buf.WriteString("</dt>") 4567 buf.WriteString("<dd class=\"ssa-prog\">") 4568 buf.WriteString(html.EscapeString(p.String())) 4569 buf.WriteString("</dd>") 4570 buf.WriteString("</li>") 4571 } 4572 buf.WriteString("</dl>") 4573 buf.WriteString("</code>") 4574 f.HTMLWriter.WriteColumn("genssa", buf.String()) 4575 // pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved 4576 } 4577 } 4578 4579 defframe(&s, e) 4580 if Debug['f'] != 0 { 4581 frame(0) 4582 } 4583 4584 f.HTMLWriter.Close() 4585 f.HTMLWriter = nil 4586 } 4587 4588 func defframe(s *SSAGenState, e *ssafn) { 4589 pp := s.pp 4590 4591 frame := Rnd(s.maxarg+e.stksize, int64(Widthreg)) 4592 if thearch.PadFrame != nil { 4593 frame = thearch.PadFrame(frame) 4594 } 4595 4596 // Fill in argument and frame size. 4597 pp.Text.To.Type = obj.TYPE_TEXTSIZE 4598 pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg))) 4599 pp.Text.To.Offset = frame 4600 4601 // Insert code to zero ambiguously live variables so that the 4602 // garbage collector only sees initialized values when it 4603 // looks for pointers. 4604 p := pp.Text 4605 var lo, hi int64 4606 4607 // Opaque state for backend to use. Current backends use it to 4608 // keep track of which helper registers have been zeroed. 4609 var state uint32 4610 4611 // Iterate through declarations. They are sorted in decreasing Xoffset order. 4612 for _, n := range e.curfn.Func.Dcl { 4613 if !n.Name.Needzero() { 4614 continue 4615 } 4616 if n.Class() != PAUTO { 4617 Fatalf("needzero class %d", n.Class()) 4618 } 4619 if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 { 4620 Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset) 4621 } 4622 4623 if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) { 4624 // Merge with range we already have. 4625 lo = n.Xoffset 4626 continue 4627 } 4628 4629 // Zero old range 4630 p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 4631 4632 // Set new range. 4633 lo = n.Xoffset 4634 hi = lo + n.Type.Size() 4635 } 4636 4637 // Zero final range. 4638 thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 4639 } 4640 4641 type FloatingEQNEJump struct { 4642 Jump obj.As 4643 Index int 4644 } 4645 4646 func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) { 4647 p := s.Prog(jumps.Jump) 4648 p.To.Type = obj.TYPE_BRANCH 4649 to := jumps.Index 4650 s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()}) 4651 } 4652 4653 func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 4654 switch next { 4655 case b.Succs[0].Block(): 4656 s.oneFPJump(b, &jumps[0][0]) 4657 s.oneFPJump(b, &jumps[0][1]) 4658 case b.Succs[1].Block(): 4659 s.oneFPJump(b, &jumps[1][0]) 4660 s.oneFPJump(b, &jumps[1][1]) 4661 default: 4662 s.oneFPJump(b, &jumps[1][0]) 4663 s.oneFPJump(b, &jumps[1][1]) 4664 q := s.Prog(obj.AJMP) 4665 q.To.Type = obj.TYPE_BRANCH 4666 s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) 4667 } 4668 } 4669 4670 func AuxOffset(v *ssa.Value) (offset int64) { 4671 if v.Aux == nil { 4672 return 0 4673 } 4674 switch sym := v.Aux.(type) { 4675 4676 case *ssa.AutoSymbol: 4677 n := sym.Node.(*Node) 4678 return n.Xoffset 4679 } 4680 return 0 4681 } 4682 4683 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 4684 func AddAux(a *obj.Addr, v *ssa.Value) { 4685 AddAux2(a, v, v.AuxInt) 4686 } 4687 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 4688 if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { 4689 v.Fatalf("bad AddAux addr %v", a) 4690 } 4691 // add integer offset 4692 a.Offset += offset 4693 4694 // If no additional symbol offset, we're done. 4695 if v.Aux == nil { 4696 return 4697 } 4698 // Add symbol's offset from its base register. 4699 switch sym := v.Aux.(type) { 4700 case *ssa.ExternSymbol: 4701 a.Name = obj.NAME_EXTERN 4702 a.Sym = sym.Sym 4703 case *ssa.ArgSymbol: 4704 n := sym.Node.(*Node) 4705 a.Name = obj.NAME_PARAM 4706 a.Sym = n.Orig.Sym.Linksym() 4707 a.Offset += n.Xoffset 4708 case *ssa.AutoSymbol: 4709 n := sym.Node.(*Node) 4710 a.Name = obj.NAME_AUTO 4711 a.Sym = n.Sym.Linksym() 4712 a.Offset += n.Xoffset 4713 default: 4714 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 4715 } 4716 } 4717 4718 // extendIndex extends v to a full int width. 4719 // panic using the given function if v does not fit in an int (only on 32-bit archs). 4720 func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value { 4721 size := v.Type.Size() 4722 if size == s.config.PtrSize { 4723 return v 4724 } 4725 if size > s.config.PtrSize { 4726 // truncate 64-bit indexes on 32-bit pointer archs. Test the 4727 // high word and branch to out-of-bounds failure if it is not 0. 4728 if Debug['B'] == 0 { 4729 hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v) 4730 cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0)) 4731 s.check(cmp, panicfn) 4732 } 4733 return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v) 4734 } 4735 4736 // Extend value to the required size 4737 var op ssa.Op 4738 if v.Type.IsSigned() { 4739 switch 10*size + s.config.PtrSize { 4740 case 14: 4741 op = ssa.OpSignExt8to32 4742 case 18: 4743 op = ssa.OpSignExt8to64 4744 case 24: 4745 op = ssa.OpSignExt16to32 4746 case 28: 4747 op = ssa.OpSignExt16to64 4748 case 48: 4749 op = ssa.OpSignExt32to64 4750 default: 4751 s.Fatalf("bad signed index extension %s", v.Type) 4752 } 4753 } else { 4754 switch 10*size + s.config.PtrSize { 4755 case 14: 4756 op = ssa.OpZeroExt8to32 4757 case 18: 4758 op = ssa.OpZeroExt8to64 4759 case 24: 4760 op = ssa.OpZeroExt16to32 4761 case 28: 4762 op = ssa.OpZeroExt16to64 4763 case 48: 4764 op = ssa.OpZeroExt32to64 4765 default: 4766 s.Fatalf("bad unsigned index extension %s", v.Type) 4767 } 4768 } 4769 return s.newValue1(op, types.Types[TINT], v) 4770 } 4771 4772 // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. 4773 // Called during ssaGenValue. 4774 func CheckLoweredPhi(v *ssa.Value) { 4775 if v.Op != ssa.OpPhi { 4776 v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) 4777 } 4778 if v.Type.IsMemory() { 4779 return 4780 } 4781 f := v.Block.Func 4782 loc := f.RegAlloc[v.ID] 4783 for _, a := range v.Args { 4784 if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? 4785 v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func) 4786 } 4787 } 4788 } 4789 4790 // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. 4791 // The output of LoweredGetClosurePtr is generally hardwired to the correct register. 4792 // That register contains the closure pointer on closure entry. 4793 func CheckLoweredGetClosurePtr(v *ssa.Value) { 4794 entry := v.Block.Func.Entry 4795 if entry != v.Block || entry.Values[0] != v { 4796 Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) 4797 } 4798 } 4799 4800 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 4801 // where v should be spilled. 4802 func AutoVar(v *ssa.Value) (*Node, int64) { 4803 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 4804 if v.Type.Size() > loc.Type.Size() { 4805 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 4806 } 4807 return loc.N.(*Node), loc.Off 4808 } 4809 4810 func AddrAuto(a *obj.Addr, v *ssa.Value) { 4811 n, off := AutoVar(v) 4812 a.Type = obj.TYPE_MEM 4813 a.Sym = n.Sym.Linksym() 4814 a.Reg = int16(thearch.REGSP) 4815 a.Offset = n.Xoffset + off 4816 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 4817 a.Name = obj.NAME_PARAM 4818 } else { 4819 a.Name = obj.NAME_AUTO 4820 } 4821 } 4822 4823 func (s *SSAGenState) AddrScratch(a *obj.Addr) { 4824 if s.ScratchFpMem == nil { 4825 panic("no scratch memory available; forgot to declare usesScratch for Op?") 4826 } 4827 a.Type = obj.TYPE_MEM 4828 a.Name = obj.NAME_AUTO 4829 a.Sym = s.ScratchFpMem.Sym.Linksym() 4830 a.Reg = int16(thearch.REGSP) 4831 a.Offset = s.ScratchFpMem.Xoffset 4832 } 4833 4834 func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog { 4835 idx, ok := s.stackMapIndex[v] 4836 if !ok { 4837 Fatalf("missing stack map index for %v", v.LongString()) 4838 } 4839 p := s.Prog(obj.APCDATA) 4840 Addrconst(&p.From, objabi.PCDATA_StackMapIndex) 4841 Addrconst(&p.To, int64(idx)) 4842 4843 if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn { 4844 // Deferred calls will appear to be returning to 4845 // the CALL deferreturn(SB) that we are about to emit. 4846 // However, the stack trace code will show the line 4847 // of the instruction byte before the return PC. 4848 // To avoid that being an unrelated instruction, 4849 // insert an actual hardware NOP that will have the right line number. 4850 // This is different from obj.ANOP, which is a virtual no-op 4851 // that doesn't make it into the instruction stream. 4852 thearch.Ginsnop(s.pp) 4853 } 4854 4855 p = s.Prog(obj.ACALL) 4856 if sym, ok := v.Aux.(*obj.LSym); ok { 4857 p.To.Type = obj.TYPE_MEM 4858 p.To.Name = obj.NAME_EXTERN 4859 p.To.Sym = sym 4860 } else { 4861 // TODO(mdempsky): Can these differences be eliminated? 4862 switch thearch.LinkArch.Family { 4863 case sys.AMD64, sys.I386, sys.PPC64, sys.S390X: 4864 p.To.Type = obj.TYPE_REG 4865 case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: 4866 p.To.Type = obj.TYPE_MEM 4867 default: 4868 Fatalf("unknown indirect call family") 4869 } 4870 p.To.Reg = v.Args[0].Reg() 4871 } 4872 if s.maxarg < v.AuxInt { 4873 s.maxarg = v.AuxInt 4874 } 4875 return p 4876 } 4877 4878 // fieldIdx finds the index of the field referred to by the ODOT node n. 4879 func fieldIdx(n *Node) int { 4880 t := n.Left.Type 4881 f := n.Sym 4882 if !t.IsStruct() { 4883 panic("ODOT's LHS is not a struct") 4884 } 4885 4886 var i int 4887 for _, t1 := range t.Fields().Slice() { 4888 if t1.Sym != f { 4889 i++ 4890 continue 4891 } 4892 if t1.Offset != n.Xoffset { 4893 panic("field offset doesn't match") 4894 } 4895 return i 4896 } 4897 panic(fmt.Sprintf("can't find field in expr %v\n", n)) 4898 4899 // TODO: keep the result of this function somewhere in the ODOT Node 4900 // so we don't have to recompute it each time we need it. 4901 } 4902 4903 // ssafn holds frontend information about a function that the backend is processing. 4904 // It also exports a bunch of compiler services for the ssa backend. 4905 type ssafn struct { 4906 curfn *Node 4907 strings map[string]interface{} // map from constant string to data symbols 4908 scratchFpMem *Node // temp for floating point register / memory moves on some architectures 4909 stksize int64 // stack size for current frame 4910 stkptrsize int64 // prefix of stack containing pointers 4911 log bool 4912 } 4913 4914 // StringData returns a symbol (a *types.Sym wrapped in an interface) which 4915 // is the data component of a global string constant containing s. 4916 func (e *ssafn) StringData(s string) interface{} { 4917 if aux, ok := e.strings[s]; ok { 4918 return aux 4919 } 4920 if e.strings == nil { 4921 e.strings = make(map[string]interface{}) 4922 } 4923 data := stringsym(s) 4924 aux := &ssa.ExternSymbol{Sym: data} 4925 e.strings[s] = aux 4926 return aux 4927 } 4928 4929 func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode { 4930 n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list 4931 return n 4932 } 4933 4934 func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4935 n := name.N.(*Node) 4936 ptrType := types.NewPtr(types.Types[TUINT8]) 4937 lenType := types.Types[TINT] 4938 if n.Class() == PAUTO && !n.Addrtaken() { 4939 // Split this string up into two separate variables. 4940 p := e.splitSlot(&name, ".ptr", 0, ptrType) 4941 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 4942 return p, l 4943 } 4944 // Return the two parts of the larger variable. 4945 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} 4946 } 4947 4948 func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4949 n := name.N.(*Node) 4950 t := types.NewPtr(types.Types[TUINT8]) 4951 if n.Class() == PAUTO && !n.Addrtaken() { 4952 // Split this interface up into two separate variables. 4953 f := ".itab" 4954 if n.Type.IsEmptyInterface() { 4955 f = ".type" 4956 } 4957 c := e.splitSlot(&name, f, 0, t) 4958 d := e.splitSlot(&name, ".data", t.Size(), t) 4959 return c, d 4960 } 4961 // Return the two parts of the larger variable. 4962 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} 4963 } 4964 4965 func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 4966 n := name.N.(*Node) 4967 ptrType := types.NewPtr(name.Type.ElemType()) 4968 lenType := types.Types[TINT] 4969 if n.Class() == PAUTO && !n.Addrtaken() { 4970 // Split this slice up into three separate variables. 4971 p := e.splitSlot(&name, ".ptr", 0, ptrType) 4972 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 4973 c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType) 4974 return p, l, c 4975 } 4976 // Return the three parts of the larger variable. 4977 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, 4978 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, 4979 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} 4980 } 4981 4982 func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4983 n := name.N.(*Node) 4984 s := name.Type.Size() / 2 4985 var t *types.Type 4986 if s == 8 { 4987 t = types.Types[TFLOAT64] 4988 } else { 4989 t = types.Types[TFLOAT32] 4990 } 4991 if n.Class() == PAUTO && !n.Addrtaken() { 4992 // Split this complex up into two separate variables. 4993 r := e.splitSlot(&name, ".real", 0, t) 4994 i := e.splitSlot(&name, ".imag", t.Size(), t) 4995 return r, i 4996 } 4997 // Return the two parts of the larger variable. 4998 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} 4999 } 5000 5001 func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 5002 n := name.N.(*Node) 5003 var t *types.Type 5004 if name.Type.IsSigned() { 5005 t = types.Types[TINT32] 5006 } else { 5007 t = types.Types[TUINT32] 5008 } 5009 if n.Class() == PAUTO && !n.Addrtaken() { 5010 // Split this int64 up into two separate variables. 5011 if thearch.LinkArch.ByteOrder == binary.BigEndian { 5012 return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32]) 5013 } 5014 return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32]) 5015 } 5016 // Return the two parts of the larger variable. 5017 if thearch.LinkArch.ByteOrder == binary.BigEndian { 5018 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4} 5019 } 5020 return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off} 5021 } 5022 5023 func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { 5024 n := name.N.(*Node) 5025 st := name.Type 5026 ft := st.FieldType(i) 5027 var offset int64 5028 for f := 0; f < i; f++ { 5029 offset += st.FieldType(f).Size() 5030 } 5031 if n.Class() == PAUTO && !n.Addrtaken() { 5032 // Note: the _ field may appear several times. But 5033 // have no fear, identically-named but distinct Autos are 5034 // ok, albeit maybe confusing for a debugger. 5035 return e.splitSlot(&name, "."+st.FieldName(i), offset, ft) 5036 } 5037 return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} 5038 } 5039 5040 func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot { 5041 n := name.N.(*Node) 5042 at := name.Type 5043 if at.NumElem() != 1 { 5044 Fatalf("bad array size") 5045 } 5046 et := at.ElemType() 5047 if n.Class() == PAUTO && !n.Addrtaken() { 5048 return e.splitSlot(&name, "[0]", 0, et) 5049 } 5050 return ssa.LocalSlot{N: n, Type: et, Off: name.Off} 5051 } 5052 5053 func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym { 5054 return itabsym(it, offset) 5055 } 5056 5057 // splitSlot returns a slot representing the data of parent starting at offset. 5058 func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot { 5059 s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg} 5060 5061 n := new(Node) 5062 n.Name = new(Name) 5063 n.Op = ONAME 5064 n.Pos = parent.N.(*Node).Pos 5065 n.Orig = n 5066 5067 s.Def = asTypesNode(n) 5068 asNode(s.Def).Name.SetUsed(true) 5069 n.Sym = s 5070 n.Type = t 5071 n.SetClass(PAUTO) 5072 n.SetAddable(true) 5073 n.Esc = EscNever 5074 n.Name.Curfn = e.curfn 5075 e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n) 5076 dowidth(t) 5077 return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset} 5078 } 5079 5080 func (e *ssafn) CanSSA(t *types.Type) bool { 5081 return canSSAType(t) 5082 } 5083 5084 func (e *ssafn) Line(pos src.XPos) string { 5085 return linestr(pos) 5086 } 5087 5088 // Log logs a message from the compiler. 5089 func (e *ssafn) Logf(msg string, args ...interface{}) { 5090 if e.log { 5091 fmt.Printf(msg, args...) 5092 } 5093 } 5094 5095 func (e *ssafn) Log() bool { 5096 return e.log 5097 } 5098 5099 // Fatal reports a compiler error and exits. 5100 func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { 5101 lineno = pos 5102 Fatalf(msg, args...) 5103 } 5104 5105 // Warnl reports a "warning", which is usually flag-triggered 5106 // logging output for the benefit of tests. 5107 func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { 5108 Warnl(pos, fmt_, args...) 5109 } 5110 5111 func (e *ssafn) Debug_checknil() bool { 5112 return Debug_checknil != 0 5113 } 5114 5115 func (e *ssafn) Debug_wb() bool { 5116 return Debug_wb != 0 5117 } 5118 5119 func (e *ssafn) UseWriteBarrier() bool { 5120 return use_writebarrier 5121 } 5122 5123 func (e *ssafn) Syslook(name string) *obj.LSym { 5124 switch name { 5125 case "goschedguarded": 5126 return goschedguarded 5127 case "writeBarrier": 5128 return writeBarrier 5129 case "writebarrierptr": 5130 return writebarrierptr 5131 case "typedmemmove": 5132 return typedmemmove 5133 case "typedmemclr": 5134 return typedmemclr 5135 } 5136 Fatalf("unknown Syslook func %v", name) 5137 return nil 5138 } 5139 5140 func (n *Node) Typ() *types.Type { 5141 return n.Type 5142 }