github.com/JimmyHuang454/JLS-go@v0.0.0-20230831150107-90d536585ba0/internal/reflectlite/type.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package reflectlite implements lightweight version of reflect, not using
     6  // any package except for "runtime" and "unsafe".
     7  package reflectlite
     8  
     9  import "unsafe"
    10  
    11  // Type is the representation of a Go type.
    12  //
    13  // Not all methods apply to all kinds of types. Restrictions,
    14  // if any, are noted in the documentation for each method.
    15  // Use the Kind method to find out the kind of type before
    16  // calling kind-specific methods. Calling a method
    17  // inappropriate to the kind of type causes a run-time panic.
    18  //
    19  // Type values are comparable, such as with the == operator,
    20  // so they can be used as map keys.
    21  // Two Type values are equal if they represent identical types.
    22  type Type interface {
    23  	// Methods applicable to all types.
    24  
    25  	// Name returns the type's name within its package for a defined type.
    26  	// For other (non-defined) types it returns the empty string.
    27  	Name() string
    28  
    29  	// PkgPath returns a defined type's package path, that is, the import path
    30  	// that uniquely identifies the package, such as "encoding/base64".
    31  	// If the type was predeclared (string, error) or not defined (*T, struct{},
    32  	// []int, or A where A is an alias for a non-defined type), the package path
    33  	// will be the empty string.
    34  	PkgPath() string
    35  
    36  	// Size returns the number of bytes needed to store
    37  	// a value of the given type; it is analogous to unsafe.Sizeof.
    38  	Size() uintptr
    39  
    40  	// Kind returns the specific kind of this type.
    41  	Kind() Kind
    42  
    43  	// Implements reports whether the type implements the interface type u.
    44  	Implements(u Type) bool
    45  
    46  	// AssignableTo reports whether a value of the type is assignable to type u.
    47  	AssignableTo(u Type) bool
    48  
    49  	// Comparable reports whether values of this type are comparable.
    50  	Comparable() bool
    51  
    52  	// String returns a string representation of the type.
    53  	// The string representation may use shortened package names
    54  	// (e.g., base64 instead of "encoding/base64") and is not
    55  	// guaranteed to be unique among types. To test for type identity,
    56  	// compare the Types directly.
    57  	String() string
    58  
    59  	// Elem returns a type's element type.
    60  	// It panics if the type's Kind is not Ptr.
    61  	Elem() Type
    62  
    63  	common() *rtype
    64  	uncommon() *uncommonType
    65  }
    66  
    67  /*
    68   * These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go).
    69   * A few are known to ../runtime/type.go to convey to debuggers.
    70   * They are also known to ../runtime/type.go.
    71   */
    72  
    73  // A Kind represents the specific kind of type that a Type represents.
    74  // The zero Kind is not a valid kind.
    75  type Kind uint
    76  
    77  const (
    78  	Invalid Kind = iota
    79  	Bool
    80  	Int
    81  	Int8
    82  	Int16
    83  	Int32
    84  	Int64
    85  	Uint
    86  	Uint8
    87  	Uint16
    88  	Uint32
    89  	Uint64
    90  	Uintptr
    91  	Float32
    92  	Float64
    93  	Complex64
    94  	Complex128
    95  	Array
    96  	Chan
    97  	Func
    98  	Interface
    99  	Map
   100  	Pointer
   101  	Slice
   102  	String
   103  	Struct
   104  	UnsafePointer
   105  )
   106  
   107  const Ptr = Pointer
   108  
   109  // tflag is used by an rtype to signal what extra type information is
   110  // available in the memory directly following the rtype value.
   111  //
   112  // tflag values must be kept in sync with copies in:
   113  //
   114  //	cmd/compile/internal/reflectdata/reflect.go
   115  //	cmd/link/internal/ld/decodesym.go
   116  //	runtime/type.go
   117  type tflag uint8
   118  
   119  const (
   120  	// tflagUncommon means that there is a pointer, *uncommonType,
   121  	// just beyond the outer type structure.
   122  	//
   123  	// For example, if t.Kind() == Struct and t.tflag&tflagUncommon != 0,
   124  	// then t has uncommonType data and it can be accessed as:
   125  	//
   126  	//	type tUncommon struct {
   127  	//		structType
   128  	//		u uncommonType
   129  	//	}
   130  	//	u := &(*tUncommon)(unsafe.Pointer(t)).u
   131  	tflagUncommon tflag = 1 << 0
   132  
   133  	// tflagExtraStar means the name in the str field has an
   134  	// extraneous '*' prefix. This is because for most types T in
   135  	// a program, the type *T also exists and reusing the str data
   136  	// saves binary size.
   137  	tflagExtraStar tflag = 1 << 1
   138  
   139  	// tflagNamed means the type has a name.
   140  	tflagNamed tflag = 1 << 2
   141  
   142  	// tflagRegularMemory means that equal and hash functions can treat
   143  	// this type as a single region of t.size bytes.
   144  	tflagRegularMemory tflag = 1 << 3
   145  )
   146  
   147  // rtype is the common implementation of most values.
   148  // It is embedded in other struct types.
   149  //
   150  // rtype must be kept in sync with ../runtime/type.go:/^type._type.
   151  type rtype struct {
   152  	size       uintptr
   153  	ptrdata    uintptr // number of bytes in the type that can contain pointers
   154  	hash       uint32  // hash of type; avoids computation in hash tables
   155  	tflag      tflag   // extra type information flags
   156  	align      uint8   // alignment of variable with this type
   157  	fieldAlign uint8   // alignment of struct field with this type
   158  	kind       uint8   // enumeration for C
   159  	// function for comparing objects of this type
   160  	// (ptr to object A, ptr to object B) -> ==?
   161  	equal     func(unsafe.Pointer, unsafe.Pointer) bool
   162  	gcdata    *byte   // garbage collection data
   163  	str       nameOff // string form
   164  	ptrToThis typeOff // type for pointer to this type, may be zero
   165  }
   166  
   167  // Method on non-interface type
   168  type method struct {
   169  	name nameOff // name of method
   170  	mtyp typeOff // method type (without receiver)
   171  	ifn  textOff // fn used in interface call (one-word receiver)
   172  	tfn  textOff // fn used for normal method call
   173  }
   174  
   175  // uncommonType is present only for defined types or types with methods
   176  // (if T is a defined type, the uncommonTypes for T and *T have methods).
   177  // Using a pointer to this struct reduces the overall size required
   178  // to describe a non-defined type with no methods.
   179  type uncommonType struct {
   180  	pkgPath nameOff // import path; empty for built-in types like int, string
   181  	mcount  uint16  // number of methods
   182  	xcount  uint16  // number of exported methods
   183  	moff    uint32  // offset from this uncommontype to [mcount]method
   184  	_       uint32  // unused
   185  }
   186  
   187  // chanDir represents a channel type's direction.
   188  type chanDir int
   189  
   190  const (
   191  	recvDir chanDir             = 1 << iota // <-chan
   192  	sendDir                                 // chan<-
   193  	bothDir = recvDir | sendDir             // chan
   194  )
   195  
   196  // arrayType represents a fixed array type.
   197  type arrayType struct {
   198  	rtype
   199  	elem  *rtype // array element type
   200  	slice *rtype // slice type
   201  	len   uintptr
   202  }
   203  
   204  // chanType represents a channel type.
   205  type chanType struct {
   206  	rtype
   207  	elem *rtype  // channel element type
   208  	dir  uintptr // channel direction (chanDir)
   209  }
   210  
   211  // funcType represents a function type.
   212  //
   213  // A *rtype for each in and out parameter is stored in an array that
   214  // directly follows the funcType (and possibly its uncommonType). So
   215  // a function type with one method, one input, and one output is:
   216  //
   217  //	struct {
   218  //		funcType
   219  //		uncommonType
   220  //		[2]*rtype    // [0] is in, [1] is out
   221  //	}
   222  type funcType struct {
   223  	rtype
   224  	inCount  uint16
   225  	outCount uint16 // top bit is set if last input parameter is ...
   226  }
   227  
   228  // imethod represents a method on an interface type
   229  type imethod struct {
   230  	name nameOff // name of method
   231  	typ  typeOff // .(*FuncType) underneath
   232  }
   233  
   234  // interfaceType represents an interface type.
   235  type interfaceType struct {
   236  	rtype
   237  	pkgPath name      // import path
   238  	methods []imethod // sorted by hash
   239  }
   240  
   241  // mapType represents a map type.
   242  type mapType struct {
   243  	rtype
   244  	key    *rtype // map key type
   245  	elem   *rtype // map element (value) type
   246  	bucket *rtype // internal bucket structure
   247  	// function for hashing keys (ptr to key, seed) -> hash
   248  	hasher     func(unsafe.Pointer, uintptr) uintptr
   249  	keysize    uint8  // size of key slot
   250  	valuesize  uint8  // size of value slot
   251  	bucketsize uint16 // size of bucket
   252  	flags      uint32
   253  }
   254  
   255  // ptrType represents a pointer type.
   256  type ptrType struct {
   257  	rtype
   258  	elem *rtype // pointer element (pointed at) type
   259  }
   260  
   261  // sliceType represents a slice type.
   262  type sliceType struct {
   263  	rtype
   264  	elem *rtype // slice element type
   265  }
   266  
   267  // Struct field
   268  type structField struct {
   269  	name   name    // name is always non-empty
   270  	typ    *rtype  // type of field
   271  	offset uintptr // byte offset of field
   272  }
   273  
   274  func (f *structField) embedded() bool {
   275  	return f.name.embedded()
   276  }
   277  
   278  // structType represents a struct type.
   279  type structType struct {
   280  	rtype
   281  	pkgPath name
   282  	fields  []structField // sorted by offset
   283  }
   284  
   285  // name is an encoded type name with optional extra data.
   286  //
   287  // The first byte is a bit field containing:
   288  //
   289  //	1<<0 the name is exported
   290  //	1<<1 tag data follows the name
   291  //	1<<2 pkgPath nameOff follows the name and tag
   292  //
   293  // The next two bytes are the data length:
   294  //
   295  //	l := uint16(data[1])<<8 | uint16(data[2])
   296  //
   297  // Bytes [3:3+l] are the string data.
   298  //
   299  // If tag data follows then bytes 3+l and 3+l+1 are the tag length,
   300  // with the data following.
   301  //
   302  // If the import path follows, then 4 bytes at the end of
   303  // the data form a nameOff. The import path is only set for concrete
   304  // methods that are defined in a different package than their type.
   305  //
   306  // If a name starts with "*", then the exported bit represents
   307  // whether the pointed to type is exported.
   308  type name struct {
   309  	bytes *byte
   310  }
   311  
   312  func (n name) data(off int, whySafe string) *byte {
   313  	return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off), whySafe))
   314  }
   315  
   316  func (n name) isExported() bool {
   317  	return (*n.bytes)&(1<<0) != 0
   318  }
   319  
   320  func (n name) hasTag() bool {
   321  	return (*n.bytes)&(1<<1) != 0
   322  }
   323  
   324  func (n name) embedded() bool {
   325  	return (*n.bytes)&(1<<3) != 0
   326  }
   327  
   328  // readVarint parses a varint as encoded by encoding/binary.
   329  // It returns the number of encoded bytes and the encoded value.
   330  func (n name) readVarint(off int) (int, int) {
   331  	v := 0
   332  	for i := 0; ; i++ {
   333  		x := *n.data(off+i, "read varint")
   334  		v += int(x&0x7f) << (7 * i)
   335  		if x&0x80 == 0 {
   336  			return i + 1, v
   337  		}
   338  	}
   339  }
   340  
   341  func (n name) name() string {
   342  	if n.bytes == nil {
   343  		return ""
   344  	}
   345  	i, l := n.readVarint(1)
   346  	return unsafe.String(n.data(1+i, "non-empty string"), l)
   347  }
   348  
   349  func (n name) tag() string {
   350  	if !n.hasTag() {
   351  		return ""
   352  	}
   353  	i, l := n.readVarint(1)
   354  	i2, l2 := n.readVarint(1 + i + l)
   355  	return unsafe.String(n.data(1+i+l+i2, "non-empty string"), l2)
   356  }
   357  
   358  func (n name) pkgPath() string {
   359  	if n.bytes == nil || *n.data(0, "name flag field")&(1<<2) == 0 {
   360  		return ""
   361  	}
   362  	i, l := n.readVarint(1)
   363  	off := 1 + i + l
   364  	if n.hasTag() {
   365  		i2, l2 := n.readVarint(off)
   366  		off += i2 + l2
   367  	}
   368  	var nameOff int32
   369  	// Note that this field may not be aligned in memory,
   370  	// so we cannot use a direct int32 assignment here.
   371  	copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.data(off, "name offset field")))[:])
   372  	pkgPathName := name{(*byte)(resolveTypeOff(unsafe.Pointer(n.bytes), nameOff))}
   373  	return pkgPathName.name()
   374  }
   375  
   376  /*
   377   * The compiler knows the exact layout of all the data structures above.
   378   * The compiler does not know about the data structures and methods below.
   379   */
   380  
   381  const (
   382  	kindDirectIface = 1 << 5
   383  	kindGCProg      = 1 << 6 // Type.gc points to GC program
   384  	kindMask        = (1 << 5) - 1
   385  )
   386  
   387  // String returns the name of k.
   388  func (k Kind) String() string {
   389  	if int(k) < len(kindNames) {
   390  		return kindNames[k]
   391  	}
   392  	return kindNames[0]
   393  }
   394  
   395  var kindNames = []string{
   396  	Invalid:       "invalid",
   397  	Bool:          "bool",
   398  	Int:           "int",
   399  	Int8:          "int8",
   400  	Int16:         "int16",
   401  	Int32:         "int32",
   402  	Int64:         "int64",
   403  	Uint:          "uint",
   404  	Uint8:         "uint8",
   405  	Uint16:        "uint16",
   406  	Uint32:        "uint32",
   407  	Uint64:        "uint64",
   408  	Uintptr:       "uintptr",
   409  	Float32:       "float32",
   410  	Float64:       "float64",
   411  	Complex64:     "complex64",
   412  	Complex128:    "complex128",
   413  	Array:         "array",
   414  	Chan:          "chan",
   415  	Func:          "func",
   416  	Interface:     "interface",
   417  	Map:           "map",
   418  	Ptr:           "ptr",
   419  	Slice:         "slice",
   420  	String:        "string",
   421  	Struct:        "struct",
   422  	UnsafePointer: "unsafe.Pointer",
   423  }
   424  
   425  func (t *uncommonType) methods() []method {
   426  	if t.mcount == 0 {
   427  		return nil
   428  	}
   429  	return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.mcount > 0"))[:t.mcount:t.mcount]
   430  }
   431  
   432  func (t *uncommonType) exportedMethods() []method {
   433  	if t.xcount == 0 {
   434  		return nil
   435  	}
   436  	return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.xcount > 0"))[:t.xcount:t.xcount]
   437  }
   438  
   439  // resolveNameOff resolves a name offset from a base pointer.
   440  // The (*rtype).nameOff method is a convenience wrapper for this function.
   441  // Implemented in the runtime package.
   442  func resolveNameOff(ptrInModule unsafe.Pointer, off int32) unsafe.Pointer
   443  
   444  // resolveTypeOff resolves an *rtype offset from a base type.
   445  // The (*rtype).typeOff method is a convenience wrapper for this function.
   446  // Implemented in the runtime package.
   447  func resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer
   448  
   449  type nameOff int32 // offset to a name
   450  type typeOff int32 // offset to an *rtype
   451  type textOff int32 // offset from top of text section
   452  
   453  func (t *rtype) nameOff(off nameOff) name {
   454  	return name{(*byte)(resolveNameOff(unsafe.Pointer(t), int32(off)))}
   455  }
   456  
   457  func (t *rtype) typeOff(off typeOff) *rtype {
   458  	return (*rtype)(resolveTypeOff(unsafe.Pointer(t), int32(off)))
   459  }
   460  
   461  func (t *rtype) uncommon() *uncommonType {
   462  	if t.tflag&tflagUncommon == 0 {
   463  		return nil
   464  	}
   465  	switch t.Kind() {
   466  	case Struct:
   467  		return &(*structTypeUncommon)(unsafe.Pointer(t)).u
   468  	case Ptr:
   469  		type u struct {
   470  			ptrType
   471  			u uncommonType
   472  		}
   473  		return &(*u)(unsafe.Pointer(t)).u
   474  	case Func:
   475  		type u struct {
   476  			funcType
   477  			u uncommonType
   478  		}
   479  		return &(*u)(unsafe.Pointer(t)).u
   480  	case Slice:
   481  		type u struct {
   482  			sliceType
   483  			u uncommonType
   484  		}
   485  		return &(*u)(unsafe.Pointer(t)).u
   486  	case Array:
   487  		type u struct {
   488  			arrayType
   489  			u uncommonType
   490  		}
   491  		return &(*u)(unsafe.Pointer(t)).u
   492  	case Chan:
   493  		type u struct {
   494  			chanType
   495  			u uncommonType
   496  		}
   497  		return &(*u)(unsafe.Pointer(t)).u
   498  	case Map:
   499  		type u struct {
   500  			mapType
   501  			u uncommonType
   502  		}
   503  		return &(*u)(unsafe.Pointer(t)).u
   504  	case Interface:
   505  		type u struct {
   506  			interfaceType
   507  			u uncommonType
   508  		}
   509  		return &(*u)(unsafe.Pointer(t)).u
   510  	default:
   511  		type u struct {
   512  			rtype
   513  			u uncommonType
   514  		}
   515  		return &(*u)(unsafe.Pointer(t)).u
   516  	}
   517  }
   518  
   519  func (t *rtype) String() string {
   520  	s := t.nameOff(t.str).name()
   521  	if t.tflag&tflagExtraStar != 0 {
   522  		return s[1:]
   523  	}
   524  	return s
   525  }
   526  
   527  func (t *rtype) Size() uintptr { return t.size }
   528  
   529  func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) }
   530  
   531  func (t *rtype) pointers() bool { return t.ptrdata != 0 }
   532  
   533  func (t *rtype) common() *rtype { return t }
   534  
   535  func (t *rtype) exportedMethods() []method {
   536  	ut := t.uncommon()
   537  	if ut == nil {
   538  		return nil
   539  	}
   540  	return ut.exportedMethods()
   541  }
   542  
   543  func (t *rtype) NumMethod() int {
   544  	if t.Kind() == Interface {
   545  		tt := (*interfaceType)(unsafe.Pointer(t))
   546  		return tt.NumMethod()
   547  	}
   548  	return len(t.exportedMethods())
   549  }
   550  
   551  func (t *rtype) PkgPath() string {
   552  	if t.tflag&tflagNamed == 0 {
   553  		return ""
   554  	}
   555  	ut := t.uncommon()
   556  	if ut == nil {
   557  		return ""
   558  	}
   559  	return t.nameOff(ut.pkgPath).name()
   560  }
   561  
   562  func (t *rtype) hasName() bool {
   563  	return t.tflag&tflagNamed != 0
   564  }
   565  
   566  func (t *rtype) Name() string {
   567  	if !t.hasName() {
   568  		return ""
   569  	}
   570  	s := t.String()
   571  	i := len(s) - 1
   572  	sqBrackets := 0
   573  	for i >= 0 && (s[i] != '.' || sqBrackets != 0) {
   574  		switch s[i] {
   575  		case ']':
   576  			sqBrackets++
   577  		case '[':
   578  			sqBrackets--
   579  		}
   580  		i--
   581  	}
   582  	return s[i+1:]
   583  }
   584  
   585  func (t *rtype) chanDir() chanDir {
   586  	if t.Kind() != Chan {
   587  		panic("reflect: chanDir of non-chan type")
   588  	}
   589  	tt := (*chanType)(unsafe.Pointer(t))
   590  	return chanDir(tt.dir)
   591  }
   592  
   593  func (t *rtype) Elem() Type {
   594  	switch t.Kind() {
   595  	case Array:
   596  		tt := (*arrayType)(unsafe.Pointer(t))
   597  		return toType(tt.elem)
   598  	case Chan:
   599  		tt := (*chanType)(unsafe.Pointer(t))
   600  		return toType(tt.elem)
   601  	case Map:
   602  		tt := (*mapType)(unsafe.Pointer(t))
   603  		return toType(tt.elem)
   604  	case Ptr:
   605  		tt := (*ptrType)(unsafe.Pointer(t))
   606  		return toType(tt.elem)
   607  	case Slice:
   608  		tt := (*sliceType)(unsafe.Pointer(t))
   609  		return toType(tt.elem)
   610  	}
   611  	panic("reflect: Elem of invalid type")
   612  }
   613  
   614  func (t *rtype) In(i int) Type {
   615  	if t.Kind() != Func {
   616  		panic("reflect: In of non-func type")
   617  	}
   618  	tt := (*funcType)(unsafe.Pointer(t))
   619  	return toType(tt.in()[i])
   620  }
   621  
   622  func (t *rtype) Key() Type {
   623  	if t.Kind() != Map {
   624  		panic("reflect: Key of non-map type")
   625  	}
   626  	tt := (*mapType)(unsafe.Pointer(t))
   627  	return toType(tt.key)
   628  }
   629  
   630  func (t *rtype) Len() int {
   631  	if t.Kind() != Array {
   632  		panic("reflect: Len of non-array type")
   633  	}
   634  	tt := (*arrayType)(unsafe.Pointer(t))
   635  	return int(tt.len)
   636  }
   637  
   638  func (t *rtype) NumField() int {
   639  	if t.Kind() != Struct {
   640  		panic("reflect: NumField of non-struct type")
   641  	}
   642  	tt := (*structType)(unsafe.Pointer(t))
   643  	return len(tt.fields)
   644  }
   645  
   646  func (t *rtype) NumIn() int {
   647  	if t.Kind() != Func {
   648  		panic("reflect: NumIn of non-func type")
   649  	}
   650  	tt := (*funcType)(unsafe.Pointer(t))
   651  	return int(tt.inCount)
   652  }
   653  
   654  func (t *rtype) NumOut() int {
   655  	if t.Kind() != Func {
   656  		panic("reflect: NumOut of non-func type")
   657  	}
   658  	tt := (*funcType)(unsafe.Pointer(t))
   659  	return len(tt.out())
   660  }
   661  
   662  func (t *rtype) Out(i int) Type {
   663  	if t.Kind() != Func {
   664  		panic("reflect: Out of non-func type")
   665  	}
   666  	tt := (*funcType)(unsafe.Pointer(t))
   667  	return toType(tt.out()[i])
   668  }
   669  
   670  func (t *funcType) in() []*rtype {
   671  	uadd := unsafe.Sizeof(*t)
   672  	if t.tflag&tflagUncommon != 0 {
   673  		uadd += unsafe.Sizeof(uncommonType{})
   674  	}
   675  	if t.inCount == 0 {
   676  		return nil
   677  	}
   678  	return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "t.inCount > 0"))[:t.inCount:t.inCount]
   679  }
   680  
   681  func (t *funcType) out() []*rtype {
   682  	uadd := unsafe.Sizeof(*t)
   683  	if t.tflag&tflagUncommon != 0 {
   684  		uadd += unsafe.Sizeof(uncommonType{})
   685  	}
   686  	outCount := t.outCount & (1<<15 - 1)
   687  	if outCount == 0 {
   688  		return nil
   689  	}
   690  	return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "outCount > 0"))[t.inCount : t.inCount+outCount : t.inCount+outCount]
   691  }
   692  
   693  // add returns p+x.
   694  //
   695  // The whySafe string is ignored, so that the function still inlines
   696  // as efficiently as p+x, but all call sites should use the string to
   697  // record why the addition is safe, which is to say why the addition
   698  // does not cause x to advance to the very end of p's allocation
   699  // and therefore point incorrectly at the next block in memory.
   700  func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
   701  	return unsafe.Pointer(uintptr(p) + x)
   702  }
   703  
   704  // NumMethod returns the number of interface methods in the type's method set.
   705  func (t *interfaceType) NumMethod() int { return len(t.methods) }
   706  
   707  // TypeOf returns the reflection Type that represents the dynamic type of i.
   708  // If i is a nil interface value, TypeOf returns nil.
   709  func TypeOf(i any) Type {
   710  	eface := *(*emptyInterface)(unsafe.Pointer(&i))
   711  	return toType(eface.typ)
   712  }
   713  
   714  func (t *rtype) Implements(u Type) bool {
   715  	if u == nil {
   716  		panic("reflect: nil type passed to Type.Implements")
   717  	}
   718  	if u.Kind() != Interface {
   719  		panic("reflect: non-interface type passed to Type.Implements")
   720  	}
   721  	return implements(u.(*rtype), t)
   722  }
   723  
   724  func (t *rtype) AssignableTo(u Type) bool {
   725  	if u == nil {
   726  		panic("reflect: nil type passed to Type.AssignableTo")
   727  	}
   728  	uu := u.(*rtype)
   729  	return directlyAssignable(uu, t) || implements(uu, t)
   730  }
   731  
   732  func (t *rtype) Comparable() bool {
   733  	return t.equal != nil
   734  }
   735  
   736  // implements reports whether the type V implements the interface type T.
   737  func implements(T, V *rtype) bool {
   738  	if T.Kind() != Interface {
   739  		return false
   740  	}
   741  	t := (*interfaceType)(unsafe.Pointer(T))
   742  	if len(t.methods) == 0 {
   743  		return true
   744  	}
   745  
   746  	// The same algorithm applies in both cases, but the
   747  	// method tables for an interface type and a concrete type
   748  	// are different, so the code is duplicated.
   749  	// In both cases the algorithm is a linear scan over the two
   750  	// lists - T's methods and V's methods - simultaneously.
   751  	// Since method tables are stored in a unique sorted order
   752  	// (alphabetical, with no duplicate method names), the scan
   753  	// through V's methods must hit a match for each of T's
   754  	// methods along the way, or else V does not implement T.
   755  	// This lets us run the scan in overall linear time instead of
   756  	// the quadratic time  a naive search would require.
   757  	// See also ../runtime/iface.go.
   758  	if V.Kind() == Interface {
   759  		v := (*interfaceType)(unsafe.Pointer(V))
   760  		i := 0
   761  		for j := 0; j < len(v.methods); j++ {
   762  			tm := &t.methods[i]
   763  			tmName := t.nameOff(tm.name)
   764  			vm := &v.methods[j]
   765  			vmName := V.nameOff(vm.name)
   766  			if vmName.name() == tmName.name() && V.typeOff(vm.typ) == t.typeOff(tm.typ) {
   767  				if !tmName.isExported() {
   768  					tmPkgPath := tmName.pkgPath()
   769  					if tmPkgPath == "" {
   770  						tmPkgPath = t.pkgPath.name()
   771  					}
   772  					vmPkgPath := vmName.pkgPath()
   773  					if vmPkgPath == "" {
   774  						vmPkgPath = v.pkgPath.name()
   775  					}
   776  					if tmPkgPath != vmPkgPath {
   777  						continue
   778  					}
   779  				}
   780  				if i++; i >= len(t.methods) {
   781  					return true
   782  				}
   783  			}
   784  		}
   785  		return false
   786  	}
   787  
   788  	v := V.uncommon()
   789  	if v == nil {
   790  		return false
   791  	}
   792  	i := 0
   793  	vmethods := v.methods()
   794  	for j := 0; j < int(v.mcount); j++ {
   795  		tm := &t.methods[i]
   796  		tmName := t.nameOff(tm.name)
   797  		vm := vmethods[j]
   798  		vmName := V.nameOff(vm.name)
   799  		if vmName.name() == tmName.name() && V.typeOff(vm.mtyp) == t.typeOff(tm.typ) {
   800  			if !tmName.isExported() {
   801  				tmPkgPath := tmName.pkgPath()
   802  				if tmPkgPath == "" {
   803  					tmPkgPath = t.pkgPath.name()
   804  				}
   805  				vmPkgPath := vmName.pkgPath()
   806  				if vmPkgPath == "" {
   807  					vmPkgPath = V.nameOff(v.pkgPath).name()
   808  				}
   809  				if tmPkgPath != vmPkgPath {
   810  					continue
   811  				}
   812  			}
   813  			if i++; i >= len(t.methods) {
   814  				return true
   815  			}
   816  		}
   817  	}
   818  	return false
   819  }
   820  
   821  // directlyAssignable reports whether a value x of type V can be directly
   822  // assigned (using memmove) to a value of type T.
   823  // https://golang.org/doc/go_spec.html#Assignability
   824  // Ignoring the interface rules (implemented elsewhere)
   825  // and the ideal constant rules (no ideal constants at run time).
   826  func directlyAssignable(T, V *rtype) bool {
   827  	// x's type V is identical to T?
   828  	if T == V {
   829  		return true
   830  	}
   831  
   832  	// Otherwise at least one of T and V must not be defined
   833  	// and they must have the same kind.
   834  	if T.hasName() && V.hasName() || T.Kind() != V.Kind() {
   835  		return false
   836  	}
   837  
   838  	// x's type T and V must  have identical underlying types.
   839  	return haveIdenticalUnderlyingType(T, V, true)
   840  }
   841  
   842  func haveIdenticalType(T, V Type, cmpTags bool) bool {
   843  	if cmpTags {
   844  		return T == V
   845  	}
   846  
   847  	if T.Name() != V.Name() || T.Kind() != V.Kind() {
   848  		return false
   849  	}
   850  
   851  	return haveIdenticalUnderlyingType(T.common(), V.common(), false)
   852  }
   853  
   854  func haveIdenticalUnderlyingType(T, V *rtype, cmpTags bool) bool {
   855  	if T == V {
   856  		return true
   857  	}
   858  
   859  	kind := T.Kind()
   860  	if kind != V.Kind() {
   861  		return false
   862  	}
   863  
   864  	// Non-composite types of equal kind have same underlying type
   865  	// (the predefined instance of the type).
   866  	if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
   867  		return true
   868  	}
   869  
   870  	// Composite types.
   871  	switch kind {
   872  	case Array:
   873  		return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
   874  
   875  	case Chan:
   876  		// Special case:
   877  		// x is a bidirectional channel value, T is a channel type,
   878  		// and x's type V and T have identical element types.
   879  		if V.chanDir() == bothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) {
   880  			return true
   881  		}
   882  
   883  		// Otherwise continue test for identical underlying type.
   884  		return V.chanDir() == T.chanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
   885  
   886  	case Func:
   887  		t := (*funcType)(unsafe.Pointer(T))
   888  		v := (*funcType)(unsafe.Pointer(V))
   889  		if t.outCount != v.outCount || t.inCount != v.inCount {
   890  			return false
   891  		}
   892  		for i := 0; i < t.NumIn(); i++ {
   893  			if !haveIdenticalType(t.In(i), v.In(i), cmpTags) {
   894  				return false
   895  			}
   896  		}
   897  		for i := 0; i < t.NumOut(); i++ {
   898  			if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) {
   899  				return false
   900  			}
   901  		}
   902  		return true
   903  
   904  	case Interface:
   905  		t := (*interfaceType)(unsafe.Pointer(T))
   906  		v := (*interfaceType)(unsafe.Pointer(V))
   907  		if len(t.methods) == 0 && len(v.methods) == 0 {
   908  			return true
   909  		}
   910  		// Might have the same methods but still
   911  		// need a run time conversion.
   912  		return false
   913  
   914  	case Map:
   915  		return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
   916  
   917  	case Ptr, Slice:
   918  		return haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
   919  
   920  	case Struct:
   921  		t := (*structType)(unsafe.Pointer(T))
   922  		v := (*structType)(unsafe.Pointer(V))
   923  		if len(t.fields) != len(v.fields) {
   924  			return false
   925  		}
   926  		if t.pkgPath.name() != v.pkgPath.name() {
   927  			return false
   928  		}
   929  		for i := range t.fields {
   930  			tf := &t.fields[i]
   931  			vf := &v.fields[i]
   932  			if tf.name.name() != vf.name.name() {
   933  				return false
   934  			}
   935  			if !haveIdenticalType(tf.typ, vf.typ, cmpTags) {
   936  				return false
   937  			}
   938  			if cmpTags && tf.name.tag() != vf.name.tag() {
   939  				return false
   940  			}
   941  			if tf.offset != vf.offset {
   942  				return false
   943  			}
   944  			if tf.embedded() != vf.embedded() {
   945  				return false
   946  			}
   947  		}
   948  		return true
   949  	}
   950  
   951  	return false
   952  }
   953  
   954  type structTypeUncommon struct {
   955  	structType
   956  	u uncommonType
   957  }
   958  
   959  // toType converts from a *rtype to a Type that can be returned
   960  // to the client of package reflect. In gc, the only concern is that
   961  // a nil *rtype must be replaced by a nil Type, but in gccgo this
   962  // function takes care of ensuring that multiple *rtype for the same
   963  // type are coalesced into a single Type.
   964  func toType(t *rtype) Type {
   965  	if t == nil {
   966  		return nil
   967  	}
   968  	return t
   969  }
   970  
   971  // ifaceIndir reports whether t is stored indirectly in an interface value.
   972  func ifaceIndir(t *rtype) bool {
   973  	return t.kind&kindDirectIface == 0
   974  }