github.com/JFJun/bsc@v1.0.0/core/tx_pool_test.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package core 18 19 import ( 20 "crypto/ecdsa" 21 "fmt" 22 "io/ioutil" 23 "math/big" 24 "math/rand" 25 "os" 26 "testing" 27 "time" 28 29 "github.com/JFJun/bsc/common" 30 "github.com/JFJun/bsc/core/rawdb" 31 "github.com/JFJun/bsc/core/state" 32 "github.com/JFJun/bsc/core/types" 33 "github.com/JFJun/bsc/crypto" 34 "github.com/JFJun/bsc/event" 35 "github.com/JFJun/bsc/params" 36 ) 37 38 // testTxPoolConfig is a transaction pool configuration without stateful disk 39 // sideeffects used during testing. 40 var testTxPoolConfig TxPoolConfig 41 42 func init() { 43 testTxPoolConfig = DefaultTxPoolConfig 44 testTxPoolConfig.Journal = "" 45 } 46 47 type testBlockChain struct { 48 statedb *state.StateDB 49 gasLimit uint64 50 chainHeadFeed *event.Feed 51 } 52 53 func (bc *testBlockChain) CurrentBlock() *types.Block { 54 return types.NewBlock(&types.Header{ 55 GasLimit: bc.gasLimit, 56 }, nil, nil, nil) 57 } 58 59 func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { 60 return bc.CurrentBlock() 61 } 62 63 func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) { 64 return bc.statedb, nil 65 } 66 67 func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { 68 return bc.chainHeadFeed.Subscribe(ch) 69 } 70 71 func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction { 72 return pricedTransaction(nonce, gaslimit, big.NewInt(1), key) 73 } 74 75 func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction { 76 tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) 77 return tx 78 } 79 80 func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction { 81 data := make([]byte, bytes) 82 rand.Read(data) 83 84 tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(0), gaslimit, gasprice, data), types.HomesteadSigner{}, key) 85 return tx 86 } 87 88 func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { 89 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 90 blockchain := &testBlockChain{statedb, 10000000, new(event.Feed)} 91 92 key, _ := crypto.GenerateKey() 93 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 94 95 return pool, key 96 } 97 98 // validateTxPoolInternals checks various consistency invariants within the pool. 99 func validateTxPoolInternals(pool *TxPool) error { 100 pool.mu.RLock() 101 defer pool.mu.RUnlock() 102 103 // Ensure the total transaction set is consistent with pending + queued 104 pending, queued := pool.stats() 105 if total := pool.all.Count(); total != pending+queued { 106 return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) 107 } 108 if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued { 109 return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued) 110 } 111 // Ensure the next nonce to assign is the correct one 112 for addr, txs := range pool.pending { 113 // Find the last transaction 114 var last uint64 115 for nonce := range txs.txs.items { 116 if last < nonce { 117 last = nonce 118 } 119 } 120 if nonce := pool.Nonce(addr); nonce != last+1 { 121 return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1) 122 } 123 } 124 return nil 125 } 126 127 // validateEvents checks that the correct number of transaction addition events 128 // were fired on the pool's event feed. 129 func validateEvents(events chan NewTxsEvent, count int) error { 130 var received []*types.Transaction 131 132 for len(received) < count { 133 select { 134 case ev := <-events: 135 received = append(received, ev.Txs...) 136 case <-time.After(time.Second): 137 return fmt.Errorf("event #%d not fired", len(received)) 138 } 139 } 140 if len(received) > count { 141 return fmt.Errorf("more than %d events fired: %v", count, received[count:]) 142 } 143 select { 144 case ev := <-events: 145 return fmt.Errorf("more than %d events fired: %v", count, ev.Txs) 146 147 case <-time.After(50 * time.Millisecond): 148 // This branch should be "default", but it's a data race between goroutines, 149 // reading the event channel and pushing into it, so better wait a bit ensuring 150 // really nothing gets injected. 151 } 152 return nil 153 } 154 155 func deriveSender(tx *types.Transaction) (common.Address, error) { 156 return types.Sender(types.HomesteadSigner{}, tx) 157 } 158 159 type testChain struct { 160 *testBlockChain 161 address common.Address 162 trigger *bool 163 } 164 165 // testChain.State() is used multiple times to reset the pending state. 166 // when simulate is true it will create a state that indicates 167 // that tx0 and tx1 are included in the chain. 168 func (c *testChain) State() (*state.StateDB, error) { 169 // delay "state change" by one. The tx pool fetches the 170 // state multiple times and by delaying it a bit we simulate 171 // a state change between those fetches. 172 stdb := c.statedb 173 if *c.trigger { 174 c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 175 // simulate that the new head block included tx0 and tx1 176 c.statedb.SetNonce(c.address, 2) 177 c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether)) 178 *c.trigger = false 179 } 180 return stdb, nil 181 } 182 183 // This test simulates a scenario where a new block is imported during a 184 // state reset and tests whether the pending state is in sync with the 185 // block head event that initiated the resetState(). 186 func TestStateChangeDuringTransactionPoolReset(t *testing.T) { 187 t.Parallel() 188 189 var ( 190 key, _ = crypto.GenerateKey() 191 address = crypto.PubkeyToAddress(key.PublicKey) 192 statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 193 trigger = false 194 ) 195 196 // setup pool with 2 transaction in it 197 statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether)) 198 blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger} 199 200 tx0 := transaction(0, 100000, key) 201 tx1 := transaction(1, 100000, key) 202 203 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 204 defer pool.Stop() 205 206 nonce := pool.Nonce(address) 207 if nonce != 0 { 208 t.Fatalf("Invalid nonce, want 0, got %d", nonce) 209 } 210 211 pool.AddRemotesSync([]*types.Transaction{tx0, tx1}) 212 213 nonce = pool.Nonce(address) 214 if nonce != 2 { 215 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 216 } 217 218 // trigger state change in the background 219 trigger = true 220 <-pool.requestReset(nil, nil) 221 222 _, err := pool.Pending() 223 if err != nil { 224 t.Fatalf("Could not fetch pending transactions: %v", err) 225 } 226 nonce = pool.Nonce(address) 227 if nonce != 2 { 228 t.Fatalf("Invalid nonce, want 2, got %d", nonce) 229 } 230 } 231 232 func TestInvalidTransactions(t *testing.T) { 233 t.Parallel() 234 235 pool, key := setupTxPool() 236 defer pool.Stop() 237 238 tx := transaction(0, 100, key) 239 from, _ := deriveSender(tx) 240 241 pool.currentState.AddBalance(from, big.NewInt(1)) 242 if err := pool.AddRemote(tx); err != ErrInsufficientFunds { 243 t.Error("expected", ErrInsufficientFunds) 244 } 245 246 balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice())) 247 pool.currentState.AddBalance(from, balance) 248 if err := pool.AddRemote(tx); err != ErrIntrinsicGas { 249 t.Error("expected", ErrIntrinsicGas, "got", err) 250 } 251 252 pool.currentState.SetNonce(from, 1) 253 pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) 254 tx = transaction(0, 100000, key) 255 if err := pool.AddRemote(tx); err != ErrNonceTooLow { 256 t.Error("expected", ErrNonceTooLow) 257 } 258 259 tx = transaction(1, 100000, key) 260 pool.gasPrice = big.NewInt(1000) 261 if err := pool.AddRemote(tx); err != ErrUnderpriced { 262 t.Error("expected", ErrUnderpriced, "got", err) 263 } 264 if err := pool.AddLocal(tx); err != nil { 265 t.Error("expected", nil, "got", err) 266 } 267 } 268 269 func TestTransactionQueue(t *testing.T) { 270 t.Parallel() 271 272 pool, key := setupTxPool() 273 defer pool.Stop() 274 275 tx := transaction(0, 100, key) 276 from, _ := deriveSender(tx) 277 pool.currentState.AddBalance(from, big.NewInt(1000)) 278 <-pool.requestReset(nil, nil) 279 280 pool.enqueueTx(tx.Hash(), tx) 281 <-pool.requestPromoteExecutables(newAccountSet(pool.signer, from)) 282 if len(pool.pending) != 1 { 283 t.Error("expected valid txs to be 1 is", len(pool.pending)) 284 } 285 286 tx = transaction(1, 100, key) 287 from, _ = deriveSender(tx) 288 pool.currentState.SetNonce(from, 2) 289 pool.enqueueTx(tx.Hash(), tx) 290 291 <-pool.requestPromoteExecutables(newAccountSet(pool.signer, from)) 292 if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { 293 t.Error("expected transaction to be in tx pool") 294 } 295 if len(pool.queue) > 0 { 296 t.Error("expected transaction queue to be empty. is", len(pool.queue)) 297 } 298 } 299 300 func TestTransactionQueue2(t *testing.T) { 301 t.Parallel() 302 303 pool, key := setupTxPool() 304 defer pool.Stop() 305 306 tx1 := transaction(0, 100, key) 307 tx2 := transaction(10, 100, key) 308 tx3 := transaction(11, 100, key) 309 from, _ := deriveSender(tx1) 310 pool.currentState.AddBalance(from, big.NewInt(1000)) 311 pool.reset(nil, nil) 312 313 pool.enqueueTx(tx1.Hash(), tx1) 314 pool.enqueueTx(tx2.Hash(), tx2) 315 pool.enqueueTx(tx3.Hash(), tx3) 316 317 pool.promoteExecutables([]common.Address{from}) 318 if len(pool.pending) != 1 { 319 t.Error("expected pending length to be 1, got", len(pool.pending)) 320 } 321 if pool.queue[from].Len() != 2 { 322 t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) 323 } 324 } 325 326 func TestTransactionNegativeValue(t *testing.T) { 327 t.Parallel() 328 329 pool, key := setupTxPool() 330 defer pool.Stop() 331 332 tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key) 333 from, _ := deriveSender(tx) 334 pool.currentState.AddBalance(from, big.NewInt(1)) 335 if err := pool.AddRemote(tx); err != ErrNegativeValue { 336 t.Error("expected", ErrNegativeValue, "got", err) 337 } 338 } 339 340 func TestTransactionChainFork(t *testing.T) { 341 t.Parallel() 342 343 pool, key := setupTxPool() 344 defer pool.Stop() 345 346 addr := crypto.PubkeyToAddress(key.PublicKey) 347 resetState := func() { 348 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 349 statedb.AddBalance(addr, big.NewInt(100000000000000)) 350 351 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 352 <-pool.requestReset(nil, nil) 353 } 354 resetState() 355 356 tx := transaction(0, 100000, key) 357 if _, err := pool.add(tx, false); err != nil { 358 t.Error("didn't expect error", err) 359 } 360 pool.removeTx(tx.Hash(), true) 361 362 // reset the pool's internal state 363 resetState() 364 if _, err := pool.add(tx, false); err != nil { 365 t.Error("didn't expect error", err) 366 } 367 } 368 369 func TestTransactionDoubleNonce(t *testing.T) { 370 t.Parallel() 371 372 pool, key := setupTxPool() 373 defer pool.Stop() 374 375 addr := crypto.PubkeyToAddress(key.PublicKey) 376 resetState := func() { 377 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 378 statedb.AddBalance(addr, big.NewInt(100000000000000)) 379 380 pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)} 381 <-pool.requestReset(nil, nil) 382 } 383 resetState() 384 385 signer := types.HomesteadSigner{} 386 tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key) 387 tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key) 388 tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key) 389 390 // Add the first two transaction, ensure higher priced stays only 391 if replace, err := pool.add(tx1, false); err != nil || replace { 392 t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace) 393 } 394 if replace, err := pool.add(tx2, false); err != nil || !replace { 395 t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace) 396 } 397 <-pool.requestPromoteExecutables(newAccountSet(signer, addr)) 398 if pool.pending[addr].Len() != 1 { 399 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 400 } 401 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 402 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 403 } 404 405 // Add the third transaction and ensure it's not saved (smaller price) 406 pool.add(tx3, false) 407 <-pool.requestPromoteExecutables(newAccountSet(signer, addr)) 408 if pool.pending[addr].Len() != 1 { 409 t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) 410 } 411 if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { 412 t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) 413 } 414 // Ensure the total transaction count is correct 415 if pool.all.Count() != 1 { 416 t.Error("expected 1 total transactions, got", pool.all.Count()) 417 } 418 } 419 420 func TestTransactionMissingNonce(t *testing.T) { 421 t.Parallel() 422 423 pool, key := setupTxPool() 424 defer pool.Stop() 425 426 addr := crypto.PubkeyToAddress(key.PublicKey) 427 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 428 tx := transaction(1, 100000, key) 429 if _, err := pool.add(tx, false); err != nil { 430 t.Error("didn't expect error", err) 431 } 432 if len(pool.pending) != 0 { 433 t.Error("expected 0 pending transactions, got", len(pool.pending)) 434 } 435 if pool.queue[addr].Len() != 1 { 436 t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) 437 } 438 if pool.all.Count() != 1 { 439 t.Error("expected 1 total transactions, got", pool.all.Count()) 440 } 441 } 442 443 func TestTransactionNonceRecovery(t *testing.T) { 444 t.Parallel() 445 446 const n = 10 447 pool, key := setupTxPool() 448 defer pool.Stop() 449 450 addr := crypto.PubkeyToAddress(key.PublicKey) 451 pool.currentState.SetNonce(addr, n) 452 pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) 453 <-pool.requestReset(nil, nil) 454 455 tx := transaction(n, 100000, key) 456 if err := pool.AddRemote(tx); err != nil { 457 t.Error(err) 458 } 459 // simulate some weird re-order of transactions and missing nonce(s) 460 pool.currentState.SetNonce(addr, n-1) 461 <-pool.requestReset(nil, nil) 462 if fn := pool.Nonce(addr); fn != n-1 { 463 t.Errorf("expected nonce to be %d, got %d", n-1, fn) 464 } 465 } 466 467 // Tests that if an account runs out of funds, any pending and queued transactions 468 // are dropped. 469 func TestTransactionDropping(t *testing.T) { 470 t.Parallel() 471 472 // Create a test account and fund it 473 pool, key := setupTxPool() 474 defer pool.Stop() 475 476 account := crypto.PubkeyToAddress(key.PublicKey) 477 pool.currentState.AddBalance(account, big.NewInt(1000)) 478 479 // Add some pending and some queued transactions 480 var ( 481 tx0 = transaction(0, 100, key) 482 tx1 = transaction(1, 200, key) 483 tx2 = transaction(2, 300, key) 484 tx10 = transaction(10, 100, key) 485 tx11 = transaction(11, 200, key) 486 tx12 = transaction(12, 300, key) 487 ) 488 pool.promoteTx(account, tx0.Hash(), tx0) 489 pool.promoteTx(account, tx1.Hash(), tx1) 490 pool.promoteTx(account, tx2.Hash(), tx2) 491 pool.enqueueTx(tx10.Hash(), tx10) 492 pool.enqueueTx(tx11.Hash(), tx11) 493 pool.enqueueTx(tx12.Hash(), tx12) 494 495 // Check that pre and post validations leave the pool as is 496 if pool.pending[account].Len() != 3 { 497 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 498 } 499 if pool.queue[account].Len() != 3 { 500 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 501 } 502 if pool.all.Count() != 6 { 503 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) 504 } 505 <-pool.requestReset(nil, nil) 506 if pool.pending[account].Len() != 3 { 507 t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3) 508 } 509 if pool.queue[account].Len() != 3 { 510 t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3) 511 } 512 if pool.all.Count() != 6 { 513 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) 514 } 515 // Reduce the balance of the account, and check that invalidated transactions are dropped 516 pool.currentState.AddBalance(account, big.NewInt(-650)) 517 <-pool.requestReset(nil, nil) 518 519 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 520 t.Errorf("funded pending transaction missing: %v", tx0) 521 } 522 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok { 523 t.Errorf("funded pending transaction missing: %v", tx0) 524 } 525 if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok { 526 t.Errorf("out-of-fund pending transaction present: %v", tx1) 527 } 528 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 529 t.Errorf("funded queued transaction missing: %v", tx10) 530 } 531 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok { 532 t.Errorf("funded queued transaction missing: %v", tx10) 533 } 534 if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok { 535 t.Errorf("out-of-fund queued transaction present: %v", tx11) 536 } 537 if pool.all.Count() != 4 { 538 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4) 539 } 540 // Reduce the block gas limit, check that invalidated transactions are dropped 541 pool.chain.(*testBlockChain).gasLimit = 100 542 <-pool.requestReset(nil, nil) 543 544 if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { 545 t.Errorf("funded pending transaction missing: %v", tx0) 546 } 547 if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { 548 t.Errorf("over-gased pending transaction present: %v", tx1) 549 } 550 if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { 551 t.Errorf("funded queued transaction missing: %v", tx10) 552 } 553 if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { 554 t.Errorf("over-gased queued transaction present: %v", tx11) 555 } 556 if pool.all.Count() != 2 { 557 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2) 558 } 559 } 560 561 // Tests that if a transaction is dropped from the current pending pool (e.g. out 562 // of fund), all consecutive (still valid, but not executable) transactions are 563 // postponed back into the future queue to prevent broadcasting them. 564 func TestTransactionPostponing(t *testing.T) { 565 t.Parallel() 566 567 // Create the pool to test the postponing with 568 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 569 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 570 571 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 572 defer pool.Stop() 573 574 // Create two test accounts to produce different gap profiles with 575 keys := make([]*ecdsa.PrivateKey, 2) 576 accs := make([]common.Address, len(keys)) 577 578 for i := 0; i < len(keys); i++ { 579 keys[i], _ = crypto.GenerateKey() 580 accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey) 581 582 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100)) 583 } 584 // Add a batch consecutive pending transactions for validation 585 txs := []*types.Transaction{} 586 for i, key := range keys { 587 588 for j := 0; j < 100; j++ { 589 var tx *types.Transaction 590 if (i+j)%2 == 0 { 591 tx = transaction(uint64(j), 25000, key) 592 } else { 593 tx = transaction(uint64(j), 50000, key) 594 } 595 txs = append(txs, tx) 596 } 597 } 598 for i, err := range pool.AddRemotesSync(txs) { 599 if err != nil { 600 t.Fatalf("tx %d: failed to add transactions: %v", i, err) 601 } 602 } 603 // Check that pre and post validations leave the pool as is 604 if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { 605 t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) 606 } 607 if len(pool.queue) != 0 { 608 t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) 609 } 610 if pool.all.Count() != len(txs) { 611 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) 612 } 613 <-pool.requestReset(nil, nil) 614 if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) { 615 t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs)) 616 } 617 if len(pool.queue) != 0 { 618 t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0) 619 } 620 if pool.all.Count() != len(txs) { 621 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)) 622 } 623 // Reduce the balance of the account, and check that transactions are reorganised 624 for _, addr := range accs { 625 pool.currentState.AddBalance(addr, big.NewInt(-1)) 626 } 627 <-pool.requestReset(nil, nil) 628 629 // The first account's first transaction remains valid, check that subsequent 630 // ones are either filtered out, or queued up for later. 631 if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok { 632 t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0]) 633 } 634 if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok { 635 t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0]) 636 } 637 for i, tx := range txs[1:100] { 638 if i%2 == 1 { 639 if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { 640 t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) 641 } 642 if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok { 643 t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) 644 } 645 } else { 646 if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok { 647 t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) 648 } 649 if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok { 650 t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) 651 } 652 } 653 } 654 // The second account's first transaction got invalid, check that all transactions 655 // are either filtered out, or queued up for later. 656 if pool.pending[accs[1]] != nil { 657 t.Errorf("invalidated account still has pending transactions") 658 } 659 for i, tx := range txs[100:] { 660 if i%2 == 1 { 661 if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok { 662 t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx) 663 } 664 } else { 665 if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok { 666 t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx) 667 } 668 } 669 } 670 if pool.all.Count() != len(txs)/2 { 671 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2) 672 } 673 } 674 675 // Tests that if the transaction pool has both executable and non-executable 676 // transactions from an origin account, filling the nonce gap moves all queued 677 // ones into the pending pool. 678 func TestTransactionGapFilling(t *testing.T) { 679 t.Parallel() 680 681 // Create a test account and fund it 682 pool, key := setupTxPool() 683 defer pool.Stop() 684 685 account := crypto.PubkeyToAddress(key.PublicKey) 686 pool.currentState.AddBalance(account, big.NewInt(1000000)) 687 688 // Keep track of transaction events to ensure all executables get announced 689 events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) 690 sub := pool.txFeed.Subscribe(events) 691 defer sub.Unsubscribe() 692 693 // Create a pending and a queued transaction with a nonce-gap in between 694 pool.AddRemotesSync([]*types.Transaction{ 695 transaction(0, 100000, key), 696 transaction(2, 100000, key), 697 }) 698 pending, queued := pool.Stats() 699 if pending != 1 { 700 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) 701 } 702 if queued != 1 { 703 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 704 } 705 if err := validateEvents(events, 1); err != nil { 706 t.Fatalf("original event firing failed: %v", err) 707 } 708 if err := validateTxPoolInternals(pool); err != nil { 709 t.Fatalf("pool internal state corrupted: %v", err) 710 } 711 // Fill the nonce gap and ensure all transactions become pending 712 if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil { 713 t.Fatalf("failed to add gapped transaction: %v", err) 714 } 715 pending, queued = pool.Stats() 716 if pending != 3 { 717 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 718 } 719 if queued != 0 { 720 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 721 } 722 if err := validateEvents(events, 2); err != nil { 723 t.Fatalf("gap-filling event firing failed: %v", err) 724 } 725 if err := validateTxPoolInternals(pool); err != nil { 726 t.Fatalf("pool internal state corrupted: %v", err) 727 } 728 } 729 730 // Tests that if the transaction count belonging to a single account goes above 731 // some threshold, the higher transactions are dropped to prevent DOS attacks. 732 func TestTransactionQueueAccountLimiting(t *testing.T) { 733 t.Parallel() 734 735 // Create a test account and fund it 736 pool, key := setupTxPool() 737 defer pool.Stop() 738 739 account := crypto.PubkeyToAddress(key.PublicKey) 740 pool.currentState.AddBalance(account, big.NewInt(1000000)) 741 742 // Keep queuing up transactions and make sure all above a limit are dropped 743 for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { 744 if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil { 745 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 746 } 747 if len(pool.pending) != 0 { 748 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) 749 } 750 if i <= testTxPoolConfig.AccountQueue { 751 if pool.queue[account].Len() != int(i) { 752 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) 753 } 754 } else { 755 if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) { 756 t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue) 757 } 758 } 759 } 760 if pool.all.Count() != int(testTxPoolConfig.AccountQueue) { 761 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue) 762 } 763 } 764 765 // Tests that if the transaction count belonging to multiple accounts go above 766 // some threshold, the higher transactions are dropped to prevent DOS attacks. 767 // 768 // This logic should not hold for local transactions, unless the local tracking 769 // mechanism is disabled. 770 func TestTransactionQueueGlobalLimiting(t *testing.T) { 771 testTransactionQueueGlobalLimiting(t, false) 772 } 773 func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) { 774 testTransactionQueueGlobalLimiting(t, true) 775 } 776 777 func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) { 778 t.Parallel() 779 780 // Create the pool to test the limit enforcement with 781 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 782 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 783 784 config := testTxPoolConfig 785 config.NoLocals = nolocals 786 config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible) 787 788 pool := NewTxPool(config, params.TestChainConfig, blockchain) 789 defer pool.Stop() 790 791 // Create a number of test accounts and fund them (last one will be the local) 792 keys := make([]*ecdsa.PrivateKey, 5) 793 for i := 0; i < len(keys); i++ { 794 keys[i], _ = crypto.GenerateKey() 795 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 796 } 797 local := keys[len(keys)-1] 798 799 // Generate and queue a batch of transactions 800 nonces := make(map[common.Address]uint64) 801 802 txs := make(types.Transactions, 0, 3*config.GlobalQueue) 803 for len(txs) < cap(txs) { 804 key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account 805 addr := crypto.PubkeyToAddress(key.PublicKey) 806 807 txs = append(txs, transaction(nonces[addr]+1, 100000, key)) 808 nonces[addr]++ 809 } 810 // Import the batch and verify that limits have been enforced 811 pool.AddRemotesSync(txs) 812 813 queued := 0 814 for addr, list := range pool.queue { 815 if list.Len() > int(config.AccountQueue) { 816 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 817 } 818 queued += list.Len() 819 } 820 if queued > int(config.GlobalQueue) { 821 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 822 } 823 // Generate a batch of transactions from the local account and import them 824 txs = txs[:0] 825 for i := uint64(0); i < 3*config.GlobalQueue; i++ { 826 txs = append(txs, transaction(i+1, 100000, local)) 827 } 828 pool.AddLocals(txs) 829 830 // If locals are disabled, the previous eviction algorithm should apply here too 831 if nolocals { 832 queued := 0 833 for addr, list := range pool.queue { 834 if list.Len() > int(config.AccountQueue) { 835 t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue) 836 } 837 queued += list.Len() 838 } 839 if queued > int(config.GlobalQueue) { 840 t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue) 841 } 842 } else { 843 // Local exemptions are enabled, make sure the local account owned the queue 844 if len(pool.queue) != 1 { 845 t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1) 846 } 847 // Also ensure no local transactions are ever dropped, even if above global limits 848 if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue { 849 t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue) 850 } 851 } 852 } 853 854 // Tests that if an account remains idle for a prolonged amount of time, any 855 // non-executable transactions queued up are dropped to prevent wasting resources 856 // on shuffling them around. 857 // 858 // This logic should not hold for local transactions, unless the local tracking 859 // mechanism is disabled. 860 func TestTransactionQueueTimeLimiting(t *testing.T) { 861 testTransactionQueueTimeLimiting(t, false) 862 } 863 func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { 864 testTransactionQueueTimeLimiting(t, true) 865 } 866 867 func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) { 868 // Reduce the eviction interval to a testable amount 869 defer func(old time.Duration) { evictionInterval = old }(evictionInterval) 870 evictionInterval = time.Second 871 872 // Create the pool to test the non-expiration enforcement 873 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 874 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 875 876 config := testTxPoolConfig 877 config.Lifetime = time.Second 878 config.NoLocals = nolocals 879 880 pool := NewTxPool(config, params.TestChainConfig, blockchain) 881 defer pool.Stop() 882 883 // Create two test accounts to ensure remotes expire but locals do not 884 local, _ := crypto.GenerateKey() 885 remote, _ := crypto.GenerateKey() 886 887 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 888 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 889 890 // Add the two transactions and ensure they both are queued up 891 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 892 t.Fatalf("failed to add local transaction: %v", err) 893 } 894 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil { 895 t.Fatalf("failed to add remote transaction: %v", err) 896 } 897 pending, queued := pool.Stats() 898 if pending != 0 { 899 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 900 } 901 if queued != 2 { 902 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 903 } 904 if err := validateTxPoolInternals(pool); err != nil { 905 t.Fatalf("pool internal state corrupted: %v", err) 906 } 907 // Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains 908 time.Sleep(2 * config.Lifetime) 909 910 pending, queued = pool.Stats() 911 if pending != 0 { 912 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 913 } 914 if nolocals { 915 if queued != 0 { 916 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 917 } 918 } else { 919 if queued != 1 { 920 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 921 } 922 } 923 if err := validateTxPoolInternals(pool); err != nil { 924 t.Fatalf("pool internal state corrupted: %v", err) 925 } 926 } 927 928 // Tests that even if the transaction count belonging to a single account goes 929 // above some threshold, as long as the transactions are executable, they are 930 // accepted. 931 func TestTransactionPendingLimiting(t *testing.T) { 932 t.Parallel() 933 934 // Create a test account and fund it 935 pool, key := setupTxPool() 936 defer pool.Stop() 937 938 account := crypto.PubkeyToAddress(key.PublicKey) 939 pool.currentState.AddBalance(account, big.NewInt(1000000)) 940 941 // Keep track of transaction events to ensure all executables get announced 942 events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) 943 sub := pool.txFeed.Subscribe(events) 944 defer sub.Unsubscribe() 945 946 // Keep queuing up transactions and make sure all above a limit are dropped 947 for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ { 948 if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil { 949 t.Fatalf("tx %d: failed to add transaction: %v", i, err) 950 } 951 if pool.pending[account].Len() != int(i)+1 { 952 t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1) 953 } 954 if len(pool.queue) != 0 { 955 t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0) 956 } 957 } 958 if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) { 959 t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5) 960 } 961 if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil { 962 t.Fatalf("event firing failed: %v", err) 963 } 964 if err := validateTxPoolInternals(pool); err != nil { 965 t.Fatalf("pool internal state corrupted: %v", err) 966 } 967 } 968 969 // Tests that if the transaction count belonging to multiple accounts go above 970 // some hard threshold, the higher transactions are dropped to prevent DOS 971 // attacks. 972 func TestTransactionPendingGlobalLimiting(t *testing.T) { 973 t.Parallel() 974 975 // Create the pool to test the limit enforcement with 976 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 977 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 978 979 config := testTxPoolConfig 980 config.GlobalSlots = config.AccountSlots * 10 981 982 pool := NewTxPool(config, params.TestChainConfig, blockchain) 983 defer pool.Stop() 984 985 // Create a number of test accounts and fund them 986 keys := make([]*ecdsa.PrivateKey, 5) 987 for i := 0; i < len(keys); i++ { 988 keys[i], _ = crypto.GenerateKey() 989 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 990 } 991 // Generate and queue a batch of transactions 992 nonces := make(map[common.Address]uint64) 993 994 txs := types.Transactions{} 995 for _, key := range keys { 996 addr := crypto.PubkeyToAddress(key.PublicKey) 997 for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ { 998 txs = append(txs, transaction(nonces[addr], 100000, key)) 999 nonces[addr]++ 1000 } 1001 } 1002 // Import the batch and verify that limits have been enforced 1003 pool.AddRemotesSync(txs) 1004 1005 pending := 0 1006 for _, list := range pool.pending { 1007 pending += list.Len() 1008 } 1009 if pending > int(config.GlobalSlots) { 1010 t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots) 1011 } 1012 if err := validateTxPoolInternals(pool); err != nil { 1013 t.Fatalf("pool internal state corrupted: %v", err) 1014 } 1015 } 1016 1017 // Test the limit on transaction size is enforced correctly. 1018 // This test verifies every transaction having allowed size 1019 // is added to the pool, and longer transactions are rejected. 1020 func TestTransactionAllowedTxSize(t *testing.T) { 1021 t.Parallel() 1022 1023 // Create a test account and fund it 1024 pool, key := setupTxPool() 1025 defer pool.Stop() 1026 1027 account := crypto.PubkeyToAddress(key.PublicKey) 1028 pool.currentState.AddBalance(account, big.NewInt(1000000000)) 1029 1030 // Compute maximal data size for transactions (lower bound). 1031 // 1032 // It is assumed the fields in the transaction (except of the data) are: 1033 // - nonce <= 32 bytes 1034 // - gasPrice <= 32 bytes 1035 // - gasLimit <= 32 bytes 1036 // - recipient == 20 bytes 1037 // - value <= 32 bytes 1038 // - signature == 65 bytes 1039 // All those fields are summed up to at most 213 bytes. 1040 baseSize := uint64(213) 1041 dataSize := txMaxSize - baseSize 1042 1043 // Try adding a transaction with maximal allowed size 1044 tx := pricedDataTransaction(0, pool.currentMaxGas, big.NewInt(1), key, dataSize) 1045 if err := pool.addRemoteSync(tx); err != nil { 1046 t.Fatalf("failed to add transaction of size %d, close to maximal: %v", int(tx.Size()), err) 1047 } 1048 // Try adding a transaction with random allowed size 1049 if err := pool.addRemoteSync(pricedDataTransaction(1, pool.currentMaxGas, big.NewInt(1), key, uint64(rand.Intn(int(dataSize))))); err != nil { 1050 t.Fatalf("failed to add transaction of random allowed size: %v", err) 1051 } 1052 // Try adding a transaction of minimal not allowed size 1053 if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, txMaxSize)); err == nil { 1054 t.Fatalf("expected rejection on slightly oversize transaction") 1055 } 1056 // Try adding a transaction of random not allowed size 1057 if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, dataSize+1+uint64(rand.Intn(int(10*txMaxSize))))); err == nil { 1058 t.Fatalf("expected rejection on oversize transaction") 1059 } 1060 // Run some sanity checks on the pool internals 1061 pending, queued := pool.Stats() 1062 if pending != 2 { 1063 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1064 } 1065 if queued != 0 { 1066 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1067 } 1068 if err := validateTxPoolInternals(pool); err != nil { 1069 t.Fatalf("pool internal state corrupted: %v", err) 1070 } 1071 } 1072 1073 // Tests that if transactions start being capped, transactions are also removed from 'all' 1074 func TestTransactionCapClearsFromAll(t *testing.T) { 1075 t.Parallel() 1076 1077 // Create the pool to test the limit enforcement with 1078 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1079 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1080 1081 config := testTxPoolConfig 1082 config.AccountSlots = 2 1083 config.AccountQueue = 2 1084 config.GlobalSlots = 8 1085 1086 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1087 defer pool.Stop() 1088 1089 // Create a number of test accounts and fund them 1090 key, _ := crypto.GenerateKey() 1091 addr := crypto.PubkeyToAddress(key.PublicKey) 1092 pool.currentState.AddBalance(addr, big.NewInt(1000000)) 1093 1094 txs := types.Transactions{} 1095 for j := 0; j < int(config.GlobalSlots)*2; j++ { 1096 txs = append(txs, transaction(uint64(j), 100000, key)) 1097 } 1098 // Import the batch and verify that limits have been enforced 1099 pool.AddRemotes(txs) 1100 if err := validateTxPoolInternals(pool); err != nil { 1101 t.Fatalf("pool internal state corrupted: %v", err) 1102 } 1103 } 1104 1105 // Tests that if the transaction count belonging to multiple accounts go above 1106 // some hard threshold, if they are under the minimum guaranteed slot count then 1107 // the transactions are still kept. 1108 func TestTransactionPendingMinimumAllowance(t *testing.T) { 1109 t.Parallel() 1110 1111 // Create the pool to test the limit enforcement with 1112 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1113 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1114 1115 config := testTxPoolConfig 1116 config.GlobalSlots = 1 1117 1118 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1119 defer pool.Stop() 1120 1121 // Create a number of test accounts and fund them 1122 keys := make([]*ecdsa.PrivateKey, 5) 1123 for i := 0; i < len(keys); i++ { 1124 keys[i], _ = crypto.GenerateKey() 1125 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1126 } 1127 // Generate and queue a batch of transactions 1128 nonces := make(map[common.Address]uint64) 1129 1130 txs := types.Transactions{} 1131 for _, key := range keys { 1132 addr := crypto.PubkeyToAddress(key.PublicKey) 1133 for j := 0; j < int(config.AccountSlots)*2; j++ { 1134 txs = append(txs, transaction(nonces[addr], 100000, key)) 1135 nonces[addr]++ 1136 } 1137 } 1138 // Import the batch and verify that limits have been enforced 1139 pool.AddRemotesSync(txs) 1140 1141 for addr, list := range pool.pending { 1142 if list.Len() != int(config.AccountSlots) { 1143 t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots) 1144 } 1145 } 1146 if err := validateTxPoolInternals(pool); err != nil { 1147 t.Fatalf("pool internal state corrupted: %v", err) 1148 } 1149 } 1150 1151 // Tests that setting the transaction pool gas price to a higher value correctly 1152 // discards everything cheaper than that and moves any gapped transactions back 1153 // from the pending pool to the queue. 1154 // 1155 // Note, local transactions are never allowed to be dropped. 1156 func TestTransactionPoolRepricing(t *testing.T) { 1157 t.Parallel() 1158 1159 // Create the pool to test the pricing enforcement with 1160 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1161 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1162 1163 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1164 defer pool.Stop() 1165 1166 // Keep track of transaction events to ensure all executables get announced 1167 events := make(chan NewTxsEvent, 32) 1168 sub := pool.txFeed.Subscribe(events) 1169 defer sub.Unsubscribe() 1170 1171 // Create a number of test accounts and fund them 1172 keys := make([]*ecdsa.PrivateKey, 4) 1173 for i := 0; i < len(keys); i++ { 1174 keys[i], _ = crypto.GenerateKey() 1175 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1176 } 1177 // Generate and queue a batch of transactions, both pending and queued 1178 txs := types.Transactions{} 1179 1180 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0])) 1181 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0])) 1182 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0])) 1183 1184 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) 1185 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1])) 1186 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[1])) 1187 1188 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[2])) 1189 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) 1190 txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[2])) 1191 1192 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[3]) 1193 1194 // Import the batch and that both pending and queued transactions match up 1195 pool.AddRemotesSync(txs) 1196 pool.AddLocal(ltx) 1197 1198 pending, queued := pool.Stats() 1199 if pending != 7 { 1200 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7) 1201 } 1202 if queued != 3 { 1203 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3) 1204 } 1205 if err := validateEvents(events, 7); err != nil { 1206 t.Fatalf("original event firing failed: %v", err) 1207 } 1208 if err := validateTxPoolInternals(pool); err != nil { 1209 t.Fatalf("pool internal state corrupted: %v", err) 1210 } 1211 // Reprice the pool and check that underpriced transactions get dropped 1212 pool.SetGasPrice(big.NewInt(2)) 1213 1214 pending, queued = pool.Stats() 1215 if pending != 2 { 1216 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1217 } 1218 if queued != 5 { 1219 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5) 1220 } 1221 if err := validateEvents(events, 0); err != nil { 1222 t.Fatalf("reprice event firing failed: %v", err) 1223 } 1224 if err := validateTxPoolInternals(pool); err != nil { 1225 t.Fatalf("pool internal state corrupted: %v", err) 1226 } 1227 // Check that we can't add the old transactions back 1228 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced { 1229 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1230 } 1231 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1232 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1233 } 1234 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[2])); err != ErrUnderpriced { 1235 t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1236 } 1237 if err := validateEvents(events, 0); err != nil { 1238 t.Fatalf("post-reprice event firing failed: %v", err) 1239 } 1240 if err := validateTxPoolInternals(pool); err != nil { 1241 t.Fatalf("pool internal state corrupted: %v", err) 1242 } 1243 // However we can add local underpriced transactions 1244 tx := pricedTransaction(1, 100000, big.NewInt(1), keys[3]) 1245 if err := pool.AddLocal(tx); err != nil { 1246 t.Fatalf("failed to add underpriced local transaction: %v", err) 1247 } 1248 if pending, _ = pool.Stats(); pending != 3 { 1249 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1250 } 1251 if err := validateEvents(events, 1); err != nil { 1252 t.Fatalf("post-reprice local event firing failed: %v", err) 1253 } 1254 if err := validateTxPoolInternals(pool); err != nil { 1255 t.Fatalf("pool internal state corrupted: %v", err) 1256 } 1257 // And we can fill gaps with properly priced transactions 1258 if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(2), keys[0])); err != nil { 1259 t.Fatalf("failed to add pending transaction: %v", err) 1260 } 1261 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), keys[1])); err != nil { 1262 t.Fatalf("failed to add pending transaction: %v", err) 1263 } 1264 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), keys[2])); err != nil { 1265 t.Fatalf("failed to add queued transaction: %v", err) 1266 } 1267 if err := validateEvents(events, 5); err != nil { 1268 t.Fatalf("post-reprice event firing failed: %v", err) 1269 } 1270 if err := validateTxPoolInternals(pool); err != nil { 1271 t.Fatalf("pool internal state corrupted: %v", err) 1272 } 1273 } 1274 1275 // Tests that setting the transaction pool gas price to a higher value does not 1276 // remove local transactions. 1277 func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { 1278 t.Parallel() 1279 1280 // Create the pool to test the pricing enforcement with 1281 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1282 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1283 1284 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1285 defer pool.Stop() 1286 1287 // Create a number of test accounts and fund them 1288 keys := make([]*ecdsa.PrivateKey, 3) 1289 for i := 0; i < len(keys); i++ { 1290 keys[i], _ = crypto.GenerateKey() 1291 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000)) 1292 } 1293 // Create transaction (both pending and queued) with a linearly growing gasprice 1294 for i := uint64(0); i < 500; i++ { 1295 // Add pending transaction. 1296 pendingTx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2]) 1297 if err := pool.AddLocal(pendingTx); err != nil { 1298 t.Fatal(err) 1299 } 1300 // Add queued transaction. 1301 queuedTx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2]) 1302 if err := pool.AddLocal(queuedTx); err != nil { 1303 t.Fatal(err) 1304 } 1305 } 1306 pending, queued := pool.Stats() 1307 expPending, expQueued := 500, 500 1308 validate := func() { 1309 pending, queued = pool.Stats() 1310 if pending != expPending { 1311 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending) 1312 } 1313 if queued != expQueued { 1314 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued) 1315 } 1316 1317 if err := validateTxPoolInternals(pool); err != nil { 1318 t.Fatalf("pool internal state corrupted: %v", err) 1319 } 1320 } 1321 validate() 1322 1323 // Reprice the pool and check that nothing is dropped 1324 pool.SetGasPrice(big.NewInt(2)) 1325 validate() 1326 1327 pool.SetGasPrice(big.NewInt(2)) 1328 pool.SetGasPrice(big.NewInt(4)) 1329 pool.SetGasPrice(big.NewInt(8)) 1330 pool.SetGasPrice(big.NewInt(100)) 1331 validate() 1332 } 1333 1334 // Tests that when the pool reaches its global transaction limit, underpriced 1335 // transactions are gradually shifted out for more expensive ones and any gapped 1336 // pending transactions are moved into the queue. 1337 // 1338 // Note, local transactions are never allowed to be dropped. 1339 func TestTransactionPoolUnderpricing(t *testing.T) { 1340 t.Parallel() 1341 1342 // Create the pool to test the pricing enforcement with 1343 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1344 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1345 1346 config := testTxPoolConfig 1347 config.GlobalSlots = 2 1348 config.GlobalQueue = 2 1349 1350 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1351 defer pool.Stop() 1352 1353 // Keep track of transaction events to ensure all executables get announced 1354 events := make(chan NewTxsEvent, 32) 1355 sub := pool.txFeed.Subscribe(events) 1356 defer sub.Unsubscribe() 1357 1358 // Create a number of test accounts and fund them 1359 keys := make([]*ecdsa.PrivateKey, 4) 1360 for i := 0; i < len(keys); i++ { 1361 keys[i], _ = crypto.GenerateKey() 1362 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1363 } 1364 // Generate and queue a batch of transactions, both pending and queued 1365 txs := types.Transactions{} 1366 1367 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) 1368 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0])) 1369 1370 txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1])) 1371 1372 ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2]) 1373 1374 // Import the batch and that both pending and queued transactions match up 1375 pool.AddRemotes(txs) 1376 pool.AddLocal(ltx) 1377 1378 pending, queued := pool.Stats() 1379 if pending != 3 { 1380 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1381 } 1382 if queued != 1 { 1383 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1384 } 1385 if err := validateEvents(events, 3); err != nil { 1386 t.Fatalf("original event firing failed: %v", err) 1387 } 1388 if err := validateTxPoolInternals(pool); err != nil { 1389 t.Fatalf("pool internal state corrupted: %v", err) 1390 } 1391 // Ensure that adding an underpriced transaction on block limit fails 1392 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced { 1393 t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced) 1394 } 1395 // Ensure that adding high priced transactions drops cheap ones, but not own 1396 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que - 1397 t.Fatalf("failed to add well priced transaction: %v", err) 1398 } 1399 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2 1400 t.Fatalf("failed to add well priced transaction: %v", err) 1401 } 1402 if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3 1403 t.Fatalf("failed to add well priced transaction: %v", err) 1404 } 1405 pending, queued = pool.Stats() 1406 if pending != 2 { 1407 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1408 } 1409 if queued != 2 { 1410 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1411 } 1412 if err := validateEvents(events, 1); err != nil { 1413 t.Fatalf("additional event firing failed: %v", err) 1414 } 1415 if err := validateTxPoolInternals(pool); err != nil { 1416 t.Fatalf("pool internal state corrupted: %v", err) 1417 } 1418 // Ensure that adding local transactions can push out even higher priced ones 1419 ltx = pricedTransaction(1, 100000, big.NewInt(0), keys[2]) 1420 if err := pool.AddLocal(ltx); err != nil { 1421 t.Fatalf("failed to append underpriced local transaction: %v", err) 1422 } 1423 ltx = pricedTransaction(0, 100000, big.NewInt(0), keys[3]) 1424 if err := pool.AddLocal(ltx); err != nil { 1425 t.Fatalf("failed to add new underpriced local transaction: %v", err) 1426 } 1427 pending, queued = pool.Stats() 1428 if pending != 3 { 1429 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3) 1430 } 1431 if queued != 1 { 1432 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1433 } 1434 if err := validateEvents(events, 2); err != nil { 1435 t.Fatalf("local event firing failed: %v", err) 1436 } 1437 if err := validateTxPoolInternals(pool); err != nil { 1438 t.Fatalf("pool internal state corrupted: %v", err) 1439 } 1440 } 1441 1442 // Tests that more expensive transactions push out cheap ones from the pool, but 1443 // without producing instability by creating gaps that start jumping transactions 1444 // back and forth between queued/pending. 1445 func TestTransactionPoolStableUnderpricing(t *testing.T) { 1446 t.Parallel() 1447 1448 // Create the pool to test the pricing enforcement with 1449 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1450 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1451 1452 config := testTxPoolConfig 1453 config.GlobalSlots = 128 1454 config.GlobalQueue = 0 1455 1456 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1457 defer pool.Stop() 1458 1459 // Keep track of transaction events to ensure all executables get announced 1460 events := make(chan NewTxsEvent, 32) 1461 sub := pool.txFeed.Subscribe(events) 1462 defer sub.Unsubscribe() 1463 1464 // Create a number of test accounts and fund them 1465 keys := make([]*ecdsa.PrivateKey, 2) 1466 for i := 0; i < len(keys); i++ { 1467 keys[i], _ = crypto.GenerateKey() 1468 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1469 } 1470 // Fill up the entire queue with the same transaction price points 1471 txs := types.Transactions{} 1472 for i := uint64(0); i < config.GlobalSlots; i++ { 1473 txs = append(txs, pricedTransaction(i, 100000, big.NewInt(1), keys[0])) 1474 } 1475 pool.AddRemotesSync(txs) 1476 1477 pending, queued := pool.Stats() 1478 if pending != int(config.GlobalSlots) { 1479 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) 1480 } 1481 if queued != 0 { 1482 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1483 } 1484 if err := validateEvents(events, int(config.GlobalSlots)); err != nil { 1485 t.Fatalf("original event firing failed: %v", err) 1486 } 1487 if err := validateTxPoolInternals(pool); err != nil { 1488 t.Fatalf("pool internal state corrupted: %v", err) 1489 } 1490 // Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap 1491 if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { 1492 t.Fatalf("failed to add well priced transaction: %v", err) 1493 } 1494 pending, queued = pool.Stats() 1495 if pending != int(config.GlobalSlots) { 1496 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots) 1497 } 1498 if queued != 0 { 1499 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1500 } 1501 if err := validateEvents(events, 1); err != nil { 1502 t.Fatalf("additional event firing failed: %v", err) 1503 } 1504 if err := validateTxPoolInternals(pool); err != nil { 1505 t.Fatalf("pool internal state corrupted: %v", err) 1506 } 1507 } 1508 1509 // Tests that the pool rejects duplicate transactions. 1510 func TestTransactionDeduplication(t *testing.T) { 1511 t.Parallel() 1512 1513 // Create the pool to test the pricing enforcement with 1514 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1515 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1516 1517 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1518 defer pool.Stop() 1519 1520 // Create a test account to add transactions with 1521 key, _ := crypto.GenerateKey() 1522 pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) 1523 1524 // Create a batch of transactions and add a few of them 1525 txs := make([]*types.Transaction, 16) 1526 for i := 0; i < len(txs); i++ { 1527 txs[i] = pricedTransaction(uint64(i), 100000, big.NewInt(1), key) 1528 } 1529 var firsts []*types.Transaction 1530 for i := 0; i < len(txs); i += 2 { 1531 firsts = append(firsts, txs[i]) 1532 } 1533 errs := pool.AddRemotesSync(firsts) 1534 if len(errs) != len(firsts) { 1535 t.Fatalf("first add mismatching result count: have %d, want %d", len(errs), len(firsts)) 1536 } 1537 for i, err := range errs { 1538 if err != nil { 1539 t.Errorf("add %d failed: %v", i, err) 1540 } 1541 } 1542 pending, queued := pool.Stats() 1543 if pending != 1 { 1544 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1) 1545 } 1546 if queued != len(txs)/2-1 { 1547 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, len(txs)/2-1) 1548 } 1549 // Try to add all of them now and ensure previous ones error out as knowns 1550 errs = pool.AddRemotesSync(txs) 1551 if len(errs) != len(txs) { 1552 t.Fatalf("all add mismatching result count: have %d, want %d", len(errs), len(txs)) 1553 } 1554 for i, err := range errs { 1555 if i%2 == 0 && err == nil { 1556 t.Errorf("add %d succeeded, should have failed as known", i) 1557 } 1558 if i%2 == 1 && err != nil { 1559 t.Errorf("add %d failed: %v", i, err) 1560 } 1561 } 1562 pending, queued = pool.Stats() 1563 if pending != len(txs) { 1564 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, len(txs)) 1565 } 1566 if queued != 0 { 1567 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1568 } 1569 if err := validateTxPoolInternals(pool); err != nil { 1570 t.Fatalf("pool internal state corrupted: %v", err) 1571 } 1572 } 1573 1574 // Tests that the pool rejects replacement transactions that don't meet the minimum 1575 // price bump required. 1576 func TestTransactionReplacement(t *testing.T) { 1577 t.Parallel() 1578 1579 // Create the pool to test the pricing enforcement with 1580 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1581 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1582 1583 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1584 defer pool.Stop() 1585 1586 // Keep track of transaction events to ensure all executables get announced 1587 events := make(chan NewTxsEvent, 32) 1588 sub := pool.txFeed.Subscribe(events) 1589 defer sub.Unsubscribe() 1590 1591 // Create a test account to add transactions with 1592 key, _ := crypto.GenerateKey() 1593 pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) 1594 1595 // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1596 price := int64(100) 1597 threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100 1598 1599 if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil { 1600 t.Fatalf("failed to add original cheap pending transaction: %v", err) 1601 } 1602 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1603 t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1604 } 1605 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil { 1606 t.Fatalf("failed to replace original cheap pending transaction: %v", err) 1607 } 1608 if err := validateEvents(events, 2); err != nil { 1609 t.Fatalf("cheap replacement event firing failed: %v", err) 1610 } 1611 1612 if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil { 1613 t.Fatalf("failed to add original proper pending transaction: %v", err) 1614 } 1615 if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1616 t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1617 } 1618 if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil { 1619 t.Fatalf("failed to replace original proper pending transaction: %v", err) 1620 } 1621 if err := validateEvents(events, 2); err != nil { 1622 t.Fatalf("proper replacement event firing failed: %v", err) 1623 } 1624 1625 // Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) 1626 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil { 1627 t.Fatalf("failed to add original cheap queued transaction: %v", err) 1628 } 1629 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced { 1630 t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1631 } 1632 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil { 1633 t.Fatalf("failed to replace original cheap queued transaction: %v", err) 1634 } 1635 1636 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil { 1637 t.Fatalf("failed to add original proper queued transaction: %v", err) 1638 } 1639 if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced { 1640 t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced) 1641 } 1642 if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil { 1643 t.Fatalf("failed to replace original proper queued transaction: %v", err) 1644 } 1645 1646 if err := validateEvents(events, 0); err != nil { 1647 t.Fatalf("queued replacement event firing failed: %v", err) 1648 } 1649 if err := validateTxPoolInternals(pool); err != nil { 1650 t.Fatalf("pool internal state corrupted: %v", err) 1651 } 1652 } 1653 1654 // Tests that local transactions are journaled to disk, but remote transactions 1655 // get discarded between restarts. 1656 func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } 1657 func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) } 1658 1659 func testTransactionJournaling(t *testing.T, nolocals bool) { 1660 t.Parallel() 1661 1662 // Create a temporary file for the journal 1663 file, err := ioutil.TempFile("", "") 1664 if err != nil { 1665 t.Fatalf("failed to create temporary journal: %v", err) 1666 } 1667 journal := file.Name() 1668 defer os.Remove(journal) 1669 1670 // Clean up the temporary file, we only need the path for now 1671 file.Close() 1672 os.Remove(journal) 1673 1674 // Create the original pool to inject transaction into the journal 1675 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1676 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1677 1678 config := testTxPoolConfig 1679 config.NoLocals = nolocals 1680 config.Journal = journal 1681 config.Rejournal = time.Second 1682 1683 pool := NewTxPool(config, params.TestChainConfig, blockchain) 1684 1685 // Create two test accounts to ensure remotes expire but locals do not 1686 local, _ := crypto.GenerateKey() 1687 remote, _ := crypto.GenerateKey() 1688 1689 pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) 1690 pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) 1691 1692 // Add three local and a remote transactions and ensure they are queued up 1693 if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil { 1694 t.Fatalf("failed to add local transaction: %v", err) 1695 } 1696 if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { 1697 t.Fatalf("failed to add local transaction: %v", err) 1698 } 1699 if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil { 1700 t.Fatalf("failed to add local transaction: %v", err) 1701 } 1702 if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil { 1703 t.Fatalf("failed to add remote transaction: %v", err) 1704 } 1705 pending, queued := pool.Stats() 1706 if pending != 4 { 1707 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4) 1708 } 1709 if queued != 0 { 1710 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1711 } 1712 if err := validateTxPoolInternals(pool); err != nil { 1713 t.Fatalf("pool internal state corrupted: %v", err) 1714 } 1715 // Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive 1716 pool.Stop() 1717 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1718 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1719 1720 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1721 1722 pending, queued = pool.Stats() 1723 if queued != 0 { 1724 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1725 } 1726 if nolocals { 1727 if pending != 0 { 1728 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1729 } 1730 } else { 1731 if pending != 2 { 1732 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1733 } 1734 } 1735 if err := validateTxPoolInternals(pool); err != nil { 1736 t.Fatalf("pool internal state corrupted: %v", err) 1737 } 1738 // Bump the nonce temporarily and ensure the newly invalidated transaction is removed 1739 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2) 1740 <-pool.requestReset(nil, nil) 1741 time.Sleep(2 * config.Rejournal) 1742 pool.Stop() 1743 1744 statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1) 1745 blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)} 1746 pool = NewTxPool(config, params.TestChainConfig, blockchain) 1747 1748 pending, queued = pool.Stats() 1749 if pending != 0 { 1750 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0) 1751 } 1752 if nolocals { 1753 if queued != 0 { 1754 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0) 1755 } 1756 } else { 1757 if queued != 1 { 1758 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1) 1759 } 1760 } 1761 if err := validateTxPoolInternals(pool); err != nil { 1762 t.Fatalf("pool internal state corrupted: %v", err) 1763 } 1764 pool.Stop() 1765 } 1766 1767 // TestTransactionStatusCheck tests that the pool can correctly retrieve the 1768 // pending status of individual transactions. 1769 func TestTransactionStatusCheck(t *testing.T) { 1770 t.Parallel() 1771 1772 // Create the pool to test the status retrievals with 1773 statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) 1774 blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} 1775 1776 pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) 1777 defer pool.Stop() 1778 1779 // Create the test accounts to check various transaction statuses with 1780 keys := make([]*ecdsa.PrivateKey, 3) 1781 for i := 0; i < len(keys); i++ { 1782 keys[i], _ = crypto.GenerateKey() 1783 pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) 1784 } 1785 // Generate and queue a batch of transactions, both pending and queued 1786 txs := types.Transactions{} 1787 1788 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only 1789 txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued 1790 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1])) 1791 txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only 1792 1793 // Import the transaction and ensure they are correctly added 1794 pool.AddRemotesSync(txs) 1795 1796 pending, queued := pool.Stats() 1797 if pending != 2 { 1798 t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2) 1799 } 1800 if queued != 2 { 1801 t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2) 1802 } 1803 if err := validateTxPoolInternals(pool); err != nil { 1804 t.Fatalf("pool internal state corrupted: %v", err) 1805 } 1806 // Retrieve the status of each transaction and validate them 1807 hashes := make([]common.Hash, len(txs)) 1808 for i, tx := range txs { 1809 hashes[i] = tx.Hash() 1810 } 1811 hashes = append(hashes, common.Hash{}) 1812 1813 statuses := pool.Status(hashes) 1814 expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown} 1815 1816 for i := 0; i < len(statuses); i++ { 1817 if statuses[i] != expect[i] { 1818 t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i]) 1819 } 1820 } 1821 } 1822 1823 // Test the transaction slots consumption is computed correctly 1824 func TestTransactionSlotCount(t *testing.T) { 1825 t.Parallel() 1826 1827 key, _ := crypto.GenerateKey() 1828 1829 // Check that an empty transaction consumes a single slot 1830 smallTx := pricedDataTransaction(0, 0, big.NewInt(0), key, 0) 1831 if slots := numSlots(smallTx); slots != 1 { 1832 t.Fatalf("small transactions slot count mismatch: have %d want %d", slots, 1) 1833 } 1834 // Check that a large transaction consumes the correct number of slots 1835 bigTx := pricedDataTransaction(0, 0, big.NewInt(0), key, uint64(10*txSlotSize)) 1836 if slots := numSlots(bigTx); slots != 11 { 1837 t.Fatalf("big transactions slot count mismatch: have %d want %d", slots, 11) 1838 } 1839 } 1840 1841 // Benchmarks the speed of validating the contents of the pending queue of the 1842 // transaction pool. 1843 func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } 1844 func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } 1845 func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } 1846 1847 func benchmarkPendingDemotion(b *testing.B, size int) { 1848 // Add a batch of transactions to a pool one by one 1849 pool, key := setupTxPool() 1850 defer pool.Stop() 1851 1852 account := crypto.PubkeyToAddress(key.PublicKey) 1853 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1854 1855 for i := 0; i < size; i++ { 1856 tx := transaction(uint64(i), 100000, key) 1857 pool.promoteTx(account, tx.Hash(), tx) 1858 } 1859 // Benchmark the speed of pool validation 1860 b.ResetTimer() 1861 for i := 0; i < b.N; i++ { 1862 pool.demoteUnexecutables() 1863 } 1864 } 1865 1866 // Benchmarks the speed of scheduling the contents of the future queue of the 1867 // transaction pool. 1868 func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } 1869 func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } 1870 func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } 1871 1872 func benchmarkFuturePromotion(b *testing.B, size int) { 1873 // Add a batch of transactions to a pool one by one 1874 pool, key := setupTxPool() 1875 defer pool.Stop() 1876 1877 account := crypto.PubkeyToAddress(key.PublicKey) 1878 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1879 1880 for i := 0; i < size; i++ { 1881 tx := transaction(uint64(1+i), 100000, key) 1882 pool.enqueueTx(tx.Hash(), tx) 1883 } 1884 // Benchmark the speed of pool validation 1885 b.ResetTimer() 1886 for i := 0; i < b.N; i++ { 1887 pool.promoteExecutables(nil) 1888 } 1889 } 1890 1891 // Benchmarks the speed of batched transaction insertion. 1892 func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } 1893 func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } 1894 func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } 1895 1896 func benchmarkPoolBatchInsert(b *testing.B, size int) { 1897 // Generate a batch of transactions to enqueue into the pool 1898 pool, key := setupTxPool() 1899 defer pool.Stop() 1900 1901 account := crypto.PubkeyToAddress(key.PublicKey) 1902 pool.currentState.AddBalance(account, big.NewInt(1000000)) 1903 1904 batches := make([]types.Transactions, b.N) 1905 for i := 0; i < b.N; i++ { 1906 batches[i] = make(types.Transactions, size) 1907 for j := 0; j < size; j++ { 1908 batches[i][j] = transaction(uint64(size*i+j), 100000, key) 1909 } 1910 } 1911 // Benchmark importing the transactions into the queue 1912 b.ResetTimer() 1913 for _, batch := range batches { 1914 pool.AddRemotes(batch) 1915 } 1916 }