github.com/Gessiux/neatchain@v1.3.1/utilities/crypto/crypto.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package crypto
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"crypto/rand"
    23  	"crypto/sha256"
    24  	"encoding/hex"
    25  	"errors"
    26  	"fmt"
    27  	"hash"
    28  	"io"
    29  	"io/ioutil"
    30  	"math/big"
    31  	"os"
    32  	"strings"
    33  
    34  	"github.com/Gessiux/neatchain/utilities/common"
    35  	"github.com/Gessiux/neatchain/utilities/common/math"
    36  	"github.com/Gessiux/neatchain/utilities/rlp"
    37  	"github.com/btcsuite/btcutil/base58"
    38  	"golang.org/x/crypto/ripemd160"
    39  	"golang.org/x/crypto/sha3"
    40  )
    41  
    42  var (
    43  	pubkeyVersion  = byte(0x00)
    44  	scriptVersion  = byte(0x42)
    45  	addressPrefix  = "NEA"
    46  	bs58Str        = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
    47  	secp256k1N, _  = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
    48  	secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
    49  )
    50  
    51  var errInvalidPubkey = errors.New("invalid secp256k1 public key")
    52  
    53  // Keccak256 calculates and returns the Keccak256 hash of the input data.
    54  func Keccak256(data ...[]byte) []byte {
    55  	d := sha3.NewLegacyKeccak256()
    56  	for _, b := range data {
    57  		d.Write(b)
    58  	}
    59  	return d.Sum(nil)
    60  }
    61  
    62  // Keccak256Hash calculates and returns the Keccak256 hash of the input data,
    63  // converting it to an internal Hash data structure.
    64  func Keccak256Hash(data ...[]byte) (h common.Hash) {
    65  	d := sha3.NewLegacyKeccak256()
    66  	for _, b := range data {
    67  		d.Write(b)
    68  	}
    69  	d.Sum(h[:0])
    70  	return h
    71  }
    72  
    73  // Keccak512 calculates and returns the Keccak512 hash of the input data.
    74  func Keccak512(data ...[]byte) []byte {
    75  	d := sha3.NewLegacyKeccak512()
    76  	for _, b := range data {
    77  		d.Write(b)
    78  	}
    79  	return d.Sum(nil)
    80  }
    81  
    82  // Creates an ethereum address given the bytes and the nonce
    83  //func CreateAddress(b common.Address, nonce uint64) common.Address {
    84  //	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
    85  //	return common.BytesToAddress(Keccak256(data)[12:])
    86  //}
    87  
    88  //
    89  func CreateAddress(b common.Address, nonce uint64) common.Address {
    90  	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
    91  	return common.StringToAddress(NewNEATScriptAddr(data))
    92  }
    93  
    94  // CreateAddress2 creates an ethereum address given the address bytes, initial
    95  // contract code and a salt.
    96  //func CreateAddress2(b common.Address, salt [32]byte, code []byte) common.Address {
    97  //	return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], Keccak256(code))[12:])
    98  //}
    99  
   100  func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
   101  	return common.BytesToAddress([]byte(NewNEATScriptAddr(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash))))
   102  }
   103  
   104  // ToECDSA creates a private key with the given D value.
   105  func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
   106  	return toECDSA(d, true)
   107  }
   108  
   109  // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
   110  // never be used unless you are sure the input is valid and want to avoid hitting
   111  // errors due to bad origin encoding (0 prefixes cut off).
   112  func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
   113  	priv, _ := toECDSA(d, false)
   114  	return priv
   115  }
   116  
   117  // toECDSA creates a private key with the given D value. The strict parameter
   118  // controls whether the key's length should be enforced at the curve size or
   119  // it can also accept legacy encodings (0 prefixes).
   120  func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
   121  	priv := new(ecdsa.PrivateKey)
   122  	priv.PublicKey.Curve = S256()
   123  	if strict && 8*len(d) != priv.Params().BitSize {
   124  		return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
   125  	}
   126  	priv.D = new(big.Int).SetBytes(d)
   127  
   128  	// The priv.D must < N
   129  	if priv.D.Cmp(secp256k1N) >= 0 {
   130  		return nil, fmt.Errorf("invalid private key, >=N")
   131  	}
   132  	// The priv.D must not be zero or negative.
   133  	if priv.D.Sign() <= 0 {
   134  		return nil, fmt.Errorf("invalid private key, zero or negative")
   135  	}
   136  
   137  	priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
   138  	if priv.PublicKey.X == nil {
   139  		return nil, errors.New("invalid private key")
   140  	}
   141  	return priv, nil
   142  }
   143  
   144  // FromECDSA exports a private key into a binary dump.
   145  func FromECDSA(priv *ecdsa.PrivateKey) []byte {
   146  	if priv == nil {
   147  		return nil
   148  	}
   149  	return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
   150  }
   151  
   152  func ToECDSAPub(pub []byte) *ecdsa.PublicKey {
   153  	if len(pub) == 0 {
   154  		return nil
   155  	}
   156  	x, y := elliptic.Unmarshal(S256(), pub)
   157  	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}
   158  }
   159  
   160  // UnmarshalPubkey converts bytes to a secp256k1 public key.
   161  func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
   162  	x, y := elliptic.Unmarshal(S256(), pub)
   163  	if x == nil {
   164  		return nil, errInvalidPubkey
   165  	}
   166  	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
   167  }
   168  
   169  func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
   170  	if pub == nil || pub.X == nil || pub.Y == nil {
   171  		return nil
   172  	}
   173  	return elliptic.Marshal(S256(), pub.X, pub.Y)
   174  	//return Marshal(S256(), pub.X, pub.Y)
   175  }
   176  
   177  // HexToECDSA parses a secp256k1 private key.
   178  func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
   179  	b, err := hex.DecodeString(hexkey)
   180  	if err != nil {
   181  		return nil, errors.New("invalid hex string")
   182  	}
   183  	return ToECDSA(b)
   184  }
   185  
   186  // LoadECDSA loads a secp256k1 private key from the given file.
   187  func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
   188  	buf := make([]byte, 64)
   189  	fd, err := os.Open(file)
   190  	if err != nil {
   191  		return nil, err
   192  	}
   193  	defer fd.Close()
   194  	if _, err := io.ReadFull(fd, buf); err != nil {
   195  		return nil, err
   196  	}
   197  
   198  	key, err := hex.DecodeString(string(buf))
   199  	if err != nil {
   200  		return nil, err
   201  	}
   202  	return ToECDSA(key)
   203  }
   204  
   205  // SaveECDSA saves a secp256k1 private key to the given file with
   206  // restrictive permissions. The key data is saved hex-encoded.
   207  func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
   208  	k := hex.EncodeToString(FromECDSA(key))
   209  	return ioutil.WriteFile(file, []byte(k), 0600)
   210  }
   211  
   212  func GenerateKey() (*ecdsa.PrivateKey, error) {
   213  	return ecdsa.GenerateKey(S256(), rand.Reader)
   214  }
   215  
   216  // ValidateSignatureValues verifies whether the signature values are valid with
   217  // the given chain rules. The v value is assumed to be either 0 or 1.
   218  func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
   219  	if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
   220  		return false
   221  	}
   222  	// reject upper range of s values (ECDSA malleability)
   223  	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
   224  	if homestead && s.Cmp(secp256k1halfN) > 0 {
   225  		return false
   226  	}
   227  	// Frontier: allow s to be in full N range
   228  	return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
   229  }
   230  
   231  //func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
   232  //	pubBytes := FromECDSAPub(&p)
   233  //	return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
   234  //}
   235  
   236  func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
   237  	pubBytes := FromECDSAPub(&p)
   238  	return common.StringToAddress(NewNEATScriptAddr(pubBytes))
   239  }
   240  
   241  func zeroBytes(bytes []byte) {
   242  	for i := range bytes {
   243  		bytes[i] = 0
   244  	}
   245  }
   246  
   247  // P2PH
   248  func NewNEATPubkeyAddr(pubkey []byte) string {
   249  	input := Hash160(pubkey)
   250  
   251  	return encodeAddress(input, pubkeyVersion)
   252  }
   253  
   254  // P2SH
   255  func NewNEATScriptAddr(script []byte) string {
   256  	input := Hash160(script)
   257  	strArray := strings.Split(encodeAddress(input, scriptVersion), "")
   258  	return addressPrefix + strings.Join(strArray[:29], "")
   259  }
   260  
   261  // check NEAT address is validate or not
   262  func ValidateNEATAddr(input string) bool {
   263  	inputByte := []byte(input)
   264  	if len(inputByte) != 32 {
   265  		return false
   266  	}
   267  
   268  	if inputByte[0] != 'N' || inputByte[1] != 'E' || inputByte[2] != 'A' || inputByte[3] != 'T' {
   269  		return false
   270  	}
   271  
   272  	inputArray := strings.Split(input, "")[3:]
   273  
   274  	for _, v := range inputArray {
   275  		if !strings.Contains(bs58Str, v) {
   276  			return false
   277  		}
   278  	}
   279  
   280  	return true
   281  }
   282  
   283  // encodeAddress returns a human-readable payment address given a ripemd160 hash
   284  // and netID which encodes the bitcoin network and address type.  It is used
   285  // in both pay-to-pubkey-hash (P2PKH) and pay-to-script-hash (P2SH) address
   286  // encoding.
   287  func encodeAddress(hash160 []byte, version byte) string {
   288  	// Format is 1 byte for a network and address class (i.e. P2PKH vs
   289  	// P2SH), 20 bytes for a RIPEMD160 hash, and 4 bytes of checksum.
   290  	return base58.CheckEncode(hash160, version)
   291  }
   292  
   293  // Calculate the hash of hasher over buf.
   294  func calcHash(buf []byte, hasher hash.Hash) []byte {
   295  	hasher.Write(buf)
   296  	return hasher.Sum(nil)
   297  }
   298  
   299  // Hash160 calculates the hash ripemd160(sha256(b)).
   300  func Hash160(buf []byte) []byte {
   301  	return calcHash(calcHash(buf, sha256.New()), ripemd160.New())
   302  }