github.com/LampardNguyen234/go-ethereum@v1.10.16-0.20220117140830-b6a3b0260724/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  	"sync"
    25  
    26  	"github.com/LampardNguyen234/go-ethereum/common"
    27  	"github.com/LampardNguyen234/go-ethereum/core/types"
    28  	"github.com/LampardNguyen234/go-ethereum/crypto"
    29  	"github.com/LampardNguyen234/go-ethereum/log"
    30  	"github.com/LampardNguyen234/go-ethereum/rlp"
    31  )
    32  
    33  var (
    34  	// emptyRoot is the known root hash of an empty trie.
    35  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    36  
    37  	// emptyState is the known hash of an empty state trie entry.
    38  	emptyState = crypto.Keccak256Hash(nil)
    39  )
    40  
    41  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    42  // node.
    43  //
    44  // The paths is a path tuple identifying a particular trie node either in a single
    45  // trie (account) or a layered trie (account -> storage). Each path in the tuple
    46  // is in the raw format(32 bytes).
    47  //
    48  // The hexpath is a composite hexary path identifying the trie node. All the key
    49  // bytes are converted to the hexary nibbles and composited with the parent path
    50  // if the trie node is in a layered trie.
    51  //
    52  // It's used by state sync and commit to allow handling external references
    53  // between account and storage tries. And also it's used in the state healing
    54  // for extracting the raw states(leaf nodes) with corresponding paths.
    55  type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error
    56  
    57  // Trie is a Merkle Patricia Trie.
    58  // The zero value is an empty trie with no database.
    59  // Use New to create a trie that sits on top of a database.
    60  //
    61  // Trie is not safe for concurrent use.
    62  type Trie struct {
    63  	db   *Database
    64  	root node
    65  	// Keep track of the number leafs which have been inserted since the last
    66  	// hashing operation. This number will not directly map to the number of
    67  	// actually unhashed nodes
    68  	unhashed int
    69  }
    70  
    71  // newFlag returns the cache flag value for a newly created node.
    72  func (t *Trie) newFlag() nodeFlag {
    73  	return nodeFlag{dirty: true}
    74  }
    75  
    76  // New creates a trie with an existing root node from db.
    77  //
    78  // If root is the zero hash or the sha3 hash of an empty string, the
    79  // trie is initially empty and does not require a database. Otherwise,
    80  // New will panic if db is nil and returns a MissingNodeError if root does
    81  // not exist in the database. Accessing the trie loads nodes from db on demand.
    82  func New(root common.Hash, db *Database) (*Trie, error) {
    83  	if db == nil {
    84  		panic("trie.New called without a database")
    85  	}
    86  	trie := &Trie{
    87  		db: db,
    88  	}
    89  	if root != (common.Hash{}) && root != emptyRoot {
    90  		rootnode, err := trie.resolveHash(root[:], nil)
    91  		if err != nil {
    92  			return nil, err
    93  		}
    94  		trie.root = rootnode
    95  	}
    96  	return trie, nil
    97  }
    98  
    99  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   100  // the key after the given start key.
   101  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   102  	return newNodeIterator(t, start)
   103  }
   104  
   105  // Get returns the value for key stored in the trie.
   106  // The value bytes must not be modified by the caller.
   107  func (t *Trie) Get(key []byte) []byte {
   108  	res, err := t.TryGet(key)
   109  	if err != nil {
   110  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   111  	}
   112  	return res
   113  }
   114  
   115  // TryGet returns the value for key stored in the trie.
   116  // The value bytes must not be modified by the caller.
   117  // If a node was not found in the database, a MissingNodeError is returned.
   118  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   119  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   120  	if err == nil && didResolve {
   121  		t.root = newroot
   122  	}
   123  	return value, err
   124  }
   125  
   126  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   127  	switch n := (origNode).(type) {
   128  	case nil:
   129  		return nil, nil, false, nil
   130  	case valueNode:
   131  		return n, n, false, nil
   132  	case *shortNode:
   133  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   134  			// key not found in trie
   135  			return nil, n, false, nil
   136  		}
   137  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   138  		if err == nil && didResolve {
   139  			n = n.copy()
   140  			n.Val = newnode
   141  		}
   142  		return value, n, didResolve, err
   143  	case *fullNode:
   144  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   145  		if err == nil && didResolve {
   146  			n = n.copy()
   147  			n.Children[key[pos]] = newnode
   148  		}
   149  		return value, n, didResolve, err
   150  	case hashNode:
   151  		child, err := t.resolveHash(n, key[:pos])
   152  		if err != nil {
   153  			return nil, n, true, err
   154  		}
   155  		value, newnode, _, err := t.tryGet(child, key, pos)
   156  		return value, newnode, true, err
   157  	default:
   158  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   159  	}
   160  }
   161  
   162  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   163  // possible to use keybyte-encoding as the path might contain odd nibbles.
   164  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   165  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   166  	if err != nil {
   167  		return nil, resolved, err
   168  	}
   169  	if resolved > 0 {
   170  		t.root = newroot
   171  	}
   172  	if item == nil {
   173  		return nil, resolved, nil
   174  	}
   175  	return item, resolved, err
   176  }
   177  
   178  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   179  	// If non-existent path requested, abort
   180  	if origNode == nil {
   181  		return nil, nil, 0, nil
   182  	}
   183  	// If we reached the requested path, return the current node
   184  	if pos >= len(path) {
   185  		// Although we most probably have the original node expanded, encoding
   186  		// that into consensus form can be nasty (needs to cascade down) and
   187  		// time consuming. Instead, just pull the hash up from disk directly.
   188  		var hash hashNode
   189  		if node, ok := origNode.(hashNode); ok {
   190  			hash = node
   191  		} else {
   192  			hash, _ = origNode.cache()
   193  		}
   194  		if hash == nil {
   195  			return nil, origNode, 0, errors.New("non-consensus node")
   196  		}
   197  		blob, err := t.db.Node(common.BytesToHash(hash))
   198  		return blob, origNode, 1, err
   199  	}
   200  	// Path still needs to be traversed, descend into children
   201  	switch n := (origNode).(type) {
   202  	case valueNode:
   203  		// Path prematurely ended, abort
   204  		return nil, nil, 0, nil
   205  
   206  	case *shortNode:
   207  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   208  			// Path branches off from short node
   209  			return nil, n, 0, nil
   210  		}
   211  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   212  		if err == nil && resolved > 0 {
   213  			n = n.copy()
   214  			n.Val = newnode
   215  		}
   216  		return item, n, resolved, err
   217  
   218  	case *fullNode:
   219  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   220  		if err == nil && resolved > 0 {
   221  			n = n.copy()
   222  			n.Children[path[pos]] = newnode
   223  		}
   224  		return item, n, resolved, err
   225  
   226  	case hashNode:
   227  		child, err := t.resolveHash(n, path[:pos])
   228  		if err != nil {
   229  			return nil, n, 1, err
   230  		}
   231  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   232  		return item, newnode, resolved + 1, err
   233  
   234  	default:
   235  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   236  	}
   237  }
   238  
   239  // Update associates key with value in the trie. Subsequent calls to
   240  // Get will return value. If value has length zero, any existing value
   241  // is deleted from the trie and calls to Get will return nil.
   242  //
   243  // The value bytes must not be modified by the caller while they are
   244  // stored in the trie.
   245  func (t *Trie) Update(key, value []byte) {
   246  	if err := t.TryUpdate(key, value); err != nil {
   247  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   248  	}
   249  }
   250  
   251  func (t *Trie) TryUpdateAccount(key []byte, acc *types.StateAccount) error {
   252  	data, err := rlp.EncodeToBytes(acc)
   253  	if err != nil {
   254  		return fmt.Errorf("can't encode object at %x: %w", key[:], err)
   255  	}
   256  	return t.TryUpdate(key, data)
   257  }
   258  
   259  // TryUpdate associates key with value in the trie. Subsequent calls to
   260  // Get will return value. If value has length zero, any existing value
   261  // is deleted from the trie and calls to Get will return nil.
   262  //
   263  // The value bytes must not be modified by the caller while they are
   264  // stored in the trie.
   265  //
   266  // If a node was not found in the database, a MissingNodeError is returned.
   267  func (t *Trie) TryUpdate(key, value []byte) error {
   268  	t.unhashed++
   269  	k := keybytesToHex(key)
   270  	if len(value) != 0 {
   271  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   272  		if err != nil {
   273  			return err
   274  		}
   275  		t.root = n
   276  	} else {
   277  		_, n, err := t.delete(t.root, nil, k)
   278  		if err != nil {
   279  			return err
   280  		}
   281  		t.root = n
   282  	}
   283  	return nil
   284  }
   285  
   286  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   287  	if len(key) == 0 {
   288  		if v, ok := n.(valueNode); ok {
   289  			return !bytes.Equal(v, value.(valueNode)), value, nil
   290  		}
   291  		return true, value, nil
   292  	}
   293  	switch n := n.(type) {
   294  	case *shortNode:
   295  		matchlen := prefixLen(key, n.Key)
   296  		// If the whole key matches, keep this short node as is
   297  		// and only update the value.
   298  		if matchlen == len(n.Key) {
   299  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   300  			if !dirty || err != nil {
   301  				return false, n, err
   302  			}
   303  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   304  		}
   305  		// Otherwise branch out at the index where they differ.
   306  		branch := &fullNode{flags: t.newFlag()}
   307  		var err error
   308  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   309  		if err != nil {
   310  			return false, nil, err
   311  		}
   312  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   313  		if err != nil {
   314  			return false, nil, err
   315  		}
   316  		// Replace this shortNode with the branch if it occurs at index 0.
   317  		if matchlen == 0 {
   318  			return true, branch, nil
   319  		}
   320  		// Otherwise, replace it with a short node leading up to the branch.
   321  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   322  
   323  	case *fullNode:
   324  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   325  		if !dirty || err != nil {
   326  			return false, n, err
   327  		}
   328  		n = n.copy()
   329  		n.flags = t.newFlag()
   330  		n.Children[key[0]] = nn
   331  		return true, n, nil
   332  
   333  	case nil:
   334  		return true, &shortNode{key, value, t.newFlag()}, nil
   335  
   336  	case hashNode:
   337  		// We've hit a part of the trie that isn't loaded yet. Load
   338  		// the node and insert into it. This leaves all child nodes on
   339  		// the path to the value in the trie.
   340  		rn, err := t.resolveHash(n, prefix)
   341  		if err != nil {
   342  			return false, nil, err
   343  		}
   344  		dirty, nn, err := t.insert(rn, prefix, key, value)
   345  		if !dirty || err != nil {
   346  			return false, rn, err
   347  		}
   348  		return true, nn, nil
   349  
   350  	default:
   351  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   352  	}
   353  }
   354  
   355  // Delete removes any existing value for key from the trie.
   356  func (t *Trie) Delete(key []byte) {
   357  	if err := t.TryDelete(key); err != nil {
   358  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   359  	}
   360  }
   361  
   362  // TryDelete removes any existing value for key from the trie.
   363  // If a node was not found in the database, a MissingNodeError is returned.
   364  func (t *Trie) TryDelete(key []byte) error {
   365  	t.unhashed++
   366  	k := keybytesToHex(key)
   367  	_, n, err := t.delete(t.root, nil, k)
   368  	if err != nil {
   369  		return err
   370  	}
   371  	t.root = n
   372  	return nil
   373  }
   374  
   375  // delete returns the new root of the trie with key deleted.
   376  // It reduces the trie to minimal form by simplifying
   377  // nodes on the way up after deleting recursively.
   378  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   379  	switch n := n.(type) {
   380  	case *shortNode:
   381  		matchlen := prefixLen(key, n.Key)
   382  		if matchlen < len(n.Key) {
   383  			return false, n, nil // don't replace n on mismatch
   384  		}
   385  		if matchlen == len(key) {
   386  			return true, nil, nil // remove n entirely for whole matches
   387  		}
   388  		// The key is longer than n.Key. Remove the remaining suffix
   389  		// from the subtrie. Child can never be nil here since the
   390  		// subtrie must contain at least two other values with keys
   391  		// longer than n.Key.
   392  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   393  		if !dirty || err != nil {
   394  			return false, n, err
   395  		}
   396  		switch child := child.(type) {
   397  		case *shortNode:
   398  			// Deleting from the subtrie reduced it to another
   399  			// short node. Merge the nodes to avoid creating a
   400  			// shortNode{..., shortNode{...}}. Use concat (which
   401  			// always creates a new slice) instead of append to
   402  			// avoid modifying n.Key since it might be shared with
   403  			// other nodes.
   404  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   405  		default:
   406  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   407  		}
   408  
   409  	case *fullNode:
   410  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   411  		if !dirty || err != nil {
   412  			return false, n, err
   413  		}
   414  		n = n.copy()
   415  		n.flags = t.newFlag()
   416  		n.Children[key[0]] = nn
   417  
   418  		// Because n is a full node, it must've contained at least two children
   419  		// before the delete operation. If the new child value is non-nil, n still
   420  		// has at least two children after the deletion, and cannot be reduced to
   421  		// a short node.
   422  		if nn != nil {
   423  			return true, n, nil
   424  		}
   425  		// Reduction:
   426  		// Check how many non-nil entries are left after deleting and
   427  		// reduce the full node to a short node if only one entry is
   428  		// left. Since n must've contained at least two children
   429  		// before deletion (otherwise it would not be a full node) n
   430  		// can never be reduced to nil.
   431  		//
   432  		// When the loop is done, pos contains the index of the single
   433  		// value that is left in n or -2 if n contains at least two
   434  		// values.
   435  		pos := -1
   436  		for i, cld := range &n.Children {
   437  			if cld != nil {
   438  				if pos == -1 {
   439  					pos = i
   440  				} else {
   441  					pos = -2
   442  					break
   443  				}
   444  			}
   445  		}
   446  		if pos >= 0 {
   447  			if pos != 16 {
   448  				// If the remaining entry is a short node, it replaces
   449  				// n and its key gets the missing nibble tacked to the
   450  				// front. This avoids creating an invalid
   451  				// shortNode{..., shortNode{...}}.  Since the entry
   452  				// might not be loaded yet, resolve it just for this
   453  				// check.
   454  				cnode, err := t.resolve(n.Children[pos], prefix)
   455  				if err != nil {
   456  					return false, nil, err
   457  				}
   458  				if cnode, ok := cnode.(*shortNode); ok {
   459  					k := append([]byte{byte(pos)}, cnode.Key...)
   460  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   461  				}
   462  			}
   463  			// Otherwise, n is replaced by a one-nibble short node
   464  			// containing the child.
   465  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   466  		}
   467  		// n still contains at least two values and cannot be reduced.
   468  		return true, n, nil
   469  
   470  	case valueNode:
   471  		return true, nil, nil
   472  
   473  	case nil:
   474  		return false, nil, nil
   475  
   476  	case hashNode:
   477  		// We've hit a part of the trie that isn't loaded yet. Load
   478  		// the node and delete from it. This leaves all child nodes on
   479  		// the path to the value in the trie.
   480  		rn, err := t.resolveHash(n, prefix)
   481  		if err != nil {
   482  			return false, nil, err
   483  		}
   484  		dirty, nn, err := t.delete(rn, prefix, key)
   485  		if !dirty || err != nil {
   486  			return false, rn, err
   487  		}
   488  		return true, nn, nil
   489  
   490  	default:
   491  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   492  	}
   493  }
   494  
   495  func concat(s1 []byte, s2 ...byte) []byte {
   496  	r := make([]byte, len(s1)+len(s2))
   497  	copy(r, s1)
   498  	copy(r[len(s1):], s2)
   499  	return r
   500  }
   501  
   502  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   503  	if n, ok := n.(hashNode); ok {
   504  		return t.resolveHash(n, prefix)
   505  	}
   506  	return n, nil
   507  }
   508  
   509  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   510  	hash := common.BytesToHash(n)
   511  	if node := t.db.node(hash); node != nil {
   512  		return node, nil
   513  	}
   514  	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
   515  }
   516  
   517  // Hash returns the root hash of the trie. It does not write to the
   518  // database and can be used even if the trie doesn't have one.
   519  func (t *Trie) Hash() common.Hash {
   520  	hash, cached, _ := t.hashRoot()
   521  	t.root = cached
   522  	return common.BytesToHash(hash.(hashNode))
   523  }
   524  
   525  // Commit writes all nodes to the trie's memory database, tracking the internal
   526  // and external (for account tries) references.
   527  func (t *Trie) Commit(onleaf LeafCallback) (common.Hash, int, error) {
   528  	if t.db == nil {
   529  		panic("commit called on trie with nil database")
   530  	}
   531  	if t.root == nil {
   532  		return emptyRoot, 0, nil
   533  	}
   534  	// Derive the hash for all dirty nodes first. We hold the assumption
   535  	// in the following procedure that all nodes are hashed.
   536  	rootHash := t.Hash()
   537  	h := newCommitter()
   538  	defer returnCommitterToPool(h)
   539  
   540  	// Do a quick check if we really need to commit, before we spin
   541  	// up goroutines. This can happen e.g. if we load a trie for reading storage
   542  	// values, but don't write to it.
   543  	if _, dirty := t.root.cache(); !dirty {
   544  		return rootHash, 0, nil
   545  	}
   546  	var wg sync.WaitGroup
   547  	if onleaf != nil {
   548  		h.onleaf = onleaf
   549  		h.leafCh = make(chan *leaf, leafChanSize)
   550  		wg.Add(1)
   551  		go func() {
   552  			defer wg.Done()
   553  			h.commitLoop(t.db)
   554  		}()
   555  	}
   556  	newRoot, committed, err := h.Commit(t.root, t.db)
   557  	if onleaf != nil {
   558  		// The leafch is created in newCommitter if there was an onleaf callback
   559  		// provided. The commitLoop only _reads_ from it, and the commit
   560  		// operation was the sole writer. Therefore, it's safe to close this
   561  		// channel here.
   562  		close(h.leafCh)
   563  		wg.Wait()
   564  	}
   565  	if err != nil {
   566  		return common.Hash{}, 0, err
   567  	}
   568  	t.root = newRoot
   569  	return rootHash, committed, nil
   570  }
   571  
   572  // hashRoot calculates the root hash of the given trie
   573  func (t *Trie) hashRoot() (node, node, error) {
   574  	if t.root == nil {
   575  		return hashNode(emptyRoot.Bytes()), nil, nil
   576  	}
   577  	// If the number of changes is below 100, we let one thread handle it
   578  	h := newHasher(t.unhashed >= 100)
   579  	defer returnHasherToPool(h)
   580  	hashed, cached := h.hash(t.root, true)
   581  	t.unhashed = 0
   582  	return hashed, cached, nil
   583  }
   584  
   585  // Reset drops the referenced root node and cleans all internal state.
   586  func (t *Trie) Reset() {
   587  	t.root = nil
   588  	t.unhashed = 0
   589  }