github.com/Goplush/go-ethereum@v0.0.0-20191031044858-21506be82b68/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/Fantom-foundation/go-ethereum/common" 26 "github.com/Fantom-foundation/go-ethereum/common/math" 27 "github.com/Fantom-foundation/go-ethereum/crypto" 28 "github.com/Fantom-foundation/go-ethereum/crypto/blake2b" 29 "github.com/Fantom-foundation/go-ethereum/crypto/bn256" 30 "github.com/Fantom-foundation/go-ethereum/params" 31 "golang.org/x/crypto/ripemd160" 32 ) 33 34 // PrecompiledContract is the basic interface for native Go contracts. The implementation 35 // requires a deterministic gas count based on the input size of the Run method of the 36 // contract. 37 type PrecompiledContract interface { 38 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 39 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 40 } 41 42 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 43 // contracts used in the Frontier and Homestead releases. 44 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 45 common.BytesToAddress([]byte{1}): &ecrecover{}, 46 common.BytesToAddress([]byte{2}): &sha256hash{}, 47 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 48 common.BytesToAddress([]byte{4}): &dataCopy{}, 49 } 50 51 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 52 // contracts used in the Byzantium release. 53 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 54 common.BytesToAddress([]byte{1}): &ecrecover{}, 55 common.BytesToAddress([]byte{2}): &sha256hash{}, 56 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 57 common.BytesToAddress([]byte{4}): &dataCopy{}, 58 common.BytesToAddress([]byte{5}): &bigModExp{}, 59 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 60 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 61 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 62 } 63 64 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 65 // contracts used in the Istanbul release. 66 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 67 common.BytesToAddress([]byte{1}): &ecrecover{}, 68 common.BytesToAddress([]byte{2}): &sha256hash{}, 69 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 70 common.BytesToAddress([]byte{4}): &dataCopy{}, 71 common.BytesToAddress([]byte{5}): &bigModExp{}, 72 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 73 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 74 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 75 common.BytesToAddress([]byte{9}): &blake2F{}, 76 } 77 78 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 79 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 80 gas := p.RequiredGas(input) 81 if contract.UseGas(gas) { 82 return p.Run(input) 83 } 84 return nil, ErrOutOfGas 85 } 86 87 // ECRECOVER implemented as a native contract. 88 type ecrecover struct{} 89 90 func (c *ecrecover) RequiredGas(input []byte) uint64 { 91 return params.EcrecoverGas 92 } 93 94 func (c *ecrecover) Run(input []byte) ([]byte, error) { 95 const ecRecoverInputLength = 128 96 97 input = common.RightPadBytes(input, ecRecoverInputLength) 98 // "input" is (hash, v, r, s), each 32 bytes 99 // but for ecrecover we want (r, s, v) 100 101 r := new(big.Int).SetBytes(input[64:96]) 102 s := new(big.Int).SetBytes(input[96:128]) 103 v := input[63] - 27 104 105 // tighter sig s values input homestead only apply to tx sigs 106 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 107 return nil, nil 108 } 109 // v needs to be at the end for libsecp256k1 110 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) 111 // make sure the public key is a valid one 112 if err != nil { 113 return nil, nil 114 } 115 116 // the first byte of pubkey is bitcoin heritage 117 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 118 } 119 120 // SHA256 implemented as a native contract. 121 type sha256hash struct{} 122 123 // RequiredGas returns the gas required to execute the pre-compiled contract. 124 // 125 // This method does not require any overflow checking as the input size gas costs 126 // required for anything significant is so high it's impossible to pay for. 127 func (c *sha256hash) RequiredGas(input []byte) uint64 { 128 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 129 } 130 func (c *sha256hash) Run(input []byte) ([]byte, error) { 131 h := sha256.Sum256(input) 132 return h[:], nil 133 } 134 135 // RIPEMD160 implemented as a native contract. 136 type ripemd160hash struct{} 137 138 // RequiredGas returns the gas required to execute the pre-compiled contract. 139 // 140 // This method does not require any overflow checking as the input size gas costs 141 // required for anything significant is so high it's impossible to pay for. 142 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 143 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 144 } 145 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 146 ripemd := ripemd160.New() 147 ripemd.Write(input) 148 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 149 } 150 151 // data copy implemented as a native contract. 152 type dataCopy struct{} 153 154 // RequiredGas returns the gas required to execute the pre-compiled contract. 155 // 156 // This method does not require any overflow checking as the input size gas costs 157 // required for anything significant is so high it's impossible to pay for. 158 func (c *dataCopy) RequiredGas(input []byte) uint64 { 159 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 160 } 161 func (c *dataCopy) Run(in []byte) ([]byte, error) { 162 return in, nil 163 } 164 165 // bigModExp implements a native big integer exponential modular operation. 166 type bigModExp struct{} 167 168 var ( 169 big1 = big.NewInt(1) 170 big4 = big.NewInt(4) 171 big8 = big.NewInt(8) 172 big16 = big.NewInt(16) 173 big32 = big.NewInt(32) 174 big64 = big.NewInt(64) 175 big96 = big.NewInt(96) 176 big480 = big.NewInt(480) 177 big1024 = big.NewInt(1024) 178 big3072 = big.NewInt(3072) 179 big199680 = big.NewInt(199680) 180 ) 181 182 // RequiredGas returns the gas required to execute the pre-compiled contract. 183 func (c *bigModExp) RequiredGas(input []byte) uint64 { 184 var ( 185 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 186 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 187 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 188 ) 189 if len(input) > 96 { 190 input = input[96:] 191 } else { 192 input = input[:0] 193 } 194 // Retrieve the head 32 bytes of exp for the adjusted exponent length 195 var expHead *big.Int 196 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 197 expHead = new(big.Int) 198 } else { 199 if expLen.Cmp(big32) > 0 { 200 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 201 } else { 202 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 203 } 204 } 205 // Calculate the adjusted exponent length 206 var msb int 207 if bitlen := expHead.BitLen(); bitlen > 0 { 208 msb = bitlen - 1 209 } 210 adjExpLen := new(big.Int) 211 if expLen.Cmp(big32) > 0 { 212 adjExpLen.Sub(expLen, big32) 213 adjExpLen.Mul(big8, adjExpLen) 214 } 215 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 216 217 // Calculate the gas cost of the operation 218 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 219 switch { 220 case gas.Cmp(big64) <= 0: 221 gas.Mul(gas, gas) 222 case gas.Cmp(big1024) <= 0: 223 gas = new(big.Int).Add( 224 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 225 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 226 ) 227 default: 228 gas = new(big.Int).Add( 229 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 230 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 231 ) 232 } 233 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 234 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 235 236 if gas.BitLen() > 64 { 237 return math.MaxUint64 238 } 239 return gas.Uint64() 240 } 241 242 func (c *bigModExp) Run(input []byte) ([]byte, error) { 243 var ( 244 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 245 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 246 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 247 ) 248 if len(input) > 96 { 249 input = input[96:] 250 } else { 251 input = input[:0] 252 } 253 // Handle a special case when both the base and mod length is zero 254 if baseLen == 0 && modLen == 0 { 255 return []byte{}, nil 256 } 257 // Retrieve the operands and execute the exponentiation 258 var ( 259 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 260 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 261 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 262 ) 263 if mod.BitLen() == 0 { 264 // Modulo 0 is undefined, return zero 265 return common.LeftPadBytes([]byte{}, int(modLen)), nil 266 } 267 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 268 } 269 270 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 271 // returning it, or an error if the point is invalid. 272 func newCurvePoint(blob []byte) (*bn256.G1, error) { 273 p := new(bn256.G1) 274 if _, err := p.Unmarshal(blob); err != nil { 275 return nil, err 276 } 277 return p, nil 278 } 279 280 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 281 // returning it, or an error if the point is invalid. 282 func newTwistPoint(blob []byte) (*bn256.G2, error) { 283 p := new(bn256.G2) 284 if _, err := p.Unmarshal(blob); err != nil { 285 return nil, err 286 } 287 return p, nil 288 } 289 290 // runBn256Add implements the Bn256Add precompile, referenced by both 291 // Byzantium and Istanbul operations. 292 func runBn256Add(input []byte) ([]byte, error) { 293 x, err := newCurvePoint(getData(input, 0, 64)) 294 if err != nil { 295 return nil, err 296 } 297 y, err := newCurvePoint(getData(input, 64, 64)) 298 if err != nil { 299 return nil, err 300 } 301 res := new(bn256.G1) 302 res.Add(x, y) 303 return res.Marshal(), nil 304 } 305 306 // bn256Add implements a native elliptic curve point addition conforming to 307 // Istanbul consensus rules. 308 type bn256AddIstanbul struct{} 309 310 // RequiredGas returns the gas required to execute the pre-compiled contract. 311 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 312 return params.Bn256AddGasIstanbul 313 } 314 315 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 316 return runBn256Add(input) 317 } 318 319 // bn256AddByzantium implements a native elliptic curve point addition 320 // conforming to Byzantium consensus rules. 321 type bn256AddByzantium struct{} 322 323 // RequiredGas returns the gas required to execute the pre-compiled contract. 324 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 325 return params.Bn256AddGasByzantium 326 } 327 328 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 329 return runBn256Add(input) 330 } 331 332 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 333 // both Byzantium and Istanbul operations. 334 func runBn256ScalarMul(input []byte) ([]byte, error) { 335 p, err := newCurvePoint(getData(input, 0, 64)) 336 if err != nil { 337 return nil, err 338 } 339 res := new(bn256.G1) 340 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 341 return res.Marshal(), nil 342 } 343 344 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 345 // multiplication conforming to Istanbul consensus rules. 346 type bn256ScalarMulIstanbul struct{} 347 348 // RequiredGas returns the gas required to execute the pre-compiled contract. 349 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 350 return params.Bn256ScalarMulGasIstanbul 351 } 352 353 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 354 return runBn256ScalarMul(input) 355 } 356 357 // bn256ScalarMulByzantium implements a native elliptic curve scalar 358 // multiplication conforming to Byzantium consensus rules. 359 type bn256ScalarMulByzantium struct{} 360 361 // RequiredGas returns the gas required to execute the pre-compiled contract. 362 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 363 return params.Bn256ScalarMulGasByzantium 364 } 365 366 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 367 return runBn256ScalarMul(input) 368 } 369 370 var ( 371 // true32Byte is returned if the bn256 pairing check succeeds. 372 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 373 374 // false32Byte is returned if the bn256 pairing check fails. 375 false32Byte = make([]byte, 32) 376 377 // errBadPairingInput is returned if the bn256 pairing input is invalid. 378 errBadPairingInput = errors.New("bad elliptic curve pairing size") 379 ) 380 381 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 382 // Byzantium and Istanbul operations. 383 func runBn256Pairing(input []byte) ([]byte, error) { 384 // Handle some corner cases cheaply 385 if len(input)%192 > 0 { 386 return nil, errBadPairingInput 387 } 388 // Convert the input into a set of coordinates 389 var ( 390 cs []*bn256.G1 391 ts []*bn256.G2 392 ) 393 for i := 0; i < len(input); i += 192 { 394 c, err := newCurvePoint(input[i : i+64]) 395 if err != nil { 396 return nil, err 397 } 398 t, err := newTwistPoint(input[i+64 : i+192]) 399 if err != nil { 400 return nil, err 401 } 402 cs = append(cs, c) 403 ts = append(ts, t) 404 } 405 // Execute the pairing checks and return the results 406 if bn256.PairingCheck(cs, ts) { 407 return true32Byte, nil 408 } 409 return false32Byte, nil 410 } 411 412 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 413 // conforming to Istanbul consensus rules. 414 type bn256PairingIstanbul struct{} 415 416 // RequiredGas returns the gas required to execute the pre-compiled contract. 417 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 418 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 419 } 420 421 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 422 return runBn256Pairing(input) 423 } 424 425 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 426 // conforming to Byzantium consensus rules. 427 type bn256PairingByzantium struct{} 428 429 // RequiredGas returns the gas required to execute the pre-compiled contract. 430 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 431 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 432 } 433 434 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 435 return runBn256Pairing(input) 436 } 437 438 type blake2F struct{} 439 440 func (c *blake2F) RequiredGas(input []byte) uint64 { 441 // If the input is malformed, we can't calculate the gas, return 0 and let the 442 // actual call choke and fault. 443 if len(input) != blake2FInputLength { 444 return 0 445 } 446 return uint64(binary.BigEndian.Uint32(input[0:4])) 447 } 448 449 const ( 450 blake2FInputLength = 213 451 blake2FFinalBlockBytes = byte(1) 452 blake2FNonFinalBlockBytes = byte(0) 453 ) 454 455 var ( 456 errBlake2FInvalidInputLength = errors.New("invalid input length") 457 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 458 ) 459 460 func (c *blake2F) Run(input []byte) ([]byte, error) { 461 // Make sure the input is valid (correct lenth and final flag) 462 if len(input) != blake2FInputLength { 463 return nil, errBlake2FInvalidInputLength 464 } 465 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 466 return nil, errBlake2FInvalidFinalFlag 467 } 468 // Parse the input into the Blake2b call parameters 469 var ( 470 rounds = binary.BigEndian.Uint32(input[0:4]) 471 final = (input[212] == blake2FFinalBlockBytes) 472 473 h [8]uint64 474 m [16]uint64 475 t [2]uint64 476 ) 477 for i := 0; i < 8; i++ { 478 offset := 4 + i*8 479 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 480 } 481 for i := 0; i < 16; i++ { 482 offset := 68 + i*8 483 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 484 } 485 t[0] = binary.LittleEndian.Uint64(input[196:204]) 486 t[1] = binary.LittleEndian.Uint64(input[204:212]) 487 488 // Execute the compression function, extract and return the result 489 blake2b.F(&h, m, t, final, rounds) 490 491 output := make([]byte, 64) 492 for i := 0; i < 8; i++ { 493 offset := i * 8 494 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 495 } 496 return output, nil 497 }