github.com/Filosottile/go@v0.0.0-20170906193555-dbed9972d994/src/cmd/compile/internal/gc/syntax.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // “Abstract” syntax representation. 6 7 package gc 8 9 import ( 10 "cmd/compile/internal/ssa" 11 "cmd/compile/internal/syntax" 12 "cmd/compile/internal/types" 13 "cmd/internal/obj" 14 "cmd/internal/src" 15 ) 16 17 // A Node is a single node in the syntax tree. 18 // Actually the syntax tree is a syntax DAG, because there is only one 19 // node with Op=ONAME for a given instance of a variable x. 20 // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. 21 type Node struct { 22 // Tree structure. 23 // Generic recursive walks should follow these fields. 24 Left *Node 25 Right *Node 26 Ninit Nodes 27 Nbody Nodes 28 List Nodes 29 Rlist Nodes 30 31 // most nodes 32 Type *types.Type 33 Orig *Node // original form, for printing, and tracking copies of ONAMEs 34 35 // func 36 Func *Func 37 38 // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL 39 Name *Name 40 41 Sym *types.Sym // various 42 E interface{} // Opt or Val, see methods below 43 44 // Various. Usually an offset into a struct. For example: 45 // - ONAME nodes that refer to local variables use it to identify their stack frame position. 46 // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. 47 // - OSTRUCTKEY uses it to store the named field's offset. 48 // - OXCASE and OXFALL use it to validate the use of fallthrough. 49 // - Named OLITERALs use it to to store their ambient iota value. 50 // Possibly still more uses. If you find any, document them. 51 Xoffset int64 52 53 Pos src.XPos 54 55 flags bitset32 56 57 Esc uint16 // EscXXX 58 59 Op Op 60 Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS 61 } 62 63 // IsAutoTmp indicates if n was created by the compiler as a temporary, 64 // based on the setting of the .AutoTemp flag in n's Name. 65 func (n *Node) IsAutoTmp() bool { 66 if n == nil || n.Op != ONAME { 67 return false 68 } 69 return n.Name.AutoTemp() 70 } 71 72 const ( 73 nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed 74 _, _ // second nodeClass bit 75 _, _ // third nodeClass bit 76 nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits 77 _, _ // second nodeWalkdef bit 78 nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits 79 _, _ // second nodeTypecheck bit 80 nodeInitorder, _ // tracks state during init1; two bits 81 _, _ // second nodeInitorder bit 82 _, nodeHasBreak 83 _, nodeIsClosureVar 84 _, nodeIsOutputParamHeapAddr 85 _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only 86 _, nodeAssigned // is the variable ever assigned to 87 _, nodeAddrtaken // address taken, even if not moved to heap 88 _, nodeImplicit 89 _, nodeIsddd // is the argument variadic 90 _, nodeLocal // type created in this file (see also Type.Local) 91 _, nodeDiag // already printed error about this 92 _, nodeColas // OAS resulting from := 93 _, nodeNonNil // guaranteed to be non-nil 94 _, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) 95 _, nodeBounded // bounds check unnecessary 96 _, nodeAddable // addressable 97 _, nodeHasCall // expression contains a function call 98 _, nodeLikely // if statement condition likely 99 _, nodeHasVal // node.E contains a Val 100 _, nodeHasOpt // node.E contains an Opt 101 _, nodeEmbedded // ODCLFIELD embedded type 102 ) 103 104 func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) } 105 func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) } 106 func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) } 107 func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) } 108 109 func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } 110 func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 } 111 func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } 112 func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 } 113 func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 } 114 func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 } 115 func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } 116 func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 } 117 func (n *Node) Local() bool { return n.flags&nodeLocal != 0 } 118 func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } 119 func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } 120 func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } 121 func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 } 122 func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } 123 func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 } 124 func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } 125 func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 } 126 func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 } 127 func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 } 128 func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 } 129 130 func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) } 131 func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) } 132 func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) } 133 func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) } 134 135 func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } 136 func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) } 137 func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } 138 func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) } 139 func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) } 140 func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) } 141 func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } 142 func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) } 143 func (n *Node) SetLocal(b bool) { n.flags.set(nodeLocal, b) } 144 func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } 145 func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } 146 func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } 147 func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) } 148 func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } 149 func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) } 150 func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } 151 func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) } 152 func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) } 153 func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) } 154 func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) } 155 156 // Val returns the Val for the node. 157 func (n *Node) Val() Val { 158 if !n.HasVal() { 159 return Val{} 160 } 161 return Val{n.E} 162 } 163 164 // SetVal sets the Val for the node, which must not have been used with SetOpt. 165 func (n *Node) SetVal(v Val) { 166 if n.HasOpt() { 167 Debug['h'] = 1 168 Dump("have Opt", n) 169 Fatalf("have Opt") 170 } 171 n.SetHasVal(true) 172 n.E = v.U 173 } 174 175 // Opt returns the optimizer data for the node. 176 func (n *Node) Opt() interface{} { 177 if !n.HasOpt() { 178 return nil 179 } 180 return n.E 181 } 182 183 // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. 184 // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. 185 func (n *Node) SetOpt(x interface{}) { 186 if x == nil && n.HasVal() { 187 return 188 } 189 if n.HasVal() { 190 Debug['h'] = 1 191 Dump("have Val", n) 192 Fatalf("have Val") 193 } 194 n.SetHasOpt(true) 195 n.E = x 196 } 197 198 func (n *Node) Iota() int64 { 199 return n.Xoffset 200 } 201 202 func (n *Node) SetIota(x int64) { 203 n.Xoffset = x 204 } 205 206 // mayBeShared reports whether n may occur in multiple places in the AST. 207 // Extra care must be taken when mutating such a node. 208 func (n *Node) mayBeShared() bool { 209 switch n.Op { 210 case ONAME, OLITERAL, OTYPE: 211 return true 212 } 213 return false 214 } 215 216 // funcname returns the name of the function n. 217 func (n *Node) funcname() string { 218 if n == nil || n.Func == nil || n.Func.Nname == nil { 219 return "<nil>" 220 } 221 return n.Func.Nname.Sym.Name 222 } 223 224 // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). 225 type Name struct { 226 Pack *Node // real package for import . names 227 Pkg *types.Pkg // pkg for OPACK nodes 228 Defn *Node // initializing assignment 229 Curfn *Node // function for local variables 230 Param *Param // additional fields for ONAME, OTYPE 231 Decldepth int32 // declaration loop depth, increased for every loop or label 232 Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. 233 Funcdepth int32 234 235 used bool // for variable declared and not used error 236 flags bitset8 237 } 238 239 const ( 240 nameCaptured = 1 << iota // is the variable captured by a closure 241 nameReadonly 242 nameByval // is the variable captured by value or by reference 243 nameNeedzero // if it contains pointers, needs to be zeroed on function entry 244 nameKeepalive // mark value live across unknown assembly call 245 nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) 246 ) 247 248 func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } 249 func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } 250 func (n *Name) Byval() bool { return n.flags&nameByval != 0 } 251 func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } 252 func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } 253 func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } 254 func (n *Name) Used() bool { return n.used } 255 256 func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } 257 func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } 258 func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } 259 func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } 260 func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } 261 func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } 262 func (n *Name) SetUsed(b bool) { n.used = b } 263 264 type Param struct { 265 Ntype *Node 266 Heapaddr *Node // temp holding heap address of param 267 268 // ONAME PAUTOHEAP 269 Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) 270 271 // ONAME PPARAM 272 Field *types.Field // TFIELD in arg struct 273 274 // ONAME closure linkage 275 // Consider: 276 // 277 // func f() { 278 // x := 1 // x1 279 // func() { 280 // use(x) // x2 281 // func() { 282 // use(x) // x3 283 // --- parser is here --- 284 // }() 285 // }() 286 // } 287 // 288 // There is an original declaration of x and then a chain of mentions of x 289 // leading into the current function. Each time x is mentioned in a new closure, 290 // we create a variable representing x for use in that specific closure, 291 // since the way you get to x is different in each closure. 292 // 293 // Let's number the specific variables as shown in the code: 294 // x1 is the original x, x2 is when mentioned in the closure, 295 // and x3 is when mentioned in the closure in the closure. 296 // 297 // We keep these linked (assume N > 1): 298 // 299 // - x1.Defn = original declaration statement for x (like most variables) 300 // - x1.Innermost = current innermost closure x (in this case x3), or nil for none 301 // - x1.IsClosureVar() = false 302 // 303 // - xN.Defn = x1, N > 1 304 // - xN.IsClosureVar() = true, N > 1 305 // - x2.Outer = nil 306 // - xN.Outer = x(N-1), N > 2 307 // 308 // 309 // When we look up x in the symbol table, we always get x1. 310 // Then we can use x1.Innermost (if not nil) to get the x 311 // for the innermost known closure function, 312 // but the first reference in a closure will find either no x1.Innermost 313 // or an x1.Innermost with .Funcdepth < Funcdepth. 314 // In that case, a new xN must be created, linked in with: 315 // 316 // xN.Defn = x1 317 // xN.Outer = x1.Innermost 318 // x1.Innermost = xN 319 // 320 // When we finish the function, we'll process its closure variables 321 // and find xN and pop it off the list using: 322 // 323 // x1 := xN.Defn 324 // x1.Innermost = xN.Outer 325 // 326 // We leave xN.Innermost set so that we can still get to the original 327 // variable quickly. Not shown here, but once we're 328 // done parsing a function and no longer need xN.Outer for the 329 // lexical x reference links as described above, closurebody 330 // recomputes xN.Outer as the semantic x reference link tree, 331 // even filling in x in intermediate closures that might not 332 // have mentioned it along the way to inner closures that did. 333 // See closurebody for details. 334 // 335 // During the eventual compilation, then, for closure variables we have: 336 // 337 // xN.Defn = original variable 338 // xN.Outer = variable captured in next outward scope 339 // to make closure where xN appears 340 // 341 // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn 342 // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. 343 Innermost *Node 344 Outer *Node 345 346 // OTYPE 347 // 348 // TODO: Should Func pragmas also be stored on the Name? 349 Pragma syntax.Pragma 350 Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) 351 } 352 353 // Func holds Node fields used only with function-like nodes. 354 type Func struct { 355 Shortname *types.Sym 356 Enter Nodes // for example, allocate and initialize memory for escaping parameters 357 Exit Nodes 358 Cvars Nodes // closure params 359 Dcl []*Node // autodcl for this func/closure 360 Inldcl Nodes // copy of dcl for use in inlining 361 362 // Parents records the parent scope of each scope within a 363 // function. The root scope (0) has no parent, so the i'th 364 // scope's parent is stored at Parents[i-1]. 365 Parents []ScopeID 366 367 // Marks records scope boundary changes. 368 Marks []Mark 369 370 Closgen int 371 Outerfunc *Node // outer function (for closure) 372 FieldTrack map[*types.Sym]struct{} 373 DebugInfo *ssa.FuncDebug 374 Ntype *Node // signature 375 Top int // top context (Ecall, Eproc, etc) 376 Closure *Node // OCLOSURE <-> ODCLFUNC 377 Nname *Node 378 lsym *obj.LSym 379 380 Inl Nodes // copy of the body for use in inlining 381 InlCost int32 382 Depth int32 383 384 Label int32 // largest auto-generated label in this function 385 386 Endlineno src.XPos 387 WBPos src.XPos // position of first write barrier 388 389 Pragma syntax.Pragma // go:xxx function annotations 390 391 flags bitset8 392 } 393 394 // A Mark represents a scope boundary. 395 type Mark struct { 396 // Pos is the position of the token that marks the scope 397 // change. 398 Pos src.XPos 399 400 // Scope identifies the innermost scope to the right of Pos. 401 Scope ScopeID 402 } 403 404 // A ScopeID represents a lexical scope within a function. 405 type ScopeID int32 406 407 const ( 408 funcDupok = 1 << iota // duplicate definitions ok 409 funcWrapper // is method wrapper 410 funcNeedctxt // function uses context register (has closure variables) 411 funcReflectMethod // function calls reflect.Type.Method or MethodByName 412 funcIsHiddenClosure 413 funcNoFramePointer // Must not use a frame pointer for this function 414 funcHasDefer // contains a defer statement 415 funcNilCheckDisabled // disable nil checks when compiling this function 416 ) 417 418 func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } 419 func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } 420 func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } 421 func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } 422 func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } 423 func (f *Func) NoFramePointer() bool { return f.flags&funcNoFramePointer != 0 } 424 func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } 425 func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 } 426 427 func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } 428 func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } 429 func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } 430 func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } 431 func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } 432 func (f *Func) SetNoFramePointer(b bool) { f.flags.set(funcNoFramePointer, b) } 433 func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } 434 func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) } 435 436 type Op uint8 437 438 // Node ops. 439 const ( 440 OXXX = Op(iota) 441 442 // names 443 ONAME // var, const or func name 444 ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } 445 OTYPE // type name 446 OPACK // import 447 OLITERAL // literal 448 449 // expressions 450 OADD // Left + Right 451 OSUB // Left - Right 452 OOR // Left | Right 453 OXOR // Left ^ Right 454 OADDSTR // +{List} (string addition, list elements are strings) 455 OADDR // &Left 456 OANDAND // Left && Right 457 OAPPEND // append(List); after walk, Left may contain elem type descriptor 458 OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) 459 OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) 460 OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) 461 OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) 462 OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) 463 OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) 464 OAS // Left = Right or (if Colas=true) Left := Right 465 OAS2 // List = Rlist (x, y, z = a, b, c) 466 OAS2FUNC // List = Rlist (x, y = f()) 467 OAS2RECV // List = Rlist (x, ok = <-c) 468 OAS2MAPR // List = Rlist (x, ok = m["foo"]) 469 OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) 470 OASOP // Left Etype= Right (x += y) 471 OCALL // Left(List) (function call, method call or type conversion) 472 OCALLFUNC // Left(List) (function call f(args)) 473 OCALLMETH // Left(List) (direct method call x.Method(args)) 474 OCALLINTER // Left(List) (interface method call x.Method(args)) 475 OCALLPART // Left.Right (method expression x.Method, not called) 476 OCAP // cap(Left) 477 OCLOSE // close(Left) 478 OCLOSURE // func Type { Body } (func literal) 479 OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) 480 OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) 481 OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) 482 OMAPLIT // Type{List} (composite literal, Type is map) 483 OSTRUCTLIT // Type{List} (composite literal, Type is struct) 484 OARRAYLIT // Type{List} (composite literal, Type is array) 485 OSLICELIT // Type{List} (composite literal, Type is slice) 486 OPTRLIT // &Left (left is composite literal) 487 OCONV // Type(Left) (type conversion) 488 OCONVIFACE // Type(Left) (type conversion, to interface) 489 OCONVNOP // Type(Left) (type conversion, no effect) 490 OCOPY // copy(Left, Right) 491 ODCL // var Left (declares Left of type Left.Type) 492 493 // Used during parsing but don't last. 494 ODCLFUNC // func f() or func (r) f() 495 ODCLFIELD // struct field, interface field, or func/method argument/return value. 496 ODCLCONST // const pi = 3.14 497 ODCLTYPE // type Int int or type Int = int 498 499 ODELETE // delete(Left, Right) 500 ODOT // Left.Sym (Left is of struct type) 501 ODOTPTR // Left.Sym (Left is of pointer to struct type) 502 ODOTMETH // Left.Sym (Left is non-interface, Right is method name) 503 ODOTINTER // Left.Sym (Left is interface, Right is method name) 504 OXDOT // Left.Sym (before rewrite to one of the preceding) 505 ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor 506 ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor 507 OEQ // Left == Right 508 ONE // Left != Right 509 OLT // Left < Right 510 OLE // Left <= Right 511 OGE // Left >= Right 512 OGT // Left > Right 513 OIND // *Left 514 OINDEX // Left[Right] (index of array or slice) 515 OINDEXMAP // Left[Right] (index of map) 516 OKEY // Left:Right (key:value in struct/array/map literal) 517 OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) 518 OLEN // len(Left) 519 OMAKE // make(List) (before type checking converts to one of the following) 520 OMAKECHAN // make(Type, Left) (type is chan) 521 OMAKEMAP // make(Type, Left) (type is map) 522 OMAKESLICE // make(Type, Left, Right) (type is slice) 523 OMUL // Left * Right 524 ODIV // Left / Right 525 OMOD // Left % Right 526 OLSH // Left << Right 527 ORSH // Left >> Right 528 OAND // Left & Right 529 OANDNOT // Left &^ Right 530 ONEW // new(Left) 531 ONOT // !Left 532 OCOM // ^Left 533 OPLUS // +Left 534 OMINUS // -Left 535 OOROR // Left || Right 536 OPANIC // panic(Left) 537 OPRINT // print(List) 538 OPRINTN // println(List) 539 OPAREN // (Left) 540 OSEND // Left <- Right 541 OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) 542 OSLICEARR // Left[List[0] : List[1]] (Left is array) 543 OSLICESTR // Left[List[0] : List[1]] (Left is string) 544 OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) 545 OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) 546 ORECOVER // recover() 547 ORECV // <-Left 548 ORUNESTR // Type(Left) (Type is string, Left is rune) 549 OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) 550 OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) 551 OIOTA // iota 552 OREAL // real(Left) 553 OIMAG // imag(Left) 554 OCOMPLEX // complex(Left, Right) 555 OALIGNOF // unsafe.Alignof(Left) 556 OOFFSETOF // unsafe.Offsetof(Left) 557 OSIZEOF // unsafe.Sizeof(Left) 558 559 // statements 560 OBLOCK // { List } (block of code) 561 OBREAK // break 562 OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) 563 OXCASE // case List: Nbody (select case before processing; List==nil means default) 564 OCONTINUE // continue 565 ODEFER // defer Left (Left must be call) 566 OEMPTY // no-op (empty statement) 567 OFALL // fallthrough (after processing) 568 OXFALL // fallthrough (before processing) 569 OFOR // for Ninit; Left; Right { Nbody } 570 OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before 571 OGOTO // goto Left 572 OIF // if Ninit; Left { Nbody } else { Rlist } 573 OLABEL // Left: 574 OPROC // go Left (Left must be call) 575 ORANGE // for List = range Right { Nbody } 576 ORETURN // return List 577 OSELECT // select { List } (List is list of OXCASE or OCASE) 578 OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) 579 OTYPESW // List = Left.(type) (appears as .Left of OSWITCH) 580 581 // types 582 OTCHAN // chan int 583 OTMAP // map[string]int 584 OTSTRUCT // struct{} 585 OTINTER // interface{} 586 OTFUNC // func() 587 OTARRAY // []int, [8]int, [N]int or [...]int 588 589 // misc 590 ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. 591 ODDDARG // func f(args ...int), introduced by escape analysis. 592 OINLCALL // intermediary representation of an inlined call. 593 OEFACE // itable and data words of an empty-interface value. 594 OITAB // itable word of an interface value. 595 OIDATA // data word of an interface value in Left 596 OSPTR // base pointer of a slice or string. 597 OCLOSUREVAR // variable reference at beginning of closure function 598 OCFUNC // reference to c function pointer (not go func value) 599 OCHECKNIL // emit code to ensure pointer/interface not nil 600 OVARKILL // variable is dead 601 OVARLIVE // variable is alive 602 OINDREGSP // offset plus indirect of REGSP, such as 8(SP). 603 604 // arch-specific opcodes 605 ORETJMP // return to other function 606 OGETG // runtime.getg() (read g pointer) 607 608 OEND 609 ) 610 611 // Nodes is a pointer to a slice of *Node. 612 // For fields that are not used in most nodes, this is used instead of 613 // a slice to save space. 614 type Nodes struct{ slice *[]*Node } 615 616 // Slice returns the entries in Nodes as a slice. 617 // Changes to the slice entries (as in s[i] = n) will be reflected in 618 // the Nodes. 619 func (n Nodes) Slice() []*Node { 620 if n.slice == nil { 621 return nil 622 } 623 return *n.slice 624 } 625 626 // Len returns the number of entries in Nodes. 627 func (n Nodes) Len() int { 628 if n.slice == nil { 629 return 0 630 } 631 return len(*n.slice) 632 } 633 634 // Index returns the i'th element of Nodes. 635 // It panics if n does not have at least i+1 elements. 636 func (n Nodes) Index(i int) *Node { 637 return (*n.slice)[i] 638 } 639 640 // First returns the first element of Nodes (same as n.Index(0)). 641 // It panics if n has no elements. 642 func (n Nodes) First() *Node { 643 return (*n.slice)[0] 644 } 645 646 // Second returns the second element of Nodes (same as n.Index(1)). 647 // It panics if n has fewer than two elements. 648 func (n Nodes) Second() *Node { 649 return (*n.slice)[1] 650 } 651 652 // Set sets n to a slice. 653 // This takes ownership of the slice. 654 func (n *Nodes) Set(s []*Node) { 655 if len(s) == 0 { 656 n.slice = nil 657 } else { 658 // Copy s and take address of t rather than s to avoid 659 // allocation in the case where len(s) == 0 (which is 660 // over 3x more common, dynamically, for make.bash). 661 t := s 662 n.slice = &t 663 } 664 } 665 666 // Set1 sets n to a slice containing a single node. 667 func (n *Nodes) Set1(n1 *Node) { 668 n.slice = &[]*Node{n1} 669 } 670 671 // Set2 sets n to a slice containing two nodes. 672 func (n *Nodes) Set2(n1, n2 *Node) { 673 n.slice = &[]*Node{n1, n2} 674 } 675 676 // Set3 sets n to a slice containing three nodes. 677 func (n *Nodes) Set3(n1, n2, n3 *Node) { 678 n.slice = &[]*Node{n1, n2, n3} 679 } 680 681 // MoveNodes sets n to the contents of n2, then clears n2. 682 func (n *Nodes) MoveNodes(n2 *Nodes) { 683 n.slice = n2.slice 684 n2.slice = nil 685 } 686 687 // SetIndex sets the i'th element of Nodes to node. 688 // It panics if n does not have at least i+1 elements. 689 func (n Nodes) SetIndex(i int, node *Node) { 690 (*n.slice)[i] = node 691 } 692 693 // SetFirst sets the first element of Nodes to node. 694 // It panics if n does not have at least one elements. 695 func (n Nodes) SetFirst(node *Node) { 696 (*n.slice)[0] = node 697 } 698 699 // SetSecond sets the second element of Nodes to node. 700 // It panics if n does not have at least two elements. 701 func (n Nodes) SetSecond(node *Node) { 702 (*n.slice)[1] = node 703 } 704 705 // Addr returns the address of the i'th element of Nodes. 706 // It panics if n does not have at least i+1 elements. 707 func (n Nodes) Addr(i int) **Node { 708 return &(*n.slice)[i] 709 } 710 711 // Append appends entries to Nodes. 712 func (n *Nodes) Append(a ...*Node) { 713 if len(a) == 0 { 714 return 715 } 716 if n.slice == nil { 717 s := make([]*Node, len(a)) 718 copy(s, a) 719 n.slice = &s 720 return 721 } 722 *n.slice = append(*n.slice, a...) 723 } 724 725 // Prepend prepends entries to Nodes. 726 // If a slice is passed in, this will take ownership of it. 727 func (n *Nodes) Prepend(a ...*Node) { 728 if len(a) == 0 { 729 return 730 } 731 if n.slice == nil { 732 n.slice = &a 733 } else { 734 *n.slice = append(a, *n.slice...) 735 } 736 } 737 738 // AppendNodes appends the contents of *n2 to n, then clears n2. 739 func (n *Nodes) AppendNodes(n2 *Nodes) { 740 switch { 741 case n2.slice == nil: 742 case n.slice == nil: 743 n.slice = n2.slice 744 default: 745 *n.slice = append(*n.slice, *n2.slice...) 746 } 747 n2.slice = nil 748 }