github.com/LampardNguyen234/go-ethereum@v1.10.16-0.20220117140830-b6a3b0260724/trie/stacktrie.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bufio"
    21  	"bytes"
    22  	"encoding/gob"
    23  	"errors"
    24  	"fmt"
    25  	"io"
    26  	"sync"
    27  
    28  	"github.com/LampardNguyen234/go-ethereum/common"
    29  	"github.com/LampardNguyen234/go-ethereum/ethdb"
    30  	"github.com/LampardNguyen234/go-ethereum/log"
    31  	"github.com/LampardNguyen234/go-ethereum/rlp"
    32  )
    33  
    34  var ErrCommitDisabled = errors.New("no database for committing")
    35  
    36  var stPool = sync.Pool{
    37  	New: func() interface{} {
    38  		return NewStackTrie(nil)
    39  	},
    40  }
    41  
    42  func stackTrieFromPool(db ethdb.KeyValueWriter) *StackTrie {
    43  	st := stPool.Get().(*StackTrie)
    44  	st.db = db
    45  	return st
    46  }
    47  
    48  func returnToPool(st *StackTrie) {
    49  	st.Reset()
    50  	stPool.Put(st)
    51  }
    52  
    53  // StackTrie is a trie implementation that expects keys to be inserted
    54  // in order. Once it determines that a subtree will no longer be inserted
    55  // into, it will hash it and free up the memory it uses.
    56  type StackTrie struct {
    57  	nodeType uint8                // node type (as in branch, ext, leaf)
    58  	val      []byte               // value contained by this node if it's a leaf
    59  	key      []byte               // key chunk covered by this (leaf|ext) node
    60  	children [16]*StackTrie       // list of children (for branch and exts)
    61  	db       ethdb.KeyValueWriter // Pointer to the commit db, can be nil
    62  }
    63  
    64  // NewStackTrie allocates and initializes an empty trie.
    65  func NewStackTrie(db ethdb.KeyValueWriter) *StackTrie {
    66  	return &StackTrie{
    67  		nodeType: emptyNode,
    68  		db:       db,
    69  	}
    70  }
    71  
    72  // NewFromBinary initialises a serialized stacktrie with the given db.
    73  func NewFromBinary(data []byte, db ethdb.KeyValueWriter) (*StackTrie, error) {
    74  	var st StackTrie
    75  	if err := st.UnmarshalBinary(data); err != nil {
    76  		return nil, err
    77  	}
    78  	// If a database is used, we need to recursively add it to every child
    79  	if db != nil {
    80  		st.setDb(db)
    81  	}
    82  	return &st, nil
    83  }
    84  
    85  // MarshalBinary implements encoding.BinaryMarshaler
    86  func (st *StackTrie) MarshalBinary() (data []byte, err error) {
    87  	var (
    88  		b bytes.Buffer
    89  		w = bufio.NewWriter(&b)
    90  	)
    91  	if err := gob.NewEncoder(w).Encode(struct {
    92  		Nodetype uint8
    93  		Val      []byte
    94  		Key      []byte
    95  	}{
    96  		st.nodeType,
    97  		st.val,
    98  		st.key,
    99  	}); err != nil {
   100  		return nil, err
   101  	}
   102  	for _, child := range st.children {
   103  		if child == nil {
   104  			w.WriteByte(0)
   105  			continue
   106  		}
   107  		w.WriteByte(1)
   108  		if childData, err := child.MarshalBinary(); err != nil {
   109  			return nil, err
   110  		} else {
   111  			w.Write(childData)
   112  		}
   113  	}
   114  	w.Flush()
   115  	return b.Bytes(), nil
   116  }
   117  
   118  // UnmarshalBinary implements encoding.BinaryUnmarshaler
   119  func (st *StackTrie) UnmarshalBinary(data []byte) error {
   120  	r := bytes.NewReader(data)
   121  	return st.unmarshalBinary(r)
   122  }
   123  
   124  func (st *StackTrie) unmarshalBinary(r io.Reader) error {
   125  	var dec struct {
   126  		Nodetype uint8
   127  		Val      []byte
   128  		Key      []byte
   129  	}
   130  	gob.NewDecoder(r).Decode(&dec)
   131  	st.nodeType = dec.Nodetype
   132  	st.val = dec.Val
   133  	st.key = dec.Key
   134  
   135  	var hasChild = make([]byte, 1)
   136  	for i := range st.children {
   137  		if _, err := r.Read(hasChild); err != nil {
   138  			return err
   139  		} else if hasChild[0] == 0 {
   140  			continue
   141  		}
   142  		var child StackTrie
   143  		child.unmarshalBinary(r)
   144  		st.children[i] = &child
   145  	}
   146  	return nil
   147  }
   148  
   149  func (st *StackTrie) setDb(db ethdb.KeyValueWriter) {
   150  	st.db = db
   151  	for _, child := range st.children {
   152  		if child != nil {
   153  			child.setDb(db)
   154  		}
   155  	}
   156  }
   157  
   158  func newLeaf(key, val []byte, db ethdb.KeyValueWriter) *StackTrie {
   159  	st := stackTrieFromPool(db)
   160  	st.nodeType = leafNode
   161  	st.key = append(st.key, key...)
   162  	st.val = val
   163  	return st
   164  }
   165  
   166  func newExt(key []byte, child *StackTrie, db ethdb.KeyValueWriter) *StackTrie {
   167  	st := stackTrieFromPool(db)
   168  	st.nodeType = extNode
   169  	st.key = append(st.key, key...)
   170  	st.children[0] = child
   171  	return st
   172  }
   173  
   174  // List all values that StackTrie#nodeType can hold
   175  const (
   176  	emptyNode = iota
   177  	branchNode
   178  	extNode
   179  	leafNode
   180  	hashedNode
   181  )
   182  
   183  // TryUpdate inserts a (key, value) pair into the stack trie
   184  func (st *StackTrie) TryUpdate(key, value []byte) error {
   185  	k := keybytesToHex(key)
   186  	if len(value) == 0 {
   187  		panic("deletion not supported")
   188  	}
   189  	st.insert(k[:len(k)-1], value)
   190  	return nil
   191  }
   192  
   193  func (st *StackTrie) Update(key, value []byte) {
   194  	if err := st.TryUpdate(key, value); err != nil {
   195  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   196  	}
   197  }
   198  
   199  func (st *StackTrie) Reset() {
   200  	st.db = nil
   201  	st.key = st.key[:0]
   202  	st.val = nil
   203  	for i := range st.children {
   204  		st.children[i] = nil
   205  	}
   206  	st.nodeType = emptyNode
   207  }
   208  
   209  // Helper function that, given a full key, determines the index
   210  // at which the chunk pointed by st.keyOffset is different from
   211  // the same chunk in the full key.
   212  func (st *StackTrie) getDiffIndex(key []byte) int {
   213  	for idx, nibble := range st.key {
   214  		if nibble != key[idx] {
   215  			return idx
   216  		}
   217  	}
   218  	return len(st.key)
   219  }
   220  
   221  // Helper function to that inserts a (key, value) pair into
   222  // the trie.
   223  func (st *StackTrie) insert(key, value []byte) {
   224  	switch st.nodeType {
   225  	case branchNode: /* Branch */
   226  		idx := int(key[0])
   227  		// Unresolve elder siblings
   228  		for i := idx - 1; i >= 0; i-- {
   229  			if st.children[i] != nil {
   230  				if st.children[i].nodeType != hashedNode {
   231  					st.children[i].hash()
   232  				}
   233  				break
   234  			}
   235  		}
   236  		// Add new child
   237  		if st.children[idx] == nil {
   238  			st.children[idx] = newLeaf(key[1:], value, st.db)
   239  		} else {
   240  			st.children[idx].insert(key[1:], value)
   241  		}
   242  	case extNode: /* Ext */
   243  		// Compare both key chunks and see where they differ
   244  		diffidx := st.getDiffIndex(key)
   245  
   246  		// Check if chunks are identical. If so, recurse into
   247  		// the child node. Otherwise, the key has to be split
   248  		// into 1) an optional common prefix, 2) the fullnode
   249  		// representing the two differing path, and 3) a leaf
   250  		// for each of the differentiated subtrees.
   251  		if diffidx == len(st.key) {
   252  			// Ext key and key segment are identical, recurse into
   253  			// the child node.
   254  			st.children[0].insert(key[diffidx:], value)
   255  			return
   256  		}
   257  		// Save the original part. Depending if the break is
   258  		// at the extension's last byte or not, create an
   259  		// intermediate extension or use the extension's child
   260  		// node directly.
   261  		var n *StackTrie
   262  		if diffidx < len(st.key)-1 {
   263  			n = newExt(st.key[diffidx+1:], st.children[0], st.db)
   264  		} else {
   265  			// Break on the last byte, no need to insert
   266  			// an extension node: reuse the current node
   267  			n = st.children[0]
   268  		}
   269  		// Convert to hash
   270  		n.hash()
   271  		var p *StackTrie
   272  		if diffidx == 0 {
   273  			// the break is on the first byte, so
   274  			// the current node is converted into
   275  			// a branch node.
   276  			st.children[0] = nil
   277  			p = st
   278  			st.nodeType = branchNode
   279  		} else {
   280  			// the common prefix is at least one byte
   281  			// long, insert a new intermediate branch
   282  			// node.
   283  			st.children[0] = stackTrieFromPool(st.db)
   284  			st.children[0].nodeType = branchNode
   285  			p = st.children[0]
   286  		}
   287  		// Create a leaf for the inserted part
   288  		o := newLeaf(key[diffidx+1:], value, st.db)
   289  
   290  		// Insert both child leaves where they belong:
   291  		origIdx := st.key[diffidx]
   292  		newIdx := key[diffidx]
   293  		p.children[origIdx] = n
   294  		p.children[newIdx] = o
   295  		st.key = st.key[:diffidx]
   296  
   297  	case leafNode: /* Leaf */
   298  		// Compare both key chunks and see where they differ
   299  		diffidx := st.getDiffIndex(key)
   300  
   301  		// Overwriting a key isn't supported, which means that
   302  		// the current leaf is expected to be split into 1) an
   303  		// optional extension for the common prefix of these 2
   304  		// keys, 2) a fullnode selecting the path on which the
   305  		// keys differ, and 3) one leaf for the differentiated
   306  		// component of each key.
   307  		if diffidx >= len(st.key) {
   308  			panic("Trying to insert into existing key")
   309  		}
   310  
   311  		// Check if the split occurs at the first nibble of the
   312  		// chunk. In that case, no prefix extnode is necessary.
   313  		// Otherwise, create that
   314  		var p *StackTrie
   315  		if diffidx == 0 {
   316  			// Convert current leaf into a branch
   317  			st.nodeType = branchNode
   318  			p = st
   319  			st.children[0] = nil
   320  		} else {
   321  			// Convert current node into an ext,
   322  			// and insert a child branch node.
   323  			st.nodeType = extNode
   324  			st.children[0] = NewStackTrie(st.db)
   325  			st.children[0].nodeType = branchNode
   326  			p = st.children[0]
   327  		}
   328  
   329  		// Create the two child leaves: the one containing the
   330  		// original value and the one containing the new value
   331  		// The child leave will be hashed directly in order to
   332  		// free up some memory.
   333  		origIdx := st.key[diffidx]
   334  		p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val, st.db)
   335  		p.children[origIdx].hash()
   336  
   337  		newIdx := key[diffidx]
   338  		p.children[newIdx] = newLeaf(key[diffidx+1:], value, st.db)
   339  
   340  		// Finally, cut off the key part that has been passed
   341  		// over to the children.
   342  		st.key = st.key[:diffidx]
   343  		st.val = nil
   344  	case emptyNode: /* Empty */
   345  		st.nodeType = leafNode
   346  		st.key = key
   347  		st.val = value
   348  	case hashedNode:
   349  		panic("trying to insert into hash")
   350  	default:
   351  		panic("invalid type")
   352  	}
   353  }
   354  
   355  // hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
   356  // Possible outcomes:
   357  // 1. The rlp-encoded value was >= 32 bytes:
   358  //  - Then the 32-byte `hash` will be accessible in `st.val`.
   359  //  - And the 'st.type' will be 'hashedNode'
   360  // 2. The rlp-encoded value was < 32 bytes
   361  //  - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
   362  //  - And the 'st.type' will be 'hashedNode' AGAIN
   363  //
   364  // This method will also:
   365  // set 'st.type' to hashedNode
   366  // clear 'st.key'
   367  func (st *StackTrie) hash() {
   368  	/* Shortcut if node is already hashed */
   369  	if st.nodeType == hashedNode {
   370  		return
   371  	}
   372  	// The 'hasher' is taken from a pool, but we don't actually
   373  	// claim an instance until all children are done with their hashing,
   374  	// and we actually need one
   375  	var h *hasher
   376  
   377  	switch st.nodeType {
   378  	case branchNode:
   379  		var nodes [17]node
   380  		for i, child := range st.children {
   381  			if child == nil {
   382  				nodes[i] = nilValueNode
   383  				continue
   384  			}
   385  			child.hash()
   386  			if len(child.val) < 32 {
   387  				nodes[i] = rawNode(child.val)
   388  			} else {
   389  				nodes[i] = hashNode(child.val)
   390  			}
   391  			st.children[i] = nil // Reclaim mem from subtree
   392  			returnToPool(child)
   393  		}
   394  		nodes[16] = nilValueNode
   395  		h = newHasher(false)
   396  		defer returnHasherToPool(h)
   397  		h.tmp.Reset()
   398  		if err := rlp.Encode(&h.tmp, nodes); err != nil {
   399  			panic(err)
   400  		}
   401  	case extNode:
   402  		st.children[0].hash()
   403  		h = newHasher(false)
   404  		defer returnHasherToPool(h)
   405  		h.tmp.Reset()
   406  		var valuenode node
   407  		if len(st.children[0].val) < 32 {
   408  			valuenode = rawNode(st.children[0].val)
   409  		} else {
   410  			valuenode = hashNode(st.children[0].val)
   411  		}
   412  		n := struct {
   413  			Key []byte
   414  			Val node
   415  		}{
   416  			Key: hexToCompact(st.key),
   417  			Val: valuenode,
   418  		}
   419  		if err := rlp.Encode(&h.tmp, n); err != nil {
   420  			panic(err)
   421  		}
   422  		returnToPool(st.children[0])
   423  		st.children[0] = nil // Reclaim mem from subtree
   424  	case leafNode:
   425  		h = newHasher(false)
   426  		defer returnHasherToPool(h)
   427  		h.tmp.Reset()
   428  		st.key = append(st.key, byte(16))
   429  		sz := hexToCompactInPlace(st.key)
   430  		n := [][]byte{st.key[:sz], st.val}
   431  		if err := rlp.Encode(&h.tmp, n); err != nil {
   432  			panic(err)
   433  		}
   434  	case emptyNode:
   435  		st.val = emptyRoot.Bytes()
   436  		st.key = st.key[:0]
   437  		st.nodeType = hashedNode
   438  		return
   439  	default:
   440  		panic("Invalid node type")
   441  	}
   442  	st.key = st.key[:0]
   443  	st.nodeType = hashedNode
   444  	if len(h.tmp) < 32 {
   445  		st.val = common.CopyBytes(h.tmp)
   446  		return
   447  	}
   448  	// Write the hash to the 'val'. We allocate a new val here to not mutate
   449  	// input values
   450  	st.val = make([]byte, 32)
   451  	h.sha.Reset()
   452  	h.sha.Write(h.tmp)
   453  	h.sha.Read(st.val)
   454  	if st.db != nil {
   455  		// TODO! Is it safe to Put the slice here?
   456  		// Do all db implementations copy the value provided?
   457  		st.db.Put(st.val, h.tmp)
   458  	}
   459  }
   460  
   461  // Hash returns the hash of the current node
   462  func (st *StackTrie) Hash() (h common.Hash) {
   463  	st.hash()
   464  	if len(st.val) != 32 {
   465  		// If the node's RLP isn't 32 bytes long, the node will not
   466  		// be hashed, and instead contain the  rlp-encoding of the
   467  		// node. For the top level node, we need to force the hashing.
   468  		ret := make([]byte, 32)
   469  		h := newHasher(false)
   470  		defer returnHasherToPool(h)
   471  		h.sha.Reset()
   472  		h.sha.Write(st.val)
   473  		h.sha.Read(ret)
   474  		return common.BytesToHash(ret)
   475  	}
   476  	return common.BytesToHash(st.val)
   477  }
   478  
   479  // Commit will firstly hash the entrie trie if it's still not hashed
   480  // and then commit all nodes to the associated database. Actually most
   481  // of the trie nodes MAY have been committed already. The main purpose
   482  // here is to commit the root node.
   483  //
   484  // The associated database is expected, otherwise the whole commit
   485  // functionality should be disabled.
   486  func (st *StackTrie) Commit() (common.Hash, error) {
   487  	if st.db == nil {
   488  		return common.Hash{}, ErrCommitDisabled
   489  	}
   490  	st.hash()
   491  	if len(st.val) != 32 {
   492  		// If the node's RLP isn't 32 bytes long, the node will not
   493  		// be hashed (and committed), and instead contain the  rlp-encoding of the
   494  		// node. For the top level node, we need to force the hashing+commit.
   495  		ret := make([]byte, 32)
   496  		h := newHasher(false)
   497  		defer returnHasherToPool(h)
   498  		h.sha.Reset()
   499  		h.sha.Write(st.val)
   500  		h.sha.Read(ret)
   501  		st.db.Put(ret, st.val)
   502  		return common.BytesToHash(ret), nil
   503  	}
   504  	return common.BytesToHash(st.val), nil
   505  }