github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of June 28, 2017",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and punctuation</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_punctuation">Operators and punctuation</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>
   261  (including <a href="#assign_op">assignment operators</a>) and punctuation:
   262  </p>
   263  <pre class="grammar">
   264  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   265  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   266  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   267  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   268  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   269       &amp;^          &amp;^=
   270  </pre>
   271  
   272  <h3 id="Integer_literals">Integer literals</h3>
   273  
   274  <p>
   275  An integer literal is a sequence of digits representing an
   276  <a href="#Constants">integer constant</a>.
   277  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   278  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   279  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   280  </p>
   281  <pre class="ebnf">
   282  int_lit     = decimal_lit | octal_lit | hex_lit .
   283  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   284  octal_lit   = "0" { octal_digit } .
   285  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   286  </pre>
   287  
   288  <pre>
   289  42
   290  0600
   291  0xBadFace
   292  170141183460469231731687303715884105727
   293  </pre>
   294  
   295  <h3 id="Floating-point_literals">Floating-point literals</h3>
   296  <p>
   297  A floating-point literal is a decimal representation of a
   298  <a href="#Constants">floating-point constant</a>.
   299  It has an integer part, a decimal point, a fractional part,
   300  and an exponent part.  The integer and fractional part comprise
   301  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   302  followed by an optionally signed decimal exponent.  One of the
   303  integer part or the fractional part may be elided; one of the decimal
   304  point or the exponent may be elided.
   305  </p>
   306  <pre class="ebnf">
   307  float_lit = decimals "." [ decimals ] [ exponent ] |
   308              decimals exponent |
   309              "." decimals [ exponent ] .
   310  decimals  = decimal_digit { decimal_digit } .
   311  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   312  </pre>
   313  
   314  <pre>
   315  0.
   316  72.40
   317  072.40  // == 72.40
   318  2.71828
   319  1.e+0
   320  6.67428e-11
   321  1E6
   322  .25
   323  .12345E+5
   324  </pre>
   325  
   326  <h3 id="Imaginary_literals">Imaginary literals</h3>
   327  <p>
   328  An imaginary literal is a decimal representation of the imaginary part of a
   329  <a href="#Constants">complex constant</a>.
   330  It consists of a
   331  <a href="#Floating-point_literals">floating-point literal</a>
   332  or decimal integer followed
   333  by the lower-case letter <code>i</code>.
   334  </p>
   335  <pre class="ebnf">
   336  imaginary_lit = (decimals | float_lit) "i" .
   337  </pre>
   338  
   339  <pre>
   340  0i
   341  011i  // == 11i
   342  0.i
   343  2.71828i
   344  1.e+0i
   345  6.67428e-11i
   346  1E6i
   347  .25i
   348  .12345E+5i
   349  </pre>
   350  
   351  
   352  <h3 id="Rune_literals">Rune literals</h3>
   353  
   354  <p>
   355  A rune literal represents a <a href="#Constants">rune constant</a>,
   356  an integer value identifying a Unicode code point.
   357  A rune literal is expressed as one or more characters enclosed in single quotes,
   358  as in <code>'x'</code> or <code>'\n'</code>.
   359  Within the quotes, any character may appear except newline and unescaped single
   360  quote. A single quoted character represents the Unicode value
   361  of the character itself,
   362  while multi-character sequences beginning with a backslash encode
   363  values in various formats.
   364  </p>
   365  <p>
   366  The simplest form represents the single character within the quotes;
   367  since Go source text is Unicode characters encoded in UTF-8, multiple
   368  UTF-8-encoded bytes may represent a single integer value.  For
   369  instance, the literal <code>'a'</code> holds a single byte representing
   370  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   371  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   372  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   373  </p>
   374  <p>
   375  Several backslash escapes allow arbitrary values to be encoded as
   376  ASCII text.  There are four ways to represent the integer value
   377  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   378  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   379  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   380  plain backslash <code>\</code> followed by exactly three octal digits.
   381  In each case the value of the literal is the value represented by
   382  the digits in the corresponding base.
   383  </p>
   384  <p>
   385  Although these representations all result in an integer, they have
   386  different valid ranges.  Octal escapes must represent a value between
   387  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   388  by construction. The escapes <code>\u</code> and <code>\U</code>
   389  represent Unicode code points so within them some values are illegal,
   390  in particular those above <code>0x10FFFF</code> and surrogate halves.
   391  </p>
   392  <p>
   393  After a backslash, certain single-character escapes represent special values:
   394  </p>
   395  <pre class="grammar">
   396  \a   U+0007 alert or bell
   397  \b   U+0008 backspace
   398  \f   U+000C form feed
   399  \n   U+000A line feed or newline
   400  \r   U+000D carriage return
   401  \t   U+0009 horizontal tab
   402  \v   U+000b vertical tab
   403  \\   U+005c backslash
   404  \'   U+0027 single quote  (valid escape only within rune literals)
   405  \"   U+0022 double quote  (valid escape only within string literals)
   406  </pre>
   407  <p>
   408  All other sequences starting with a backslash are illegal inside rune literals.
   409  </p>
   410  <pre class="ebnf">
   411  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   412  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   413  byte_value       = octal_byte_value | hex_byte_value .
   414  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   415  hex_byte_value   = `\` "x" hex_digit hex_digit .
   416  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   417  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   418                             hex_digit hex_digit hex_digit hex_digit .
   419  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   420  </pre>
   421  
   422  <pre>
   423  'a'
   424  'ä'
   425  '本'
   426  '\t'
   427  '\000'
   428  '\007'
   429  '\377'
   430  '\x07'
   431  '\xff'
   432  '\u12e4'
   433  '\U00101234'
   434  '\''         // rune literal containing single quote character
   435  'aa'         // illegal: too many characters
   436  '\xa'        // illegal: too few hexadecimal digits
   437  '\0'         // illegal: too few octal digits
   438  '\uDFFF'     // illegal: surrogate half
   439  '\U00110000' // illegal: invalid Unicode code point
   440  </pre>
   441  
   442  
   443  <h3 id="String_literals">String literals</h3>
   444  
   445  <p>
   446  A string literal represents a <a href="#Constants">string constant</a>
   447  obtained from concatenating a sequence of characters. There are two forms:
   448  raw string literals and interpreted string literals.
   449  </p>
   450  <p>
   451  Raw string literals are character sequences between back quotes, as in
   452  <code>`foo`</code>.  Within the quotes, any character may appear except
   453  back quote. The value of a raw string literal is the
   454  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   455  between the quotes;
   456  in particular, backslashes have no special meaning and the string may
   457  contain newlines.
   458  Carriage return characters ('\r') inside raw string literals
   459  are discarded from the raw string value.
   460  </p>
   461  <p>
   462  Interpreted string literals are character sequences between double
   463  quotes, as in <code>&quot;bar&quot;</code>.
   464  Within the quotes, any character may appear except newline and unescaped double quote.
   465  The text between the quotes forms the
   466  value of the literal, with backslash escapes interpreted as they
   467  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   468  <code>\"</code> is legal), with the same restrictions.
   469  The three-digit octal (<code>\</code><i>nnn</i>)
   470  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   471  <i>bytes</i> of the resulting string; all other escapes represent
   472  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   473  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   474  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   475  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   476  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   477  U+00FF.
   478  </p>
   479  
   480  <pre class="ebnf">
   481  string_lit             = raw_string_lit | interpreted_string_lit .
   482  raw_string_lit         = "`" { unicode_char | newline } "`" .
   483  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   484  </pre>
   485  
   486  <pre>
   487  `abc`                // same as "abc"
   488  `\n
   489  \n`                  // same as "\\n\n\\n"
   490  "\n"
   491  "\""                 // same as `"`
   492  "Hello, world!\n"
   493  "日本語"
   494  "\u65e5本\U00008a9e"
   495  "\xff\u00FF"
   496  "\uD800"             // illegal: surrogate half
   497  "\U00110000"         // illegal: invalid Unicode code point
   498  </pre>
   499  
   500  <p>
   501  These examples all represent the same string:
   502  </p>
   503  
   504  <pre>
   505  "日本語"                                 // UTF-8 input text
   506  `日本語`                                 // UTF-8 input text as a raw literal
   507  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   508  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   509  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   510  </pre>
   511  
   512  <p>
   513  If the source code represents a character as two code points, such as
   514  a combining form involving an accent and a letter, the result will be
   515  an error if placed in a rune literal (it is not a single code
   516  point), and will appear as two code points if placed in a string
   517  literal.
   518  </p>
   519  
   520  
   521  <h2 id="Constants">Constants</h2>
   522  
   523  <p>There are <i>boolean constants</i>,
   524  <i>rune constants</i>,
   525  <i>integer constants</i>,
   526  <i>floating-point constants</i>, <i>complex constants</i>,
   527  and <i>string constants</i>. Rune, integer, floating-point,
   528  and complex constants are
   529  collectively called <i>numeric constants</i>.
   530  </p>
   531  
   532  <p>
   533  A constant value is represented by a
   534  <a href="#Rune_literals">rune</a>,
   535  <a href="#Integer_literals">integer</a>,
   536  <a href="#Floating-point_literals">floating-point</a>,
   537  <a href="#Imaginary_literals">imaginary</a>,
   538  or
   539  <a href="#String_literals">string</a> literal,
   540  an identifier denoting a constant,
   541  a <a href="#Constant_expressions">constant expression</a>,
   542  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   543  the result value of some built-in functions such as
   544  <code>unsafe.Sizeof</code> applied to any value,
   545  <code>cap</code> or <code>len</code> applied to
   546  <a href="#Length_and_capacity">some expressions</a>,
   547  <code>real</code> and <code>imag</code> applied to a complex constant
   548  and <code>complex</code> applied to numeric constants.
   549  The boolean truth values are represented by the predeclared constants
   550  <code>true</code> and <code>false</code>. The predeclared identifier
   551  <a href="#Iota">iota</a> denotes an integer constant.
   552  </p>
   553  
   554  <p>
   555  In general, complex constants are a form of
   556  <a href="#Constant_expressions">constant expression</a>
   557  and are discussed in that section.
   558  </p>
   559  
   560  <p>
   561  Numeric constants represent exact values of arbitrary precision and do not overflow.
   562  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   563  and not-a-number values.
   564  </p>
   565  
   566  <p>
   567  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   568  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   569  and certain <a href="#Constant_expressions">constant expressions</a>
   570  containing only untyped constant operands are untyped.
   571  </p>
   572  
   573  <p>
   574  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   575  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   576  <a href="#Variable_declarations">variable declaration</a> or an
   577  <a href="#Assignments">assignment</a> or as an
   578  operand in an <a href="#Expressions">expression</a>.
   579  It is an error if the constant value
   580  cannot be represented as a value of the respective type.
   581  For instance, <code>3.0</code> can be given any integer or any
   582  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   583  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   584  not <code>int32</code> or <code>string</code>.
   585  </p>
   586  
   587  <p>
   588  An untyped constant has a <i>default type</i> which is the type to which the
   589  constant is implicitly converted in contexts where a typed value is required,
   590  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   591  such as <code>i := 0</code> where there is no explicit type.
   592  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   593  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   594  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   595  complex, or string constant.
   596  </p>
   597  
   598  <p>
   599  Implementation restriction: Although numeric constants have arbitrary
   600  precision in the language, a compiler may implement them using an
   601  internal representation with limited precision.  That said, every
   602  implementation must:
   603  </p>
   604  <ul>
   605  	<li>Represent integer constants with at least 256 bits.</li>
   606  
   607  	<li>Represent floating-point constants, including the parts of
   608  	    a complex constant, with a mantissa of at least 256 bits
   609  	    and a signed binary exponent of at least 16 bits.</li>
   610  
   611  	<li>Give an error if unable to represent an integer constant
   612  	    precisely.</li>
   613  
   614  	<li>Give an error if unable to represent a floating-point or
   615  	    complex constant due to overflow.</li>
   616  
   617  	<li>Round to the nearest representable constant if unable to
   618  	    represent a floating-point or complex constant due to limits
   619  	    on precision.</li>
   620  </ul>
   621  <p>
   622  These requirements apply both to literal constants and to the result
   623  of evaluating <a href="#Constant_expressions">constant
   624  expressions</a>.
   625  </p>
   626  
   627  <h2 id="Variables">Variables</h2>
   628  
   629  <p>
   630  A variable is a storage location for holding a <i>value</i>.
   631  The set of permissible values is determined by the
   632  variable's <i><a href="#Types">type</a></i>.
   633  </p>
   634  
   635  <p>
   636  A <a href="#Variable_declarations">variable declaration</a>
   637  or, for function parameters and results, the signature
   638  of a <a href="#Function_declarations">function declaration</a>
   639  or <a href="#Function_literals">function literal</a> reserves
   640  storage for a named variable.
   641  
   642  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   643  or taking the address of a <a href="#Composite_literals">composite literal</a>
   644  allocates storage for a variable at run time.
   645  Such an anonymous variable is referred to via a (possibly implicit)
   646  <a href="#Address_operators">pointer indirection</a>.
   647  </p>
   648  
   649  <p>
   650  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   651  and <a href="#Struct_types">struct</a> types have elements and fields that may
   652  be <a href="#Address_operators">addressed</a> individually. Each such element
   653  acts like a variable.
   654  </p>
   655  
   656  <p>
   657  The <i>static type</i> (or just <i>type</i>) of a variable is the
   658  type given in its declaration, the type provided in the
   659  <code>new</code> call or composite literal, or the type of
   660  an element of a structured variable.
   661  Variables of interface type also have a distinct <i>dynamic type</i>,
   662  which is the concrete type of the value assigned to the variable at run time
   663  (unless the value is the predeclared identifier <code>nil</code>,
   664  which has no type).
   665  The dynamic type may vary during execution but values stored in interface
   666  variables are always <a href="#Assignability">assignable</a>
   667  to the static type of the variable.
   668  </p>
   669  
   670  <pre>
   671  var x interface{}  // x is nil and has static type interface{}
   672  var v *T           // v has value nil, static type *T
   673  x = 42             // x has value 42 and dynamic type int
   674  x = v              // x has value (*T)(nil) and dynamic type *T
   675  </pre>
   676  
   677  <p>
   678  A variable's value is retrieved by referring to the variable in an
   679  <a href="#Expressions">expression</a>; it is the most recent value
   680  <a href="#Assignments">assigned</a> to the variable.
   681  If a variable has not yet been assigned a value, its value is the
   682  <a href="#The_zero_value">zero value</a> for its type.
   683  </p>
   684  
   685  
   686  <h2 id="Types">Types</h2>
   687  
   688  <p>
   689  A type determines a set of values together with operations and methods specific
   690  to those values. A type may be denoted by a <i>type name</i>, if it has one,
   691  or specified using a <i>type literal</i>, which composes a type from existing types.
   692  </p>
   693  
   694  <pre class="ebnf">
   695  Type      = TypeName | TypeLit | "(" Type ")" .
   696  TypeName  = identifier | QualifiedIdent .
   697  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   698  	    SliceType | MapType | ChannelType .
   699  </pre>
   700  
   701  <p>
   702  Named instances of the boolean, numeric, and string types are
   703  <a href="#Predeclared_identifiers">predeclared</a>.
   704  Other named types are introduced with <a href="#Type_declarations">type declarations</a>.
   705  <i>Composite types</i>&mdash;array, struct, pointer, function,
   706  interface, slice, map, and channel types&mdash;may be constructed using
   707  type literals.
   708  </p>
   709  
   710  <p>
   711  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   712  is one of the predeclared boolean, numeric, or string types, or a type literal,
   713  the corresponding underlying
   714  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   715  is the underlying type of the type to which <code>T</code> refers in its
   716  <a href="#Type_declarations">type declaration</a>.
   717  </p>
   718  
   719  <pre>
   720  type (
   721  	A1 = string
   722  	A2 = A1
   723  )
   724  
   725  type (
   726  	B1 string
   727  	B2 B1
   728  	B3 []B1
   729  	B4 B3
   730  )
   731  </pre>
   732  
   733  <p>
   734  The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
   735  and <code>B2</code> is <code>string</code>.
   736  The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
   737  </p>
   738  
   739  <h3 id="Method_sets">Method sets</h3>
   740  <p>
   741  A type may have a <i>method set</i> associated with it.
   742  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   743  The method set of any other type <code>T</code> consists of all
   744  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   745  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   746  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   747  (that is, it also contains the method set of <code>T</code>).
   748  Further rules apply to structs containing embedded fields, as described
   749  in the section on <a href="#Struct_types">struct types</a>.
   750  Any other type has an empty method set.
   751  In a method set, each method must have a
   752  <a href="#Uniqueness_of_identifiers">unique</a>
   753  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   754  </p>
   755  
   756  <p>
   757  The method set of a type determines the interfaces that the
   758  type <a href="#Interface_types">implements</a>
   759  and the methods that can be <a href="#Calls">called</a>
   760  using a receiver of that type.
   761  </p>
   762  
   763  <h3 id="Boolean_types">Boolean types</h3>
   764  
   765  <p>
   766  A <i>boolean type</i> represents the set of Boolean truth values
   767  denoted by the predeclared constants <code>true</code>
   768  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   769  </p>
   770  
   771  <h3 id="Numeric_types">Numeric types</h3>
   772  
   773  <p>
   774  A <i>numeric type</i> represents sets of integer or floating-point values.
   775  The predeclared architecture-independent numeric types are:
   776  </p>
   777  
   778  <pre class="grammar">
   779  uint8       the set of all unsigned  8-bit integers (0 to 255)
   780  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   781  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   782  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   783  
   784  int8        the set of all signed  8-bit integers (-128 to 127)
   785  int16       the set of all signed 16-bit integers (-32768 to 32767)
   786  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   787  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   788  
   789  float32     the set of all IEEE-754 32-bit floating-point numbers
   790  float64     the set of all IEEE-754 64-bit floating-point numbers
   791  
   792  complex64   the set of all complex numbers with float32 real and imaginary parts
   793  complex128  the set of all complex numbers with float64 real and imaginary parts
   794  
   795  byte        alias for uint8
   796  rune        alias for int32
   797  </pre>
   798  
   799  <p>
   800  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   801  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   802  </p>
   803  
   804  <p>
   805  There is also a set of predeclared numeric types with implementation-specific sizes:
   806  </p>
   807  
   808  <pre class="grammar">
   809  uint     either 32 or 64 bits
   810  int      same size as uint
   811  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   812  </pre>
   813  
   814  <p>
   815  To avoid portability issues all numeric types are distinct except
   816  <code>byte</code>, which is an alias for <code>uint8</code>, and
   817  <code>rune</code>, which is an alias for <code>int32</code>.
   818  Conversions
   819  are required when different numeric types are mixed in an expression
   820  or assignment. For instance, <code>int32</code> and <code>int</code>
   821  are not the same type even though they may have the same size on a
   822  particular architecture.
   823  
   824  
   825  <h3 id="String_types">String types</h3>
   826  
   827  <p>
   828  A <i>string type</i> represents the set of string values.
   829  A string value is a (possibly empty) sequence of bytes.
   830  Strings are immutable: once created,
   831  it is impossible to change the contents of a string.
   832  The predeclared string type is <code>string</code>.
   833  </p>
   834  
   835  <p>
   836  The length of a string <code>s</code> (its size in bytes) can be discovered using
   837  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   838  The length is a compile-time constant if the string is a constant.
   839  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   840  0 through <code>len(s)-1</code>.
   841  It is illegal to take the address of such an element; if
   842  <code>s[i]</code> is the <code>i</code>'th byte of a
   843  string, <code>&amp;s[i]</code> is invalid.
   844  </p>
   845  
   846  
   847  <h3 id="Array_types">Array types</h3>
   848  
   849  <p>
   850  An array is a numbered sequence of elements of a single
   851  type, called the element type.
   852  The number of elements is called the length and is never
   853  negative.
   854  </p>
   855  
   856  <pre class="ebnf">
   857  ArrayType   = "[" ArrayLength "]" ElementType .
   858  ArrayLength = Expression .
   859  ElementType = Type .
   860  </pre>
   861  
   862  <p>
   863  The length is part of the array's type; it must evaluate to a
   864  non-negative <a href="#Constants">constant</a> representable by a value
   865  of type <code>int</code>.
   866  The length of array <code>a</code> can be discovered
   867  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   868  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   869  0 through <code>len(a)-1</code>.
   870  Array types are always one-dimensional but may be composed to form
   871  multi-dimensional types.
   872  </p>
   873  
   874  <pre>
   875  [32]byte
   876  [2*N] struct { x, y int32 }
   877  [1000]*float64
   878  [3][5]int
   879  [2][2][2]float64  // same as [2]([2]([2]float64))
   880  </pre>
   881  
   882  <h3 id="Slice_types">Slice types</h3>
   883  
   884  <p>
   885  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   886  provides access to a numbered sequence of elements from that array.
   887  A slice type denotes the set of all slices of arrays of its element type.
   888  The value of an uninitialized slice is <code>nil</code>.
   889  </p>
   890  
   891  <pre class="ebnf">
   892  SliceType = "[" "]" ElementType .
   893  </pre>
   894  
   895  <p>
   896  Like arrays, slices are indexable and have a length.  The length of a
   897  slice <code>s</code> can be discovered by the built-in function
   898  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   899  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   900  0 through <code>len(s)-1</code>.  The slice index of a
   901  given element may be less than the index of the same element in the
   902  underlying array.
   903  </p>
   904  <p>
   905  A slice, once initialized, is always associated with an underlying
   906  array that holds its elements.  A slice therefore shares storage
   907  with its array and with other slices of the same array; by contrast,
   908  distinct arrays always represent distinct storage.
   909  </p>
   910  <p>
   911  The array underlying a slice may extend past the end of the slice.
   912  The <i>capacity</i> is a measure of that extent: it is the sum of
   913  the length of the slice and the length of the array beyond the slice;
   914  a slice of length up to that capacity can be created by
   915  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   916  The capacity of a slice <code>a</code> can be discovered using the
   917  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   918  </p>
   919  
   920  <p>
   921  A new, initialized slice value for a given element type <code>T</code> is
   922  made using the built-in function
   923  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   924  which takes a slice type
   925  and parameters specifying the length and optionally the capacity.
   926  A slice created with <code>make</code> always allocates a new, hidden array
   927  to which the returned slice value refers. That is, executing
   928  </p>
   929  
   930  <pre>
   931  make([]T, length, capacity)
   932  </pre>
   933  
   934  <p>
   935  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   936  it, so these two expressions are equivalent:
   937  </p>
   938  
   939  <pre>
   940  make([]int, 50, 100)
   941  new([100]int)[0:50]
   942  </pre>
   943  
   944  <p>
   945  Like arrays, slices are always one-dimensional but may be composed to construct
   946  higher-dimensional objects.
   947  With arrays of arrays, the inner arrays are, by construction, always the same length;
   948  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   949  Moreover, the inner slices must be initialized individually.
   950  </p>
   951  
   952  <h3 id="Struct_types">Struct types</h3>
   953  
   954  <p>
   955  A struct is a sequence of named elements, called fields, each of which has a
   956  name and a type. Field names may be specified explicitly (IdentifierList) or
   957  implicitly (EmbeddedField).
   958  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   959  be <a href="#Uniqueness_of_identifiers">unique</a>.
   960  </p>
   961  
   962  <pre class="ebnf">
   963  StructType    = "struct" "{" { FieldDecl ";" } "}" .
   964  FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
   965  EmbeddedField = [ "*" ] TypeName .
   966  Tag           = string_lit .
   967  </pre>
   968  
   969  <pre>
   970  // An empty struct.
   971  struct {}
   972  
   973  // A struct with 6 fields.
   974  struct {
   975  	x, y int
   976  	u float32
   977  	_ float32  // padding
   978  	A *[]int
   979  	F func()
   980  }
   981  </pre>
   982  
   983  <p>
   984  A field declared with a type but no explicit field name is called an <i>embedded field</i>.
   985  An embedded field must be specified as
   986  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   987  and <code>T</code> itself may not be
   988  a pointer type. The unqualified type name acts as the field name.
   989  </p>
   990  
   991  <pre>
   992  // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
   993  struct {
   994  	T1        // field name is T1
   995  	*T2       // field name is T2
   996  	P.T3      // field name is T3
   997  	*P.T4     // field name is T4
   998  	x, y int  // field names are x and y
   999  }
  1000  </pre>
  1001  
  1002  <p>
  1003  The following declaration is illegal because field names must be unique
  1004  in a struct type:
  1005  </p>
  1006  
  1007  <pre>
  1008  struct {
  1009  	T     // conflicts with embedded field *T and *P.T
  1010  	*T    // conflicts with embedded field T and *P.T
  1011  	*P.T  // conflicts with embedded field T and *T
  1012  }
  1013  </pre>
  1014  
  1015  <p>
  1016  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1017  embedded field in a struct <code>x</code> is called <i>promoted</i> if
  1018  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1019  that field or method <code>f</code>.
  1020  </p>
  1021  
  1022  <p>
  1023  Promoted fields act like ordinary fields
  1024  of a struct except that they cannot be used as field names in
  1025  <a href="#Composite_literals">composite literals</a> of the struct.
  1026  </p>
  1027  
  1028  <p>
  1029  Given a struct type <code>S</code> and a type named <code>T</code>,
  1030  promoted methods are included in the method set of the struct as follows:
  1031  </p>
  1032  <ul>
  1033  	<li>
  1034  	If <code>S</code> contains an embedded field <code>T</code>,
  1035  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1036  	and <code>*S</code> both include promoted methods with receiver
  1037  	<code>T</code>. The method set of <code>*S</code> also
  1038  	includes promoted methods with receiver <code>*T</code>.
  1039  	</li>
  1040  
  1041  	<li>
  1042  	If <code>S</code> contains an embedded field <code>*T</code>,
  1043  	the method sets of <code>S</code> and <code>*S</code> both
  1044  	include promoted methods with receiver <code>T</code> or
  1045  	<code>*T</code>.
  1046  	</li>
  1047  </ul>
  1048  
  1049  <p>
  1050  A field declaration may be followed by an optional string literal <i>tag</i>,
  1051  which becomes an attribute for all the fields in the corresponding
  1052  field declaration. An empty tag string is equivalent to an absent tag.
  1053  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1054  and take part in <a href="#Type_identity">type identity</a> for structs
  1055  but are otherwise ignored.
  1056  </p>
  1057  
  1058  <pre>
  1059  struct {
  1060  	x, y float64 ""  // an empty tag string is like an absent tag
  1061  	name string  "any string is permitted as a tag"
  1062  	_    [4]byte "ceci n'est pas un champ de structure"
  1063  }
  1064  
  1065  // A struct corresponding to a TimeStamp protocol buffer.
  1066  // The tag strings define the protocol buffer field numbers;
  1067  // they follow the convention outlined by the reflect package.
  1068  struct {
  1069  	microsec  uint64 `protobuf:"1"`
  1070  	serverIP6 uint64 `protobuf:"2"`
  1071  }
  1072  </pre>
  1073  
  1074  <h3 id="Pointer_types">Pointer types</h3>
  1075  
  1076  <p>
  1077  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1078  type, called the <i>base type</i> of the pointer.
  1079  The value of an uninitialized pointer is <code>nil</code>.
  1080  </p>
  1081  
  1082  <pre class="ebnf">
  1083  PointerType = "*" BaseType .
  1084  BaseType    = Type .
  1085  </pre>
  1086  
  1087  <pre>
  1088  *Point
  1089  *[4]int
  1090  </pre>
  1091  
  1092  <h3 id="Function_types">Function types</h3>
  1093  
  1094  <p>
  1095  A function type denotes the set of all functions with the same parameter
  1096  and result types. The value of an uninitialized variable of function type
  1097  is <code>nil</code>.
  1098  </p>
  1099  
  1100  <pre class="ebnf">
  1101  FunctionType   = "func" Signature .
  1102  Signature      = Parameters [ Result ] .
  1103  Result         = Parameters | Type .
  1104  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1105  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1106  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1107  </pre>
  1108  
  1109  <p>
  1110  Within a list of parameters or results, the names (IdentifierList)
  1111  must either all be present or all be absent. If present, each name
  1112  stands for one item (parameter or result) of the specified type and
  1113  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1114  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1115  If absent, each type stands for one item of that type.
  1116  Parameter and result
  1117  lists are always parenthesized except that if there is exactly
  1118  one unnamed result it may be written as an unparenthesized type.
  1119  </p>
  1120  
  1121  <p>
  1122  The final incoming parameter in a function signature may have
  1123  a type prefixed with <code>...</code>.
  1124  A function with such a parameter is called <i>variadic</i> and
  1125  may be invoked with zero or more arguments for that parameter.
  1126  </p>
  1127  
  1128  <pre>
  1129  func()
  1130  func(x int) int
  1131  func(a, _ int, z float32) bool
  1132  func(a, b int, z float32) (bool)
  1133  func(prefix string, values ...int)
  1134  func(a, b int, z float64, opt ...interface{}) (success bool)
  1135  func(int, int, float64) (float64, *[]int)
  1136  func(n int) func(p *T)
  1137  </pre>
  1138  
  1139  
  1140  <h3 id="Interface_types">Interface types</h3>
  1141  
  1142  <p>
  1143  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1144  A variable of interface type can store a value of any type with a method set
  1145  that is any superset of the interface. Such a type is said to
  1146  <i>implement the interface</i>.
  1147  The value of an uninitialized variable of interface type is <code>nil</code>.
  1148  </p>
  1149  
  1150  <pre class="ebnf">
  1151  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1152  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1153  MethodName         = identifier .
  1154  InterfaceTypeName  = TypeName .
  1155  </pre>
  1156  
  1157  <p>
  1158  As with all method sets, in an interface type, each method must have a
  1159  <a href="#Uniqueness_of_identifiers">unique</a>
  1160  non-<a href="#Blank_identifier">blank</a> name.
  1161  </p>
  1162  
  1163  <pre>
  1164  // A simple File interface
  1165  interface {
  1166  	Read(b Buffer) bool
  1167  	Write(b Buffer) bool
  1168  	Close()
  1169  }
  1170  </pre>
  1171  
  1172  <p>
  1173  More than one type may implement an interface.
  1174  For instance, if two types <code>S1</code> and <code>S2</code>
  1175  have the method set
  1176  </p>
  1177  
  1178  <pre>
  1179  func (p T) Read(b Buffer) bool { return … }
  1180  func (p T) Write(b Buffer) bool { return … }
  1181  func (p T) Close() { … }
  1182  </pre>
  1183  
  1184  <p>
  1185  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1186  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1187  <code>S2</code>, regardless of what other methods
  1188  <code>S1</code> and <code>S2</code> may have or share.
  1189  </p>
  1190  
  1191  <p>
  1192  A type implements any interface comprising any subset of its methods
  1193  and may therefore implement several distinct interfaces. For
  1194  instance, all types implement the <i>empty interface</i>:
  1195  </p>
  1196  
  1197  <pre>
  1198  interface{}
  1199  </pre>
  1200  
  1201  <p>
  1202  Similarly, consider this interface specification,
  1203  which appears within a <a href="#Type_declarations">type declaration</a>
  1204  to define an interface called <code>Locker</code>:
  1205  </p>
  1206  
  1207  <pre>
  1208  type Locker interface {
  1209  	Lock()
  1210  	Unlock()
  1211  }
  1212  </pre>
  1213  
  1214  <p>
  1215  If <code>S1</code> and <code>S2</code> also implement
  1216  </p>
  1217  
  1218  <pre>
  1219  func (p T) Lock() { … }
  1220  func (p T) Unlock() { … }
  1221  </pre>
  1222  
  1223  <p>
  1224  they implement the <code>Locker</code> interface as well
  1225  as the <code>File</code> interface.
  1226  </p>
  1227  
  1228  <p>
  1229  An interface <code>T</code> may use a (possibly qualified) interface type
  1230  name <code>E</code> in place of a method specification. This is called
  1231  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1232  all (exported and non-exported) methods of <code>E</code> to the interface
  1233  <code>T</code>.
  1234  </p>
  1235  
  1236  <pre>
  1237  type ReadWriter interface {
  1238  	Read(b Buffer) bool
  1239  	Write(b Buffer) bool
  1240  }
  1241  
  1242  type File interface {
  1243  	ReadWriter  // same as adding the methods of ReadWriter
  1244  	Locker      // same as adding the methods of Locker
  1245  	Close()
  1246  }
  1247  
  1248  type LockedFile interface {
  1249  	Locker
  1250  	File        // illegal: Lock, Unlock not unique
  1251  	Lock()      // illegal: Lock not unique
  1252  }
  1253  </pre>
  1254  
  1255  <p>
  1256  An interface type <code>T</code> may not embed itself
  1257  or any interface type that embeds <code>T</code>, recursively.
  1258  </p>
  1259  
  1260  <pre>
  1261  // illegal: Bad cannot embed itself
  1262  type Bad interface {
  1263  	Bad
  1264  }
  1265  
  1266  // illegal: Bad1 cannot embed itself using Bad2
  1267  type Bad1 interface {
  1268  	Bad2
  1269  }
  1270  type Bad2 interface {
  1271  	Bad1
  1272  }
  1273  </pre>
  1274  
  1275  <h3 id="Map_types">Map types</h3>
  1276  
  1277  <p>
  1278  A map is an unordered group of elements of one type, called the
  1279  element type, indexed by a set of unique <i>keys</i> of another type,
  1280  called the key type.
  1281  The value of an uninitialized map is <code>nil</code>.
  1282  </p>
  1283  
  1284  <pre class="ebnf">
  1285  MapType     = "map" "[" KeyType "]" ElementType .
  1286  KeyType     = Type .
  1287  </pre>
  1288  
  1289  <p>
  1290  The <a href="#Comparison_operators">comparison operators</a>
  1291  <code>==</code> and <code>!=</code> must be fully defined
  1292  for operands of the key type; thus the key type must not be a function, map, or
  1293  slice.
  1294  If the key type is an interface type, these
  1295  comparison operators must be defined for the dynamic key values;
  1296  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1297  
  1298  </p>
  1299  
  1300  <pre>
  1301  map[string]int
  1302  map[*T]struct{ x, y float64 }
  1303  map[string]interface{}
  1304  </pre>
  1305  
  1306  <p>
  1307  The number of map elements is called its length.
  1308  For a map <code>m</code>, it can be discovered using the
  1309  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1310  and may change during execution. Elements may be added during execution
  1311  using <a href="#Assignments">assignments</a> and retrieved with
  1312  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1313  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1314  </p>
  1315  <p>
  1316  A new, empty map value is made using the built-in
  1317  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1318  which takes the map type and an optional capacity hint as arguments:
  1319  </p>
  1320  
  1321  <pre>
  1322  make(map[string]int)
  1323  make(map[string]int, 100)
  1324  </pre>
  1325  
  1326  <p>
  1327  The initial capacity does not bound its size:
  1328  maps grow to accommodate the number of items
  1329  stored in them, with the exception of <code>nil</code> maps.
  1330  A <code>nil</code> map is equivalent to an empty map except that no elements
  1331  may be added.
  1332  
  1333  <h3 id="Channel_types">Channel types</h3>
  1334  
  1335  <p>
  1336  A channel provides a mechanism for
  1337  <a href="#Go_statements">concurrently executing functions</a>
  1338  to communicate by
  1339  <a href="#Send_statements">sending</a> and
  1340  <a href="#Receive_operator">receiving</a>
  1341  values of a specified element type.
  1342  The value of an uninitialized channel is <code>nil</code>.
  1343  </p>
  1344  
  1345  <pre class="ebnf">
  1346  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1347  </pre>
  1348  
  1349  <p>
  1350  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1351  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1352  <i>bidirectional</i>.
  1353  A channel may be constrained only to send or only to receive by
  1354  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1355  </p>
  1356  
  1357  <pre>
  1358  chan T          // can be used to send and receive values of type T
  1359  chan&lt;- float64  // can only be used to send float64s
  1360  &lt;-chan int      // can only be used to receive ints
  1361  </pre>
  1362  
  1363  <p>
  1364  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1365  possible:
  1366  </p>
  1367  
  1368  <pre>
  1369  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1370  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1371  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1372  chan (&lt;-chan int)
  1373  </pre>
  1374  
  1375  <p>
  1376  A new, initialized channel
  1377  value can be made using the built-in function
  1378  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1379  which takes the channel type and an optional <i>capacity</i> as arguments:
  1380  </p>
  1381  
  1382  <pre>
  1383  make(chan int, 100)
  1384  </pre>
  1385  
  1386  <p>
  1387  The capacity, in number of elements, sets the size of the buffer in the channel.
  1388  If the capacity is zero or absent, the channel is unbuffered and communication
  1389  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1390  is buffered and communication succeeds without blocking if the buffer
  1391  is not full (sends) or not empty (receives).
  1392  A <code>nil</code> channel is never ready for communication.
  1393  </p>
  1394  
  1395  <p>
  1396  A channel may be closed with the built-in function
  1397  <a href="#Close"><code>close</code></a>.
  1398  The multi-valued assignment form of the
  1399  <a href="#Receive_operator">receive operator</a>
  1400  reports whether a received value was sent before
  1401  the channel was closed.
  1402  </p>
  1403  
  1404  <p>
  1405  A single channel may be used in
  1406  <a href="#Send_statements">send statements</a>,
  1407  <a href="#Receive_operator">receive operations</a>,
  1408  and calls to the built-in functions
  1409  <a href="#Length_and_capacity"><code>cap</code></a> and
  1410  <a href="#Length_and_capacity"><code>len</code></a>
  1411  by any number of goroutines without further synchronization.
  1412  Channels act as first-in-first-out queues.
  1413  For example, if one goroutine sends values on a channel
  1414  and a second goroutine receives them, the values are
  1415  received in the order sent.
  1416  </p>
  1417  
  1418  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1419  
  1420  <h3 id="Type_identity">Type identity</h3>
  1421  
  1422  <p>
  1423  Two types are either <i>identical</i> or <i>different</i>.
  1424  </p>
  1425  
  1426  <p>
  1427  A <a href="#Type_definitions">defined type</a> is always different from any other type.
  1428  Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
  1429  structurally equivalent; that is, they have the same literal structure and corresponding
  1430  components have identical types. In detail:
  1431  </p>
  1432  
  1433  <ul>
  1434  	<li>Two array types are identical if they have identical element types and
  1435  	    the same array length.</li>
  1436  
  1437  	<li>Two slice types are identical if they have identical element types.</li>
  1438  
  1439  	<li>Two struct types are identical if they have the same sequence of fields,
  1440  	    and if corresponding fields have the same names, and identical types,
  1441  	    and identical tags.
  1442  	    <a href="#Exported_identifiers">Non-exported</a> field names from different
  1443  	    packages are always different.</li>
  1444  
  1445  	<li>Two pointer types are identical if they have identical base types.</li>
  1446  
  1447  	<li>Two function types are identical if they have the same number of parameters
  1448  	    and result values, corresponding parameter and result types are
  1449  	    identical, and either both functions are variadic or neither is.
  1450  	    Parameter and result names are not required to match.</li>
  1451  
  1452  	<li>Two interface types are identical if they have the same set of methods
  1453  	    with the same names and identical function types.
  1454  	    <a href="#Exported_identifiers">Non-exported</a> method names from different
  1455  	    packages are always different. The order of the methods is irrelevant.</li>
  1456  
  1457  	<li>Two map types are identical if they have identical key and value types.</li>
  1458  
  1459  	<li>Two channel types are identical if they have identical value types and
  1460  	    the same direction.</li>
  1461  </ul>
  1462  
  1463  <p>
  1464  Given the declarations
  1465  </p>
  1466  
  1467  <pre>
  1468  type (
  1469  	A0 = []string
  1470  	A1 = A0
  1471  	A2 = struct{ a, b int }
  1472  	A3 = int
  1473  	A4 = func(A3, float64) *A0
  1474  	A5 = func(x int, _ float64) *[]string
  1475  )
  1476  
  1477  type (
  1478  	B0 A0
  1479  	B1 []string
  1480  	B2 struct{ a, b int }
  1481  	B3 struct{ a, c int }
  1482  	B4 func(int, float64) *B0
  1483  	B5 func(x int, y float64) *A1
  1484  )
  1485  
  1486  type	C0 = B0
  1487  </pre>
  1488  
  1489  <p>
  1490  these types are identical:
  1491  </p>
  1492  
  1493  <pre>
  1494  A0, A1, and []string
  1495  A2 and struct{ a, b int }
  1496  A3 and int
  1497  A4, func(int, float64) *[]string, and A5
  1498  
  1499  B0, B0, and C0
  1500  []int and []int
  1501  struct{ a, b *T5 } and struct{ a, b *T5 }
  1502  func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
  1503  </pre>
  1504  
  1505  <p>
  1506  <code>B0</code> and <code>B1</code> are different because they are new types
  1507  created by distinct <a href="#Type_definitions">type definitions</a>;
  1508  <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
  1509  are different because <code>B0</code> is different from <code>[]string</code>.
  1510  </p>
  1511  
  1512  
  1513  <h3 id="Assignability">Assignability</h3>
  1514  
  1515  <p>
  1516  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1517  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1518  </p>
  1519  
  1520  <ul>
  1521  <li>
  1522  <code>x</code>'s type is identical to <code>T</code>.
  1523  </li>
  1524  <li>
  1525  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1526  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1527  or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
  1528  </li>
  1529  <li>
  1530  <code>T</code> is an interface type and
  1531  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1532  </li>
  1533  <li>
  1534  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1535  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1536  and at least one of <code>V</code> or <code>T</code> is not a defined type.
  1537  </li>
  1538  <li>
  1539  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1540  is a pointer, function, slice, map, channel, or interface type.
  1541  </li>
  1542  <li>
  1543  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1544  by a value of type <code>T</code>.
  1545  </li>
  1546  </ul>
  1547  
  1548  
  1549  <h2 id="Blocks">Blocks</h2>
  1550  
  1551  <p>
  1552  A <i>block</i> is a possibly empty sequence of declarations and statements
  1553  within matching brace brackets.
  1554  </p>
  1555  
  1556  <pre class="ebnf">
  1557  Block = "{" StatementList "}" .
  1558  StatementList = { Statement ";" } .
  1559  </pre>
  1560  
  1561  <p>
  1562  In addition to explicit blocks in the source code, there are implicit blocks:
  1563  </p>
  1564  
  1565  <ol>
  1566  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1567  
  1568  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1569  	    Go source text for that package.</li>
  1570  
  1571  	<li>Each file has a <i>file block</i> containing all Go source text
  1572  	    in that file.</li>
  1573  
  1574  	<li>Each <a href="#If_statements">"if"</a>,
  1575  	    <a href="#For_statements">"for"</a>, and
  1576  	    <a href="#Switch_statements">"switch"</a>
  1577  	    statement is considered to be in its own implicit block.</li>
  1578  
  1579  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1580  	    or <a href="#Select_statements">"select"</a> statement
  1581  	    acts as an implicit block.</li>
  1582  </ol>
  1583  
  1584  <p>
  1585  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1586  </p>
  1587  
  1588  
  1589  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1590  
  1591  <p>
  1592  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1593  <a href="#Constant_declarations">constant</a>,
  1594  <a href="#Type_declarations">type</a>,
  1595  <a href="#Variable_declarations">variable</a>,
  1596  <a href="#Function_declarations">function</a>,
  1597  <a href="#Labeled_statements">label</a>, or
  1598  <a href="#Import_declarations">package</a>.
  1599  Every identifier in a program must be declared.
  1600  No identifier may be declared twice in the same block, and
  1601  no identifier may be declared in both the file and package block.
  1602  </p>
  1603  
  1604  <p>
  1605  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1606  in a declaration, but it does not introduce a binding and thus is not declared.
  1607  In the package block, the identifier <code>init</code> may only be used for
  1608  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1609  and like the blank identifier it does not introduce a new binding.
  1610  </p>
  1611  
  1612  <pre class="ebnf">
  1613  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1614  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1615  </pre>
  1616  
  1617  <p>
  1618  The <i>scope</i> of a declared identifier is the extent of source text in which
  1619  the identifier denotes the specified constant, type, variable, function, label, or package.
  1620  </p>
  1621  
  1622  <p>
  1623  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1624  </p>
  1625  
  1626  <ol>
  1627  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1628  
  1629  	<li>The scope of an identifier denoting a constant, type, variable,
  1630  	    or function (but not method) declared at top level (outside any
  1631  	    function) is the package block.</li>
  1632  
  1633  	<li>The scope of the package name of an imported package is the file block
  1634  	    of the file containing the import declaration.</li>
  1635  
  1636  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1637  	    or result variable is the function body.</li>
  1638  
  1639  	<li>The scope of a constant or variable identifier declared
  1640  	    inside a function begins at the end of the ConstSpec or VarSpec
  1641  	    (ShortVarDecl for short variable declarations)
  1642  	    and ends at the end of the innermost containing block.</li>
  1643  
  1644  	<li>The scope of a type identifier declared inside a function
  1645  	    begins at the identifier in the TypeSpec
  1646  	    and ends at the end of the innermost containing block.</li>
  1647  </ol>
  1648  
  1649  <p>
  1650  An identifier declared in a block may be redeclared in an inner block.
  1651  While the identifier of the inner declaration is in scope, it denotes
  1652  the entity declared by the inner declaration.
  1653  </p>
  1654  
  1655  <p>
  1656  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1657  does not appear in any scope. Its purpose is to identify the files belonging
  1658  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1659  declarations.
  1660  </p>
  1661  
  1662  
  1663  <h3 id="Label_scopes">Label scopes</h3>
  1664  
  1665  <p>
  1666  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1667  used in the <a href="#Break_statements">"break"</a>,
  1668  <a href="#Continue_statements">"continue"</a>, and
  1669  <a href="#Goto_statements">"goto"</a> statements.
  1670  It is illegal to define a label that is never used.
  1671  In contrast to other identifiers, labels are not block scoped and do
  1672  not conflict with identifiers that are not labels. The scope of a label
  1673  is the body of the function in which it is declared and excludes
  1674  the body of any nested function.
  1675  </p>
  1676  
  1677  
  1678  <h3 id="Blank_identifier">Blank identifier</h3>
  1679  
  1680  <p>
  1681  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1682  It serves as an anonymous placeholder instead of a regular (non-blank)
  1683  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1684  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1685  </p>
  1686  
  1687  
  1688  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1689  
  1690  <p>
  1691  The following identifiers are implicitly declared in the
  1692  <a href="#Blocks">universe block</a>:
  1693  </p>
  1694  <pre class="grammar">
  1695  Types:
  1696  	bool byte complex64 complex128 error float32 float64
  1697  	int int8 int16 int32 int64 rune string
  1698  	uint uint8 uint16 uint32 uint64 uintptr
  1699  
  1700  Constants:
  1701  	true false iota
  1702  
  1703  Zero value:
  1704  	nil
  1705  
  1706  Functions:
  1707  	append cap close complex copy delete imag len
  1708  	make new panic print println real recover
  1709  </pre>
  1710  
  1711  
  1712  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1713  
  1714  <p>
  1715  An identifier may be <i>exported</i> to permit access to it from another package.
  1716  An identifier is exported if both:
  1717  </p>
  1718  <ol>
  1719  	<li>the first character of the identifier's name is a Unicode upper case
  1720  	letter (Unicode class "Lu"); and</li>
  1721  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1722  	or it is a <a href="#Struct_types">field name</a> or
  1723  	<a href="#MethodName">method name</a>.</li>
  1724  </ol>
  1725  <p>
  1726  All other identifiers are not exported.
  1727  </p>
  1728  
  1729  
  1730  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1731  
  1732  <p>
  1733  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1734  <i>different</i> from every other in the set.
  1735  Two identifiers are different if they are spelled differently, or if they
  1736  appear in different <a href="#Packages">packages</a> and are not
  1737  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1738  </p>
  1739  
  1740  <h3 id="Constant_declarations">Constant declarations</h3>
  1741  
  1742  <p>
  1743  A constant declaration binds a list of identifiers (the names of
  1744  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1745  The number of identifiers must be equal
  1746  to the number of expressions, and the <i>n</i>th identifier on
  1747  the left is bound to the value of the <i>n</i>th expression on the
  1748  right.
  1749  </p>
  1750  
  1751  <pre class="ebnf">
  1752  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1753  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1754  
  1755  IdentifierList = identifier { "," identifier } .
  1756  ExpressionList = Expression { "," Expression } .
  1757  </pre>
  1758  
  1759  <p>
  1760  If the type is present, all constants take the type specified, and
  1761  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1762  If the type is omitted, the constants take the
  1763  individual types of the corresponding expressions.
  1764  If the expression values are untyped <a href="#Constants">constants</a>,
  1765  the declared constants remain untyped and the constant identifiers
  1766  denote the constant values. For instance, if the expression is a
  1767  floating-point literal, the constant identifier denotes a floating-point
  1768  constant, even if the literal's fractional part is zero.
  1769  </p>
  1770  
  1771  <pre>
  1772  const Pi float64 = 3.14159265358979323846
  1773  const zero = 0.0         // untyped floating-point constant
  1774  const (
  1775  	size int64 = 1024
  1776  	eof        = -1  // untyped integer constant
  1777  )
  1778  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1779  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1780  </pre>
  1781  
  1782  <p>
  1783  Within a parenthesized <code>const</code> declaration list the
  1784  expression list may be omitted from any but the first declaration.
  1785  Such an empty list is equivalent to the textual substitution of the
  1786  first preceding non-empty expression list and its type if any.
  1787  Omitting the list of expressions is therefore equivalent to
  1788  repeating the previous list.  The number of identifiers must be equal
  1789  to the number of expressions in the previous list.
  1790  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1791  this mechanism permits light-weight declaration of sequential values:
  1792  </p>
  1793  
  1794  <pre>
  1795  const (
  1796  	Sunday = iota
  1797  	Monday
  1798  	Tuesday
  1799  	Wednesday
  1800  	Thursday
  1801  	Friday
  1802  	Partyday
  1803  	numberOfDays  // this constant is not exported
  1804  )
  1805  </pre>
  1806  
  1807  
  1808  <h3 id="Iota">Iota</h3>
  1809  
  1810  <p>
  1811  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1812  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1813  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1814  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1815  It can be used to construct a set of related constants:
  1816  </p>
  1817  
  1818  <pre>
  1819  const ( // iota is reset to 0
  1820  	c0 = iota  // c0 == 0
  1821  	c1 = iota  // c1 == 1
  1822  	c2 = iota  // c2 == 2
  1823  )
  1824  
  1825  const ( // iota is reset to 0
  1826  	a = 1 &lt;&lt; iota  // a == 1
  1827  	b = 1 &lt;&lt; iota  // b == 2
  1828  	c = 3          // c == 3  (iota is not used but still incremented)
  1829  	d = 1 &lt;&lt; iota  // d == 8
  1830  )
  1831  
  1832  const ( // iota is reset to 0
  1833  	u         = iota * 42  // u == 0     (untyped integer constant)
  1834  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1835  	w         = iota * 42  // w == 84    (untyped integer constant)
  1836  )
  1837  
  1838  const x = iota  // x == 0  (iota has been reset)
  1839  const y = iota  // y == 0  (iota has been reset)
  1840  </pre>
  1841  
  1842  <p>
  1843  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1844  it is only incremented after each ConstSpec:
  1845  </p>
  1846  
  1847  <pre>
  1848  const (
  1849  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1850  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1851  	_, _                                  // skips iota == 2
  1852  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1853  )
  1854  </pre>
  1855  
  1856  <p>
  1857  This last example exploits the implicit repetition of the
  1858  last non-empty expression list.
  1859  </p>
  1860  
  1861  
  1862  <h3 id="Type_declarations">Type declarations</h3>
  1863  
  1864  <p>
  1865  A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
  1866  Type declarations come in two forms: alias declarations and type definitions.
  1867  <p>
  1868  
  1869  <pre class="ebnf">
  1870  TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1871  TypeSpec = AliasDecl | TypeDef .
  1872  </pre>
  1873  
  1874  <h4 id="Alias_declarations">Alias declarations</h4>
  1875  
  1876  <p>
  1877  An alias declaration binds an identifier to the given type.
  1878  </p>
  1879  
  1880  <pre class="ebnf">
  1881  AliasDecl = identifier "=" Type .
  1882  </pre>
  1883  
  1884  <p>
  1885  Within the <a href="#Declarations_and_scope">scope</a> of
  1886  the identifier, it serves as an <i>alias</i> for the type.
  1887  </p>
  1888  
  1889  <pre>
  1890  type (
  1891  	nodeList = []*Node  // nodeList and []*Node are identical types
  1892  	Polar    = polar    // Polar and polar denote identical types
  1893  )
  1894  </pre>
  1895  
  1896  
  1897  <h4 id="Type_definitions">Type definitions</h4>
  1898  
  1899  <p>
  1900  A type definition creates a new, distinct type with the same
  1901  <a href="#Types">underlying type</a> and operations as the given type,
  1902  and binds an identifier to it.
  1903  </p>
  1904  
  1905  <pre class="ebnf">
  1906  TypeDef = identifier Type .
  1907  </pre>
  1908  
  1909  <p>
  1910  The new type is called a <i>defined type</i>.
  1911  It is <a href="#Type_identity">different</a> from any other type,
  1912  including the type it is created from.
  1913  </p>
  1914  
  1915  <pre>
  1916  type (
  1917  	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
  1918  	polar Point                   // polar and Point denote different types
  1919  )
  1920  
  1921  type TreeNode struct {
  1922  	left, right *TreeNode
  1923  	value *Comparable
  1924  }
  1925  
  1926  type Block interface {
  1927  	BlockSize() int
  1928  	Encrypt(src, dst []byte)
  1929  	Decrypt(src, dst []byte)
  1930  }
  1931  </pre>
  1932  
  1933  <p>
  1934  A defined type may have <a href="#Method_declarations">methods</a> associated with it.
  1935  It does not inherit any methods bound to the given type,
  1936  but the <a href="#Method_sets">method set</a>
  1937  of an interface type or of elements of a composite type remains unchanged:
  1938  </p>
  1939  
  1940  <pre>
  1941  // A Mutex is a data type with two methods, Lock and Unlock.
  1942  type Mutex struct         { /* Mutex fields */ }
  1943  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1944  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1945  
  1946  // NewMutex has the same composition as Mutex but its method set is empty.
  1947  type NewMutex Mutex
  1948  
  1949  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1950  // but the method set of PtrMutex is empty.
  1951  type PtrMutex *Mutex
  1952  
  1953  // The method set of *PrintableMutex contains the methods
  1954  // Lock and Unlock bound to its embedded field Mutex.
  1955  type PrintableMutex struct {
  1956  	Mutex
  1957  }
  1958  
  1959  // MyBlock is an interface type that has the same method set as Block.
  1960  type MyBlock Block
  1961  </pre>
  1962  
  1963  <p>
  1964  Type definitions may be used to define different boolean, numeric,
  1965  or string types and associate methods with them:
  1966  </p>
  1967  
  1968  <pre>
  1969  type TimeZone int
  1970  
  1971  const (
  1972  	EST TimeZone = -(5 + iota)
  1973  	CST
  1974  	MST
  1975  	PST
  1976  )
  1977  
  1978  func (tz TimeZone) String() string {
  1979  	return fmt.Sprintf("GMT%+dh", tz)
  1980  }
  1981  </pre>
  1982  
  1983  
  1984  <h3 id="Variable_declarations">Variable declarations</h3>
  1985  
  1986  <p>
  1987  A variable declaration creates one or more <a href="#Variables">variables</a>,
  1988  binds corresponding identifiers to them, and gives each a type and an initial value.
  1989  </p>
  1990  
  1991  <pre class="ebnf">
  1992  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1993  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1994  </pre>
  1995  
  1996  <pre>
  1997  var i int
  1998  var U, V, W float64
  1999  var k = 0
  2000  var x, y float32 = -1, -2
  2001  var (
  2002  	i       int
  2003  	u, v, s = 2.0, 3.0, "bar"
  2004  )
  2005  var re, im = complexSqrt(-1)
  2006  var _, found = entries[name]  // map lookup; only interested in "found"
  2007  </pre>
  2008  
  2009  <p>
  2010  If a list of expressions is given, the variables are initialized
  2011  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  2012  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  2013  </p>
  2014  
  2015  <p>
  2016  If a type is present, each variable is given that type.
  2017  Otherwise, each variable is given the type of the corresponding
  2018  initialization value in the assignment.
  2019  If that value is an untyped constant, it is first
  2020  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  2021  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  2022  The predeclared value <code>nil</code> cannot be used to initialize a variable
  2023  with no explicit type.
  2024  </p>
  2025  
  2026  <pre>
  2027  var d = math.Sin(0.5)  // d is float64
  2028  var i = 42             // i is int
  2029  var t, ok = x.(T)      // t is T, ok is bool
  2030  var n = nil            // illegal
  2031  </pre>
  2032  
  2033  <p>
  2034  Implementation restriction: A compiler may make it illegal to declare a variable
  2035  inside a <a href="#Function_declarations">function body</a> if the variable is
  2036  never used.
  2037  </p>
  2038  
  2039  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  2040  
  2041  <p>
  2042  A <i>short variable declaration</i> uses the syntax:
  2043  </p>
  2044  
  2045  <pre class="ebnf">
  2046  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2047  </pre>
  2048  
  2049  <p>
  2050  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2051  with initializer expressions but no types:
  2052  </p>
  2053  
  2054  <pre class="grammar">
  2055  "var" IdentifierList = ExpressionList .
  2056  </pre>
  2057  
  2058  <pre>
  2059  i, j := 0, 10
  2060  f := func() int { return 7 }
  2061  ch := make(chan int)
  2062  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2063  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2064  </pre>
  2065  
  2066  <p>
  2067  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2068  variables provided they were originally declared earlier in the same block
  2069  (or the parameter lists if the block is the function body) with the same type,
  2070  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2071  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2072  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2073  </p>
  2074  
  2075  <pre>
  2076  field1, offset := nextField(str, 0)
  2077  field2, offset := nextField(str, offset)  // redeclares offset
  2078  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2079  </pre>
  2080  
  2081  <p>
  2082  Short variable declarations may appear only inside functions.
  2083  In some contexts such as the initializers for
  2084  <a href="#If_statements">"if"</a>,
  2085  <a href="#For_statements">"for"</a>, or
  2086  <a href="#Switch_statements">"switch"</a> statements,
  2087  they can be used to declare local temporary variables.
  2088  </p>
  2089  
  2090  <h3 id="Function_declarations">Function declarations</h3>
  2091  
  2092  <p>
  2093  A function declaration binds an identifier, the <i>function name</i>,
  2094  to a function.
  2095  </p>
  2096  
  2097  <pre class="ebnf">
  2098  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2099  FunctionName = identifier .
  2100  Function     = Signature FunctionBody .
  2101  FunctionBody = Block .
  2102  </pre>
  2103  
  2104  <p>
  2105  If the function's <a href="#Function_types">signature</a> declares
  2106  result parameters, the function body's statement list must end in
  2107  a <a href="#Terminating_statements">terminating statement</a>.
  2108  </p>
  2109  
  2110  <pre>
  2111  func IndexRune(s string, r rune) int {
  2112  	for i, c := range s {
  2113  		if c == r {
  2114  			return i
  2115  		}
  2116  	}
  2117  	// invalid: missing return statement
  2118  }
  2119  </pre>
  2120  
  2121  <p>
  2122  A function declaration may omit the body. Such a declaration provides the
  2123  signature for a function implemented outside Go, such as an assembly routine.
  2124  </p>
  2125  
  2126  <pre>
  2127  func min(x int, y int) int {
  2128  	if x &lt; y {
  2129  		return x
  2130  	}
  2131  	return y
  2132  }
  2133  
  2134  func flushICache(begin, end uintptr)  // implemented externally
  2135  </pre>
  2136  
  2137  <h3 id="Method_declarations">Method declarations</h3>
  2138  
  2139  <p>
  2140  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2141  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2142  and associates the method with the receiver's <i>base type</i>.
  2143  </p>
  2144  
  2145  <pre class="ebnf">
  2146  MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
  2147  Receiver   = Parameters .
  2148  </pre>
  2149  
  2150  <p>
  2151  The receiver is specified via an extra parameter section preceding the method
  2152  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2153  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2154  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2155  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2156  it must be <a href="#Type_definitions">defined</a> in the same package as the method.
  2157  The method is said to be <i>bound</i> to the base type and the method name
  2158  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2159  or <code>*T</code>.
  2160  </p>
  2161  
  2162  <p>
  2163  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2164  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2165  If the receiver's value is not referenced inside the body of the method,
  2166  its identifier may be omitted in the declaration. The same applies in
  2167  general to parameters of functions and methods.
  2168  </p>
  2169  
  2170  <p>
  2171  For a base type, the non-blank names of methods bound to it must be unique.
  2172  If the base type is a <a href="#Struct_types">struct type</a>,
  2173  the non-blank method and field names must be distinct.
  2174  </p>
  2175  
  2176  <p>
  2177  Given type <code>Point</code>, the declarations
  2178  </p>
  2179  
  2180  <pre>
  2181  func (p *Point) Length() float64 {
  2182  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2183  }
  2184  
  2185  func (p *Point) Scale(factor float64) {
  2186  	p.x *= factor
  2187  	p.y *= factor
  2188  }
  2189  </pre>
  2190  
  2191  <p>
  2192  bind the methods <code>Length</code> and <code>Scale</code>,
  2193  with receiver type <code>*Point</code>,
  2194  to the base type <code>Point</code>.
  2195  </p>
  2196  
  2197  <p>
  2198  The type of a method is the type of a function with the receiver as first
  2199  argument.  For instance, the method <code>Scale</code> has type
  2200  </p>
  2201  
  2202  <pre>
  2203  func(p *Point, factor float64)
  2204  </pre>
  2205  
  2206  <p>
  2207  However, a function declared this way is not a method.
  2208  </p>
  2209  
  2210  
  2211  <h2 id="Expressions">Expressions</h2>
  2212  
  2213  <p>
  2214  An expression specifies the computation of a value by applying
  2215  operators and functions to operands.
  2216  </p>
  2217  
  2218  <h3 id="Operands">Operands</h3>
  2219  
  2220  <p>
  2221  Operands denote the elementary values in an expression. An operand may be a
  2222  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2223  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2224  <a href="#Constant_declarations">constant</a>,
  2225  <a href="#Variable_declarations">variable</a>, or
  2226  <a href="#Function_declarations">function</a>,
  2227  a <a href="#Method_expressions">method expression</a> yielding a function,
  2228  or a parenthesized expression.
  2229  </p>
  2230  
  2231  <p>
  2232  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2233  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2234  </p>
  2235  
  2236  <pre class="ebnf">
  2237  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2238  Literal     = BasicLit | CompositeLit | FunctionLit .
  2239  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2240  OperandName = identifier | QualifiedIdent.
  2241  </pre>
  2242  
  2243  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2244  
  2245  <p>
  2246  A qualified identifier is an identifier qualified with a package name prefix.
  2247  Both the package name and the identifier must not be
  2248  <a href="#Blank_identifier">blank</a>.
  2249  </p>
  2250  
  2251  <pre class="ebnf">
  2252  QualifiedIdent = PackageName "." identifier .
  2253  </pre>
  2254  
  2255  <p>
  2256  A qualified identifier accesses an identifier in a different package, which
  2257  must be <a href="#Import_declarations">imported</a>.
  2258  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2259  declared in the <a href="#Blocks">package block</a> of that package.
  2260  </p>
  2261  
  2262  <pre>
  2263  math.Sin	// denotes the Sin function in package math
  2264  </pre>
  2265  
  2266  <h3 id="Composite_literals">Composite literals</h3>
  2267  
  2268  <p>
  2269  Composite literals construct values for structs, arrays, slices, and maps
  2270  and create a new value each time they are evaluated.
  2271  They consist of the type of the literal followed by a brace-bound list of elements.
  2272  Each element may optionally be preceded by a corresponding key.
  2273  </p>
  2274  
  2275  <pre class="ebnf">
  2276  CompositeLit  = LiteralType LiteralValue .
  2277  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2278                  SliceType | MapType | TypeName .
  2279  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2280  ElementList   = KeyedElement { "," KeyedElement } .
  2281  KeyedElement  = [ Key ":" ] Element .
  2282  Key           = FieldName | Expression | LiteralValue .
  2283  FieldName     = identifier .
  2284  Element       = Expression | LiteralValue .
  2285  </pre>
  2286  
  2287  <p>
  2288  The LiteralType's underlying type must be a struct, array, slice, or map type
  2289  (the grammar enforces this constraint except when the type is given
  2290  as a TypeName).
  2291  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2292  to the respective field, element, and key types of the literal type;
  2293  there is no additional conversion.
  2294  The key is interpreted as a field name for struct literals,
  2295  an index for array and slice literals, and a key for map literals.
  2296  For map literals, all elements must have a key. It is an error
  2297  to specify multiple elements with the same field name or
  2298  constant key value. For non-constant map keys, see the section on
  2299  <a href="#Order_of_evaluation">evaluation order</a>.
  2300  </p>
  2301  
  2302  <p>
  2303  For struct literals the following rules apply:
  2304  </p>
  2305  <ul>
  2306  	<li>A key must be a field name declared in the struct type.
  2307  	</li>
  2308  	<li>An element list that does not contain any keys must
  2309  	    list an element for each struct field in the
  2310  	    order in which the fields are declared.
  2311  	</li>
  2312  	<li>If any element has a key, every element must have a key.
  2313  	</li>
  2314  	<li>An element list that contains keys does not need to
  2315  	    have an element for each struct field. Omitted fields
  2316  	    get the zero value for that field.
  2317  	</li>
  2318  	<li>A literal may omit the element list; such a literal evaluates
  2319  	    to the zero value for its type.
  2320  	</li>
  2321  	<li>It is an error to specify an element for a non-exported
  2322  	    field of a struct belonging to a different package.
  2323  	</li>
  2324  </ul>
  2325  
  2326  <p>
  2327  Given the declarations
  2328  </p>
  2329  <pre>
  2330  type Point3D struct { x, y, z float64 }
  2331  type Line struct { p, q Point3D }
  2332  </pre>
  2333  
  2334  <p>
  2335  one may write
  2336  </p>
  2337  
  2338  <pre>
  2339  origin := Point3D{}                            // zero value for Point3D
  2340  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2341  </pre>
  2342  
  2343  <p>
  2344  For array and slice literals the following rules apply:
  2345  </p>
  2346  <ul>
  2347  	<li>Each element has an associated integer index marking
  2348  	    its position in the array.
  2349  	</li>
  2350  	<li>An element with a key uses the key as its index. The
  2351  	    key must be a non-negative constant representable by
  2352  	    a value of type <code>int</code>; and if it is typed
  2353  	    it must be of integer type.
  2354  	</li>
  2355  	<li>An element without a key uses the previous element's index plus one.
  2356  	    If the first element has no key, its index is zero.
  2357  	</li>
  2358  </ul>
  2359  
  2360  <p>
  2361  <a href="#Address_operators">Taking the address</a> of a composite literal
  2362  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2363  with the literal's value.
  2364  </p>
  2365  <pre>
  2366  var pointer *Point3D = &amp;Point3D{y: 1000}
  2367  </pre>
  2368  
  2369  <p>
  2370  The length of an array literal is the length specified in the literal type.
  2371  If fewer elements than the length are provided in the literal, the missing
  2372  elements are set to the zero value for the array element type.
  2373  It is an error to provide elements with index values outside the index range
  2374  of the array. The notation <code>...</code> specifies an array length equal
  2375  to the maximum element index plus one.
  2376  </p>
  2377  
  2378  <pre>
  2379  buffer := [10]string{}             // len(buffer) == 10
  2380  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2381  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2382  </pre>
  2383  
  2384  <p>
  2385  A slice literal describes the entire underlying array literal.
  2386  Thus the length and capacity of a slice literal are the maximum
  2387  element index plus one. A slice literal has the form
  2388  </p>
  2389  
  2390  <pre>
  2391  []T{x1, x2, … xn}
  2392  </pre>
  2393  
  2394  <p>
  2395  and is shorthand for a slice operation applied to an array:
  2396  </p>
  2397  
  2398  <pre>
  2399  tmp := [n]T{x1, x2, … xn}
  2400  tmp[0 : n]
  2401  </pre>
  2402  
  2403  <p>
  2404  Within a composite literal of array, slice, or map type <code>T</code>,
  2405  elements or map keys that are themselves composite literals may elide the respective
  2406  literal type if it is identical to the element or key type of <code>T</code>.
  2407  Similarly, elements or keys that are addresses of composite literals may elide
  2408  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2409  </p>
  2410  
  2411  <pre>
  2412  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2413  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2414  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2415  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2416  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2417  
  2418  type PPoint *Point
  2419  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2420  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2421  </pre>
  2422  
  2423  <p>
  2424  A parsing ambiguity arises when a composite literal using the
  2425  TypeName form of the LiteralType appears as an operand between the
  2426  <a href="#Keywords">keyword</a> and the opening brace of the block
  2427  of an "if", "for", or "switch" statement, and the composite literal
  2428  is not enclosed in parentheses, square brackets, or curly braces.
  2429  In this rare case, the opening brace of the literal is erroneously parsed
  2430  as the one introducing the block of statements. To resolve the ambiguity,
  2431  the composite literal must appear within parentheses.
  2432  </p>
  2433  
  2434  <pre>
  2435  if x == (T{a,b,c}[i]) { … }
  2436  if (x == T{a,b,c}[i]) { … }
  2437  </pre>
  2438  
  2439  <p>
  2440  Examples of valid array, slice, and map literals:
  2441  </p>
  2442  
  2443  <pre>
  2444  // list of prime numbers
  2445  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2446  
  2447  // vowels[ch] is true if ch is a vowel
  2448  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2449  
  2450  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2451  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2452  
  2453  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2454  noteFrequency := map[string]float32{
  2455  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2456  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2457  }
  2458  </pre>
  2459  
  2460  
  2461  <h3 id="Function_literals">Function literals</h3>
  2462  
  2463  <p>
  2464  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2465  </p>
  2466  
  2467  <pre class="ebnf">
  2468  FunctionLit = "func" Function .
  2469  </pre>
  2470  
  2471  <pre>
  2472  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2473  </pre>
  2474  
  2475  <p>
  2476  A function literal can be assigned to a variable or invoked directly.
  2477  </p>
  2478  
  2479  <pre>
  2480  f := func(x, y int) int { return x + y }
  2481  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2482  </pre>
  2483  
  2484  <p>
  2485  Function literals are <i>closures</i>: they may refer to variables
  2486  defined in a surrounding function. Those variables are then shared between
  2487  the surrounding function and the function literal, and they survive as long
  2488  as they are accessible.
  2489  </p>
  2490  
  2491  
  2492  <h3 id="Primary_expressions">Primary expressions</h3>
  2493  
  2494  <p>
  2495  Primary expressions are the operands for unary and binary expressions.
  2496  </p>
  2497  
  2498  <pre class="ebnf">
  2499  PrimaryExpr =
  2500  	Operand |
  2501  	Conversion |
  2502  	PrimaryExpr Selector |
  2503  	PrimaryExpr Index |
  2504  	PrimaryExpr Slice |
  2505  	PrimaryExpr TypeAssertion |
  2506  	PrimaryExpr Arguments .
  2507  
  2508  Selector       = "." identifier .
  2509  Index          = "[" Expression "]" .
  2510  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2511                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2512  TypeAssertion  = "." "(" Type ")" .
  2513  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2514  </pre>
  2515  
  2516  
  2517  <pre>
  2518  x
  2519  2
  2520  (s + ".txt")
  2521  f(3.1415, true)
  2522  Point{1, 2}
  2523  m["foo"]
  2524  s[i : j + 1]
  2525  obj.color
  2526  f.p[i].x()
  2527  </pre>
  2528  
  2529  
  2530  <h3 id="Selectors">Selectors</h3>
  2531  
  2532  <p>
  2533  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2534  that is not a <a href="#Package_clause">package name</a>, the
  2535  <i>selector expression</i>
  2536  </p>
  2537  
  2538  <pre>
  2539  x.f
  2540  </pre>
  2541  
  2542  <p>
  2543  denotes the field or method <code>f</code> of the value <code>x</code>
  2544  (or sometimes <code>*x</code>; see below).
  2545  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2546  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2547  The type of the selector expression is the type of <code>f</code>.
  2548  If <code>x</code> is a package name, see the section on
  2549  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2550  </p>
  2551  
  2552  <p>
  2553  A selector <code>f</code> may denote a field or method <code>f</code> of
  2554  a type <code>T</code>, or it may refer
  2555  to a field or method <code>f</code> of a nested
  2556  <a href="#Struct_types">embedded field</a> of <code>T</code>.
  2557  The number of embedded fields traversed
  2558  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2559  The depth of a field or method <code>f</code>
  2560  declared in <code>T</code> is zero.
  2561  The depth of a field or method <code>f</code> declared in
  2562  an embedded field <code>A</code> in <code>T</code> is the
  2563  depth of <code>f</code> in <code>A</code> plus one.
  2564  </p>
  2565  
  2566  <p>
  2567  The following rules apply to selectors:
  2568  </p>
  2569  
  2570  <ol>
  2571  <li>
  2572  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2573  where <code>T</code> is not a pointer or interface type,
  2574  <code>x.f</code> denotes the field or method at the shallowest depth
  2575  in <code>T</code> where there
  2576  is such an <code>f</code>.
  2577  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2578  with shallowest depth, the selector expression is illegal.
  2579  </li>
  2580  
  2581  <li>
  2582  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2583  is an interface type, <code>x.f</code> denotes the actual method with name
  2584  <code>f</code> of the dynamic value of <code>x</code>.
  2585  If there is no method with name <code>f</code> in the
  2586  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2587  expression is illegal.
  2588  </li>
  2589  
  2590  <li>
  2591  As an exception, if the type of <code>x</code> is a named pointer type
  2592  and <code>(*x).f</code> is a valid selector expression denoting a field
  2593  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2594  </li>
  2595  
  2596  <li>
  2597  In all other cases, <code>x.f</code> is illegal.
  2598  </li>
  2599  
  2600  <li>
  2601  If <code>x</code> is of pointer type and has the value
  2602  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2603  assigning to or evaluating <code>x.f</code>
  2604  causes a <a href="#Run_time_panics">run-time panic</a>.
  2605  </li>
  2606  
  2607  <li>
  2608  If <code>x</code> is of interface type and has the value
  2609  <code>nil</code>, <a href="#Calls">calling</a> or
  2610  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2611  causes a <a href="#Run_time_panics">run-time panic</a>.
  2612  </li>
  2613  </ol>
  2614  
  2615  <p>
  2616  For example, given the declarations:
  2617  </p>
  2618  
  2619  <pre>
  2620  type T0 struct {
  2621  	x int
  2622  }
  2623  
  2624  func (*T0) M0()
  2625  
  2626  type T1 struct {
  2627  	y int
  2628  }
  2629  
  2630  func (T1) M1()
  2631  
  2632  type T2 struct {
  2633  	z int
  2634  	T1
  2635  	*T0
  2636  }
  2637  
  2638  func (*T2) M2()
  2639  
  2640  type Q *T2
  2641  
  2642  var t T2     // with t.T0 != nil
  2643  var p *T2    // with p != nil and (*p).T0 != nil
  2644  var q Q = p
  2645  </pre>
  2646  
  2647  <p>
  2648  one may write:
  2649  </p>
  2650  
  2651  <pre>
  2652  t.z          // t.z
  2653  t.y          // t.T1.y
  2654  t.x          // (*t.T0).x
  2655  
  2656  p.z          // (*p).z
  2657  p.y          // (*p).T1.y
  2658  p.x          // (*(*p).T0).x
  2659  
  2660  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2661  
  2662  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2663  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2664  p.M2()       // p.M2()              M2 expects *T2 receiver
  2665  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2666  </pre>
  2667  
  2668  <p>
  2669  but the following is invalid:
  2670  </p>
  2671  
  2672  <pre>
  2673  q.M0()       // (*q).M0 is valid but not a field selector
  2674  </pre>
  2675  
  2676  
  2677  <h3 id="Method_expressions">Method expressions</h3>
  2678  
  2679  <p>
  2680  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2681  <code>T.M</code> is a function that is callable as a regular function
  2682  with the same arguments as <code>M</code> prefixed by an additional
  2683  argument that is the receiver of the method.
  2684  </p>
  2685  
  2686  <pre class="ebnf">
  2687  MethodExpr    = ReceiverType "." MethodName .
  2688  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2689  </pre>
  2690  
  2691  <p>
  2692  Consider a struct type <code>T</code> with two methods,
  2693  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2694  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2695  </p>
  2696  
  2697  <pre>
  2698  type T struct {
  2699  	a int
  2700  }
  2701  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2702  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2703  
  2704  var t T
  2705  </pre>
  2706  
  2707  <p>
  2708  The expression
  2709  </p>
  2710  
  2711  <pre>
  2712  T.Mv
  2713  </pre>
  2714  
  2715  <p>
  2716  yields a function equivalent to <code>Mv</code> but
  2717  with an explicit receiver as its first argument; it has signature
  2718  </p>
  2719  
  2720  <pre>
  2721  func(tv T, a int) int
  2722  </pre>
  2723  
  2724  <p>
  2725  That function may be called normally with an explicit receiver, so
  2726  these five invocations are equivalent:
  2727  </p>
  2728  
  2729  <pre>
  2730  t.Mv(7)
  2731  T.Mv(t, 7)
  2732  (T).Mv(t, 7)
  2733  f1 := T.Mv; f1(t, 7)
  2734  f2 := (T).Mv; f2(t, 7)
  2735  </pre>
  2736  
  2737  <p>
  2738  Similarly, the expression
  2739  </p>
  2740  
  2741  <pre>
  2742  (*T).Mp
  2743  </pre>
  2744  
  2745  <p>
  2746  yields a function value representing <code>Mp</code> with signature
  2747  </p>
  2748  
  2749  <pre>
  2750  func(tp *T, f float32) float32
  2751  </pre>
  2752  
  2753  <p>
  2754  For a method with a value receiver, one can derive a function
  2755  with an explicit pointer receiver, so
  2756  </p>
  2757  
  2758  <pre>
  2759  (*T).Mv
  2760  </pre>
  2761  
  2762  <p>
  2763  yields a function value representing <code>Mv</code> with signature
  2764  </p>
  2765  
  2766  <pre>
  2767  func(tv *T, a int) int
  2768  </pre>
  2769  
  2770  <p>
  2771  Such a function indirects through the receiver to create a value
  2772  to pass as the receiver to the underlying method;
  2773  the method does not overwrite the value whose address is passed in
  2774  the function call.
  2775  </p>
  2776  
  2777  <p>
  2778  The final case, a value-receiver function for a pointer-receiver method,
  2779  is illegal because pointer-receiver methods are not in the method set
  2780  of the value type.
  2781  </p>
  2782  
  2783  <p>
  2784  Function values derived from methods are called with function call syntax;
  2785  the receiver is provided as the first argument to the call.
  2786  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2787  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2788  To construct a function that binds the receiver, use a
  2789  <a href="#Function_literals">function literal</a> or
  2790  <a href="#Method_values">method value</a>.
  2791  </p>
  2792  
  2793  <p>
  2794  It is legal to derive a function value from a method of an interface type.
  2795  The resulting function takes an explicit receiver of that interface type.
  2796  </p>
  2797  
  2798  <h3 id="Method_values">Method values</h3>
  2799  
  2800  <p>
  2801  If the expression <code>x</code> has static type <code>T</code> and
  2802  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2803  <code>x.M</code> is called a <i>method value</i>.
  2804  The method value <code>x.M</code> is a function value that is callable
  2805  with the same arguments as a method call of <code>x.M</code>.
  2806  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2807  method value; the saved copy is then used as the receiver in any calls,
  2808  which may be executed later.
  2809  </p>
  2810  
  2811  <p>
  2812  The type <code>T</code> may be an interface or non-interface type.
  2813  </p>
  2814  
  2815  <p>
  2816  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2817  consider a struct type <code>T</code> with two methods,
  2818  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2819  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2820  </p>
  2821  
  2822  <pre>
  2823  type T struct {
  2824  	a int
  2825  }
  2826  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2827  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2828  
  2829  var t T
  2830  var pt *T
  2831  func makeT() T
  2832  </pre>
  2833  
  2834  <p>
  2835  The expression
  2836  </p>
  2837  
  2838  <pre>
  2839  t.Mv
  2840  </pre>
  2841  
  2842  <p>
  2843  yields a function value of type
  2844  </p>
  2845  
  2846  <pre>
  2847  func(int) int
  2848  </pre>
  2849  
  2850  <p>
  2851  These two invocations are equivalent:
  2852  </p>
  2853  
  2854  <pre>
  2855  t.Mv(7)
  2856  f := t.Mv; f(7)
  2857  </pre>
  2858  
  2859  <p>
  2860  Similarly, the expression
  2861  </p>
  2862  
  2863  <pre>
  2864  pt.Mp
  2865  </pre>
  2866  
  2867  <p>
  2868  yields a function value of type
  2869  </p>
  2870  
  2871  <pre>
  2872  func(float32) float32
  2873  </pre>
  2874  
  2875  <p>
  2876  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2877  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2878  </p>
  2879  
  2880  <p>
  2881  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2882  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2883  </p>
  2884  
  2885  <pre>
  2886  f := t.Mv; f(7)   // like t.Mv(7)
  2887  f := pt.Mp; f(7)  // like pt.Mp(7)
  2888  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2889  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2890  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2891  </pre>
  2892  
  2893  <p>
  2894  Although the examples above use non-interface types, it is also legal to create a method value
  2895  from a value of interface type.
  2896  </p>
  2897  
  2898  <pre>
  2899  var i interface { M(int) } = myVal
  2900  f := i.M; f(7)  // like i.M(7)
  2901  </pre>
  2902  
  2903  
  2904  <h3 id="Index_expressions">Index expressions</h3>
  2905  
  2906  <p>
  2907  A primary expression of the form
  2908  </p>
  2909  
  2910  <pre>
  2911  a[x]
  2912  </pre>
  2913  
  2914  <p>
  2915  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2916  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2917  The following rules apply:
  2918  </p>
  2919  
  2920  <p>
  2921  If <code>a</code> is not a map:
  2922  </p>
  2923  <ul>
  2924  	<li>the index <code>x</code> must be of integer type or untyped;
  2925  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2926  	    otherwise it is <i>out of range</i></li>
  2927  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2928  	    and representable by a value of type <code>int</code>
  2929  </ul>
  2930  
  2931  <p>
  2932  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2933  </p>
  2934  <ul>
  2935  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2936  	<li>if <code>x</code> is out of range at run time,
  2937  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2938  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2939  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2940  </ul>
  2941  
  2942  <p>
  2943  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2944  </p>
  2945  <ul>
  2946  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2947  </ul>
  2948  
  2949  <p>
  2950  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2951  </p>
  2952  <ul>
  2953  	<li>if <code>x</code> is out of range at run time,
  2954  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2955  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2956  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2957  </ul>
  2958  
  2959  <p>
  2960  For <code>a</code> of <a href="#String_types">string type</a>:
  2961  </p>
  2962  <ul>
  2963  	<li>a <a href="#Constants">constant</a> index must be in range
  2964  	    if the string <code>a</code> is also constant</li>
  2965  	<li>if <code>x</code> is out of range at run time,
  2966  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2967  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2968  	    <code>a[x]</code> is <code>byte</code></li>
  2969  	<li><code>a[x]</code> may not be assigned to</li>
  2970  </ul>
  2971  
  2972  <p>
  2973  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2974  </p>
  2975  <ul>
  2976  	<li><code>x</code>'s type must be
  2977  	    <a href="#Assignability">assignable</a>
  2978  	    to the key type of <code>M</code></li>
  2979  	<li>if the map contains an entry with key <code>x</code>,
  2980  	    <code>a[x]</code> is the map value with key <code>x</code>
  2981  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2982  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2983  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2984  	    for the value type of <code>M</code></li>
  2985  </ul>
  2986  
  2987  <p>
  2988  Otherwise <code>a[x]</code> is illegal.
  2989  </p>
  2990  
  2991  <p>
  2992  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2993  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2994  </p>
  2995  
  2996  <pre>
  2997  v, ok = a[x]
  2998  v, ok := a[x]
  2999  var v, ok = a[x]
  3000  var v, ok T = a[x]
  3001  </pre>
  3002  
  3003  <p>
  3004  yields an additional untyped boolean value. The value of <code>ok</code> is
  3005  <code>true</code> if the key <code>x</code> is present in the map, and
  3006  <code>false</code> otherwise.
  3007  </p>
  3008  
  3009  <p>
  3010  Assigning to an element of a <code>nil</code> map causes a
  3011  <a href="#Run_time_panics">run-time panic</a>.
  3012  </p>
  3013  
  3014  
  3015  <h3 id="Slice_expressions">Slice expressions</h3>
  3016  
  3017  <p>
  3018  Slice expressions construct a substring or slice from a string, array, pointer
  3019  to array, or slice. There are two variants: a simple form that specifies a low
  3020  and high bound, and a full form that also specifies a bound on the capacity.
  3021  </p>
  3022  
  3023  <h4>Simple slice expressions</h4>
  3024  
  3025  <p>
  3026  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3027  </p>
  3028  
  3029  <pre>
  3030  a[low : high]
  3031  </pre>
  3032  
  3033  <p>
  3034  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3035  <code>high</code> select which elements of operand <code>a</code> appear
  3036  in the result. The result has indices starting at 0 and length equal to
  3037  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3038  After slicing the array <code>a</code>
  3039  </p>
  3040  
  3041  <pre>
  3042  a := [5]int{1, 2, 3, 4, 5}
  3043  s := a[1:4]
  3044  </pre>
  3045  
  3046  <p>
  3047  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3048  </p>
  3049  
  3050  <pre>
  3051  s[0] == 2
  3052  s[1] == 3
  3053  s[2] == 4
  3054  </pre>
  3055  
  3056  <p>
  3057  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3058  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3059  sliced operand:
  3060  </p>
  3061  
  3062  <pre>
  3063  a[2:]  // same as a[2 : len(a)]
  3064  a[:3]  // same as a[0 : 3]
  3065  a[:]   // same as a[0 : len(a)]
  3066  </pre>
  3067  
  3068  <p>
  3069  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3070  <code>(*a)[low : high]</code>.
  3071  </p>
  3072  
  3073  <p>
  3074  For arrays or strings, the indices are <i>in range</i> if
  3075  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3076  otherwise they are <i>out of range</i>.
  3077  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3078  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3079  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3080  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3081  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3082  </p>
  3083  
  3084  <p>
  3085  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3086  the result of the slice operation is a non-constant value of the same type as the operand.
  3087  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3088  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3089  and the result of the slice operation is a slice with the same element type as the array.
  3090  </p>
  3091  
  3092  <p>
  3093  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3094  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3095  operand.
  3096  </p>
  3097  
  3098  <h4>Full slice expressions</h4>
  3099  
  3100  <p>
  3101  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3102  </p>
  3103  
  3104  <pre>
  3105  a[low : high : max]
  3106  </pre>
  3107  
  3108  <p>
  3109  constructs a slice of the same type, and with the same length and elements as the simple slice
  3110  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3111  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3112  After slicing the array <code>a</code>
  3113  </p>
  3114  
  3115  <pre>
  3116  a := [5]int{1, 2, 3, 4, 5}
  3117  t := a[1:3:5]
  3118  </pre>
  3119  
  3120  <p>
  3121  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3122  </p>
  3123  
  3124  <pre>
  3125  t[0] == 2
  3126  t[1] == 3
  3127  </pre>
  3128  
  3129  <p>
  3130  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3131  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3132  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3133  </p>
  3134  
  3135  <p>
  3136  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3137  otherwise they are <i>out of range</i>.
  3138  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3139  <code>int</code>; for arrays, constant indices must also be in range.
  3140  If multiple indices are constant, the constants that are present must be in range relative to each
  3141  other.
  3142  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3143  </p>
  3144  
  3145  <h3 id="Type_assertions">Type assertions</h3>
  3146  
  3147  <p>
  3148  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3149  and a type <code>T</code>, the primary expression
  3150  </p>
  3151  
  3152  <pre>
  3153  x.(T)
  3154  </pre>
  3155  
  3156  <p>
  3157  asserts that <code>x</code> is not <code>nil</code>
  3158  and that the value stored in <code>x</code> is of type <code>T</code>.
  3159  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3160  </p>
  3161  <p>
  3162  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3163  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3164  to the type <code>T</code>.
  3165  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3166  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3167  to store a value of type <code>T</code>.
  3168  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3169  of <code>x</code> implements the interface <code>T</code>.
  3170  </p>
  3171  <p>
  3172  If the type assertion holds, the value of the expression is the value
  3173  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3174  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3175  In other words, even though the dynamic type of <code>x</code>
  3176  is known only at run time, the type of <code>x.(T)</code> is
  3177  known to be <code>T</code> in a correct program.
  3178  </p>
  3179  
  3180  <pre>
  3181  var x interface{} = 7          // x has dynamic type int and value 7
  3182  i := x.(int)                   // i has type int and value 7
  3183  
  3184  type I interface { m() }
  3185  
  3186  func f(y I) {
  3187  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3188  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3189  	…
  3190  }
  3191  </pre>
  3192  
  3193  <p>
  3194  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3195  </p>
  3196  
  3197  <pre>
  3198  v, ok = x.(T)
  3199  v, ok := x.(T)
  3200  var v, ok = x.(T)
  3201  var v, ok T1 = x.(T)
  3202  </pre>
  3203  
  3204  <p>
  3205  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3206  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3207  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3208  No run-time panic occurs in this case.
  3209  </p>
  3210  
  3211  
  3212  <h3 id="Calls">Calls</h3>
  3213  
  3214  <p>
  3215  Given an expression <code>f</code> of function type
  3216  <code>F</code>,
  3217  </p>
  3218  
  3219  <pre>
  3220  f(a1, a2, … an)
  3221  </pre>
  3222  
  3223  <p>
  3224  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3225  Except for one special case, arguments must be single-valued expressions
  3226  <a href="#Assignability">assignable</a> to the parameter types of
  3227  <code>F</code> and are evaluated before the function is called.
  3228  The type of the expression is the result type
  3229  of <code>F</code>.
  3230  A method invocation is similar but the method itself
  3231  is specified as a selector upon a value of the receiver type for
  3232  the method.
  3233  </p>
  3234  
  3235  <pre>
  3236  math.Atan2(x, y)  // function call
  3237  var pt *Point
  3238  pt.Scale(3.5)     // method call with receiver pt
  3239  </pre>
  3240  
  3241  <p>
  3242  In a function call, the function value and arguments are evaluated in
  3243  <a href="#Order_of_evaluation">the usual order</a>.
  3244  After they are evaluated, the parameters of the call are passed by value to the function
  3245  and the called function begins execution.
  3246  The return parameters of the function are passed by value
  3247  back to the calling function when the function returns.
  3248  </p>
  3249  
  3250  <p>
  3251  Calling a <code>nil</code> function value
  3252  causes a <a href="#Run_time_panics">run-time panic</a>.
  3253  </p>
  3254  
  3255  <p>
  3256  As a special case, if the return values of a function or method
  3257  <code>g</code> are equal in number and individually
  3258  assignable to the parameters of another function or method
  3259  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3260  will invoke <code>f</code> after binding the return values of
  3261  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3262  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3263  and <code>g</code> must have at least one return value.
  3264  If <code>f</code> has a final <code>...</code> parameter, it is
  3265  assigned the return values of <code>g</code> that remain after
  3266  assignment of regular parameters.
  3267  </p>
  3268  
  3269  <pre>
  3270  func Split(s string, pos int) (string, string) {
  3271  	return s[0:pos], s[pos:]
  3272  }
  3273  
  3274  func Join(s, t string) string {
  3275  	return s + t
  3276  }
  3277  
  3278  if Join(Split(value, len(value)/2)) != value {
  3279  	log.Panic("test fails")
  3280  }
  3281  </pre>
  3282  
  3283  <p>
  3284  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3285  of (the type of) <code>x</code> contains <code>m</code> and the
  3286  argument list can be assigned to the parameter list of <code>m</code>.
  3287  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3288  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3289  for <code>(&amp;x).m()</code>:
  3290  </p>
  3291  
  3292  <pre>
  3293  var p Point
  3294  p.Scale(3.5)
  3295  </pre>
  3296  
  3297  <p>
  3298  There is no distinct method type and there are no method literals.
  3299  </p>
  3300  
  3301  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3302  
  3303  <p>
  3304  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3305  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3306  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3307  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3308  the value passed to <code>p</code> is <code>nil</code>.
  3309  Otherwise, the value passed is a new slice
  3310  of type <code>[]T</code> with a new underlying array whose successive elements
  3311  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3312  to <code>T</code>. The length and capacity of the slice is therefore
  3313  the number of arguments bound to <code>p</code> and may differ for each
  3314  call site.
  3315  </p>
  3316  
  3317  <p>
  3318  Given the function and calls
  3319  </p>
  3320  <pre>
  3321  func Greeting(prefix string, who ...string)
  3322  Greeting("nobody")
  3323  Greeting("hello:", "Joe", "Anna", "Eileen")
  3324  </pre>
  3325  
  3326  <p>
  3327  within <code>Greeting</code>, <code>who</code> will have the value
  3328  <code>nil</code> in the first call, and
  3329  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3330  </p>
  3331  
  3332  <p>
  3333  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3334  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3335  is followed by <code>...</code>. In this case no new slice is created.
  3336  </p>
  3337  
  3338  <p>
  3339  Given the slice <code>s</code> and call
  3340  </p>
  3341  
  3342  <pre>
  3343  s := []string{"James", "Jasmine"}
  3344  Greeting("goodbye:", s...)
  3345  </pre>
  3346  
  3347  <p>
  3348  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3349  with the same underlying array.
  3350  </p>
  3351  
  3352  
  3353  <h3 id="Operators">Operators</h3>
  3354  
  3355  <p>
  3356  Operators combine operands into expressions.
  3357  </p>
  3358  
  3359  <pre class="ebnf">
  3360  Expression = UnaryExpr | Expression binary_op Expression .
  3361  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3362  
  3363  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3364  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3365  add_op     = "+" | "-" | "|" | "^" .
  3366  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3367  
  3368  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3369  </pre>
  3370  
  3371  <p>
  3372  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3373  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3374  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3375  For operations involving constants only, see the section on
  3376  <a href="#Constant_expressions">constant expressions</a>.
  3377  </p>
  3378  
  3379  <p>
  3380  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3381  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3382  to the type of the other operand.
  3383  </p>
  3384  
  3385  <p>
  3386  The right operand in a shift expression must have unsigned integer type
  3387  or be an untyped constant representable by a value of type <code>uint</code>.
  3388  If the left operand of a non-constant shift expression is an untyped constant,
  3389  it is first converted to the type it would assume if the shift expression were
  3390  replaced by its left operand alone.
  3391  </p>
  3392  
  3393  <pre>
  3394  var s uint = 33
  3395  var i = 1&lt;&lt;s           // 1 has type int
  3396  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3397  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3398  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3399  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3400  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3401  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3402  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3403  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3404  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3405  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3406  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3407  </pre>
  3408  
  3409  
  3410  <h4 id="Operator_precedence">Operator precedence</h4>
  3411  <p>
  3412  Unary operators have the highest precedence.
  3413  As the  <code>++</code> and <code>--</code> operators form
  3414  statements, not expressions, they fall
  3415  outside the operator hierarchy.
  3416  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3417  <p>
  3418  There are five precedence levels for binary operators.
  3419  Multiplication operators bind strongest, followed by addition
  3420  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3421  and finally <code>||</code> (logical OR):
  3422  </p>
  3423  
  3424  <pre class="grammar">
  3425  Precedence    Operator
  3426      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3427      4             +  -  |  ^
  3428      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3429      2             &amp;&amp;
  3430      1             ||
  3431  </pre>
  3432  
  3433  <p>
  3434  Binary operators of the same precedence associate from left to right.
  3435  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3436  </p>
  3437  
  3438  <pre>
  3439  +x
  3440  23 + 3*x[i]
  3441  x &lt;= f()
  3442  ^a &gt;&gt; b
  3443  f() || g()
  3444  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3445  </pre>
  3446  
  3447  
  3448  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3449  <p>
  3450  Arithmetic operators apply to numeric values and yield a result of the same
  3451  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3452  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3453  floating-point, and complex types; <code>+</code> also applies to strings.
  3454  The bitwise logical and shift operators apply to integers only.
  3455  </p>
  3456  
  3457  <pre class="grammar">
  3458  +    sum                    integers, floats, complex values, strings
  3459  -    difference             integers, floats, complex values
  3460  *    product                integers, floats, complex values
  3461  /    quotient               integers, floats, complex values
  3462  %    remainder              integers
  3463  
  3464  &amp;    bitwise AND            integers
  3465  |    bitwise OR             integers
  3466  ^    bitwise XOR            integers
  3467  &amp;^   bit clear (AND NOT)    integers
  3468  
  3469  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3470  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3471  </pre>
  3472  
  3473  
  3474  <h4 id="Integer_operators">Integer operators</h4>
  3475  
  3476  <p>
  3477  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3478  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3479  relationships:
  3480  </p>
  3481  
  3482  <pre>
  3483  x = q*y + r  and  |r| &lt; |y|
  3484  </pre>
  3485  
  3486  <p>
  3487  with <code>x / y</code> truncated towards zero
  3488  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3489  </p>
  3490  
  3491  <pre>
  3492   x     y     x / y     x % y
  3493   5     3       1         2
  3494  -5     3      -1        -2
  3495   5    -3      -1         2
  3496  -5    -3       1        -2
  3497  </pre>
  3498  
  3499  <p>
  3500  As an exception to this rule, if the dividend <code>x</code> is the most
  3501  negative value for the int type of <code>x</code>, the quotient
  3502  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3503  </p>
  3504  
  3505  <pre>
  3506  			 x, q
  3507  int8                     -128
  3508  int16                  -32768
  3509  int32             -2147483648
  3510  int64    -9223372036854775808
  3511  </pre>
  3512  
  3513  <p>
  3514  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3515  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3516  If the dividend is non-negative and the divisor is a constant power of 2,
  3517  the division may be replaced by a right shift, and computing the remainder may
  3518  be replaced by a bitwise AND operation:
  3519  </p>
  3520  
  3521  <pre>
  3522   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3523   11      2         3         2          3
  3524  -11     -2        -3        -3          1
  3525  </pre>
  3526  
  3527  <p>
  3528  The shift operators shift the left operand by the shift count specified by the
  3529  right operand. They implement arithmetic shifts if the left operand is a signed
  3530  integer and logical shifts if it is an unsigned integer.
  3531  There is no upper limit on the shift count. Shifts behave
  3532  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3533  count of <code>n</code>.
  3534  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3535  and <code>x &gt;&gt; 1</code> is the same as
  3536  <code>x/2</code> but truncated towards negative infinity.
  3537  </p>
  3538  
  3539  <p>
  3540  For integer operands, the unary operators
  3541  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3542  follows:
  3543  </p>
  3544  
  3545  <pre class="grammar">
  3546  +x                          is 0 + x
  3547  -x    negation              is 0 - x
  3548  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3549                                        and  m = -1 for signed x
  3550  </pre>
  3551  
  3552  
  3553  <h4 id="Integer_overflow">Integer overflow</h4>
  3554  
  3555  <p>
  3556  For unsigned integer values, the operations <code>+</code>,
  3557  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3558  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3559  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3560  Loosely speaking, these unsigned integer operations
  3561  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3562  </p>
  3563  <p>
  3564  For signed integers, the operations <code>+</code>,
  3565  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3566  overflow and the resulting value exists and is deterministically defined
  3567  by the signed integer representation, the operation, and its operands.
  3568  No exception is raised as a result of overflow. A
  3569  compiler may not optimize code under the assumption that overflow does
  3570  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3571  </p>
  3572  
  3573  
  3574  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3575  
  3576  <p>
  3577  For floating-point and complex numbers,
  3578  <code>+x</code> is the same as <code>x</code>,
  3579  while <code>-x</code> is the negation of <code>x</code>.
  3580  The result of a floating-point or complex division by zero is not specified beyond the
  3581  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3582  occurs is implementation-specific.
  3583  </p>
  3584  
  3585  <p>
  3586  An implementation may combine multiple floating-point operations into a single
  3587  fused operation, possibly across statements, and produce a result that differs
  3588  from the value obtained by executing and rounding the instructions individually.
  3589  A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to
  3590  the precision of the target type, preventing fusion that would discard that rounding.
  3591  </p>
  3592  
  3593  <p>
  3594  For instance, some architectures provide a "fused multiply and add" (FMA) instruction
  3595  that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>.
  3596  These examples show when a Go implementation can use that instruction:
  3597  </p>
  3598  
  3599  <pre>
  3600  // FMA allowed for computing r, because x*y is not explicitly rounded:
  3601  r  = x*y + z
  3602  r  = z;   r += x*y
  3603  t  = x*y; r = t + z
  3604  *p = x*y; r = *p + z
  3605  r  = x*y + float64(z)
  3606  
  3607  // FMA disallowed for computing r, because it would omit rounding of x*y:
  3608  r  = float64(x*y) + z
  3609  r  = z; r += float64(x*y)
  3610  t  = float64(x*y); r = t + z
  3611  </pre>
  3612  
  3613  <h4 id="String_concatenation">String concatenation</h4>
  3614  
  3615  <p>
  3616  Strings can be concatenated using the <code>+</code> operator
  3617  or the <code>+=</code> assignment operator:
  3618  </p>
  3619  
  3620  <pre>
  3621  s := "hi" + string(c)
  3622  s += " and good bye"
  3623  </pre>
  3624  
  3625  <p>
  3626  String addition creates a new string by concatenating the operands.
  3627  </p>
  3628  
  3629  
  3630  <h3 id="Comparison_operators">Comparison operators</h3>
  3631  
  3632  <p>
  3633  Comparison operators compare two operands and yield an untyped boolean value.
  3634  </p>
  3635  
  3636  <pre class="grammar">
  3637  ==    equal
  3638  !=    not equal
  3639  &lt;     less
  3640  &lt;=    less or equal
  3641  &gt;     greater
  3642  &gt;=    greater or equal
  3643  </pre>
  3644  
  3645  <p>
  3646  In any comparison, the first operand
  3647  must be <a href="#Assignability">assignable</a>
  3648  to the type of the second operand, or vice versa.
  3649  </p>
  3650  <p>
  3651  The equality operators <code>==</code> and <code>!=</code> apply
  3652  to operands that are <i>comparable</i>.
  3653  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3654  apply to operands that are <i>ordered</i>.
  3655  These terms and the result of the comparisons are defined as follows:
  3656  </p>
  3657  
  3658  <ul>
  3659  	<li>
  3660  	Boolean values are comparable.
  3661  	Two boolean values are equal if they are either both
  3662  	<code>true</code> or both <code>false</code>.
  3663  	</li>
  3664  
  3665  	<li>
  3666  	Integer values are comparable and ordered, in the usual way.
  3667  	</li>
  3668  
  3669  	<li>
  3670  	Floating-point values are comparable and ordered,
  3671  	as defined by the IEEE-754 standard.
  3672  	</li>
  3673  
  3674  	<li>
  3675  	Complex values are comparable.
  3676  	Two complex values <code>u</code> and <code>v</code> are
  3677  	equal if both <code>real(u) == real(v)</code> and
  3678  	<code>imag(u) == imag(v)</code>.
  3679  	</li>
  3680  
  3681  	<li>
  3682  	String values are comparable and ordered, lexically byte-wise.
  3683  	</li>
  3684  
  3685  	<li>
  3686  	Pointer values are comparable.
  3687  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3688  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3689  	</li>
  3690  
  3691  	<li>
  3692  	Channel values are comparable.
  3693  	Two channel values are equal if they were created by the same call to
  3694  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3695  	or if both have value <code>nil</code>.
  3696  	</li>
  3697  
  3698  	<li>
  3699  	Interface values are comparable.
  3700  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3701  	and equal dynamic values or if both have value <code>nil</code>.
  3702  	</li>
  3703  
  3704  	<li>
  3705  	A value <code>x</code> of non-interface type <code>X</code> and
  3706  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3707  	of type <code>X</code> are comparable and
  3708  	<code>X</code> implements <code>T</code>.
  3709  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3710  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3711  	</li>
  3712  
  3713  	<li>
  3714  	Struct values are comparable if all their fields are comparable.
  3715  	Two struct values are equal if their corresponding
  3716  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3717  	</li>
  3718  
  3719  	<li>
  3720  	Array values are comparable if values of the array element type are comparable.
  3721  	Two array values are equal if their corresponding elements are equal.
  3722  	</li>
  3723  </ul>
  3724  
  3725  <p>
  3726  A comparison of two interface values with identical dynamic types
  3727  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3728  of that type are not comparable.  This behavior applies not only to direct interface
  3729  value comparisons but also when comparing arrays of interface values
  3730  or structs with interface-valued fields.
  3731  </p>
  3732  
  3733  <p>
  3734  Slice, map, and function values are not comparable.
  3735  However, as a special case, a slice, map, or function value may
  3736  be compared to the predeclared identifier <code>nil</code>.
  3737  Comparison of pointer, channel, and interface values to <code>nil</code>
  3738  is also allowed and follows from the general rules above.
  3739  </p>
  3740  
  3741  <pre>
  3742  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3743  
  3744  type MyBool bool
  3745  var x, y int
  3746  var (
  3747  	// The result of a comparison is an untyped boolean.
  3748  	// The usual assignment rules apply.
  3749  	b3        = x == y // b3 has type bool
  3750  	b4 bool   = x == y // b4 has type bool
  3751  	b5 MyBool = x == y // b5 has type MyBool
  3752  )
  3753  </pre>
  3754  
  3755  <h3 id="Logical_operators">Logical operators</h3>
  3756  
  3757  <p>
  3758  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3759  and yield a result of the same type as the operands.
  3760  The right operand is evaluated conditionally.
  3761  </p>
  3762  
  3763  <pre class="grammar">
  3764  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3765  ||    conditional OR     p || q  is  "if p then true else q"
  3766  !     NOT                !p      is  "not p"
  3767  </pre>
  3768  
  3769  
  3770  <h3 id="Address_operators">Address operators</h3>
  3771  
  3772  <p>
  3773  For an operand <code>x</code> of type <code>T</code>, the address operation
  3774  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3775  The operand must be <i>addressable</i>,
  3776  that is, either a variable, pointer indirection, or slice indexing
  3777  operation; or a field selector of an addressable struct operand;
  3778  or an array indexing operation of an addressable array.
  3779  As an exception to the addressability requirement, <code>x</code> may also be a
  3780  (possibly parenthesized)
  3781  <a href="#Composite_literals">composite literal</a>.
  3782  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3783  then the evaluation of <code>&amp;x</code> does too.
  3784  </p>
  3785  
  3786  <p>
  3787  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3788  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3789  to by <code>x</code>.
  3790  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3791  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3792  </p>
  3793  
  3794  <pre>
  3795  &amp;x
  3796  &amp;a[f(2)]
  3797  &amp;Point{2, 3}
  3798  *p
  3799  *pf(x)
  3800  
  3801  var x *int = nil
  3802  *x   // causes a run-time panic
  3803  &amp;*x  // causes a run-time panic
  3804  </pre>
  3805  
  3806  
  3807  <h3 id="Receive_operator">Receive operator</h3>
  3808  
  3809  <p>
  3810  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3811  the value of the receive operation <code>&lt;-ch</code> is the value received
  3812  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3813  and the type of the receive operation is the element type of the channel.
  3814  The expression blocks until a value is available.
  3815  Receiving from a <code>nil</code> channel blocks forever.
  3816  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3817  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3818  after any previously sent values have been received.
  3819  </p>
  3820  
  3821  <pre>
  3822  v1 := &lt;-ch
  3823  v2 = &lt;-ch
  3824  f(&lt;-ch)
  3825  &lt;-strobe  // wait until clock pulse and discard received value
  3826  </pre>
  3827  
  3828  <p>
  3829  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3830  </p>
  3831  
  3832  <pre>
  3833  x, ok = &lt;-ch
  3834  x, ok := &lt;-ch
  3835  var x, ok = &lt;-ch
  3836  var x, ok T = &lt;-ch
  3837  </pre>
  3838  
  3839  <p>
  3840  yields an additional untyped boolean result reporting whether the
  3841  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3842  if the value received was delivered by a successful send operation to the
  3843  channel, or <code>false</code> if it is a zero value generated because the
  3844  channel is closed and empty.
  3845  </p>
  3846  
  3847  
  3848  <h3 id="Conversions">Conversions</h3>
  3849  
  3850  <p>
  3851  Conversions are expressions of the form <code>T(x)</code>
  3852  where <code>T</code> is a type and <code>x</code> is an expression
  3853  that can be converted to type <code>T</code>.
  3854  </p>
  3855  
  3856  <pre class="ebnf">
  3857  Conversion = Type "(" Expression [ "," ] ")" .
  3858  </pre>
  3859  
  3860  <p>
  3861  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3862  or if the type starts with the keyword <code>func</code>
  3863  and has no result list, it must be parenthesized when
  3864  necessary to avoid ambiguity:
  3865  </p>
  3866  
  3867  <pre>
  3868  *Point(p)        // same as *(Point(p))
  3869  (*Point)(p)      // p is converted to *Point
  3870  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3871  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3872  func()(x)        // function signature func() x
  3873  (func())(x)      // x is converted to func()
  3874  (func() int)(x)  // x is converted to func() int
  3875  func() int(x)    // x is converted to func() int (unambiguous)
  3876  </pre>
  3877  
  3878  <p>
  3879  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3880  type <code>T</code> in any of these cases:
  3881  </p>
  3882  
  3883  <ul>
  3884  	<li>
  3885  	<code>x</code> is representable by a value of type <code>T</code>.
  3886  	</li>
  3887  	<li>
  3888  	<code>x</code> is a floating-point constant,
  3889  	<code>T</code> is a floating-point type,
  3890  	and <code>x</code> is representable by a value
  3891  	of type <code>T</code> after rounding using
  3892  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3893  	further rounded to an unsigned <code>0.0</code>.
  3894  	The constant <code>T(x)</code> is the rounded value.
  3895  	</li>
  3896  	<li>
  3897  	<code>x</code> is an integer constant and <code>T</code> is a
  3898  	<a href="#String_types">string type</a>.
  3899  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3900  	as for non-constant <code>x</code> applies in this case.
  3901  	</li>
  3902  </ul>
  3903  
  3904  <p>
  3905  Converting a constant yields a typed constant as result.
  3906  </p>
  3907  
  3908  <pre>
  3909  uint(iota)               // iota value of type uint
  3910  float32(2.718281828)     // 2.718281828 of type float32
  3911  complex128(1)            // 1.0 + 0.0i of type complex128
  3912  float32(0.49999999)      // 0.5 of type float32
  3913  float64(-1e-1000)        // 0.0 of type float64
  3914  string('x')              // "x" of type string
  3915  string(0x266c)           // "♬" of type string
  3916  MyString("foo" + "bar")  // "foobar" of type MyString
  3917  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3918  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3919  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3920  string(65.0)             // illegal: 65.0 is not an integer constant
  3921  </pre>
  3922  
  3923  <p>
  3924  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3925  in any of these cases:
  3926  </p>
  3927  
  3928  <ul>
  3929  	<li>
  3930  	<code>x</code> is <a href="#Assignability">assignable</a>
  3931  	to <code>T</code>.
  3932  	</li>
  3933  	<li>
  3934  	ignoring struct tags (see below),
  3935  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3936  	<a href="#Types">underlying types</a>.
  3937  	</li>
  3938  	<li>
  3939  	ignoring struct tags (see below),
  3940  	<code>x</code>'s type and <code>T</code> are pointer types
  3941  	that are not <a href="#Type_definitions">defined types</a>,
  3942  	and their pointer base types have identical underlying types.
  3943  	</li>
  3944  	<li>
  3945  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3946  	point types.
  3947  	</li>
  3948  	<li>
  3949  	<code>x</code>'s type and <code>T</code> are both complex types.
  3950  	</li>
  3951  	<li>
  3952  	<code>x</code> is an integer or a slice of bytes or runes
  3953  	and <code>T</code> is a string type.
  3954  	</li>
  3955  	<li>
  3956  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3957  	</li>
  3958  </ul>
  3959  
  3960  <p>
  3961  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3962  for identity for the purpose of conversion:
  3963  </p>
  3964  
  3965  <pre>
  3966  type Person struct {
  3967  	Name    string
  3968  	Address *struct {
  3969  		Street string
  3970  		City   string
  3971  	}
  3972  }
  3973  
  3974  var data *struct {
  3975  	Name    string `json:"name"`
  3976  	Address *struct {
  3977  		Street string `json:"street"`
  3978  		City   string `json:"city"`
  3979  	} `json:"address"`
  3980  }
  3981  
  3982  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3983  </pre>
  3984  
  3985  <p>
  3986  Specific rules apply to (non-constant) conversions between numeric types or
  3987  to and from a string type.
  3988  These conversions may change the representation of <code>x</code>
  3989  and incur a run-time cost.
  3990  All other conversions only change the type but not the representation
  3991  of <code>x</code>.
  3992  </p>
  3993  
  3994  <p>
  3995  There is no linguistic mechanism to convert between pointers and integers.
  3996  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3997  implements this functionality under
  3998  restricted circumstances.
  3999  </p>
  4000  
  4001  <h4>Conversions between numeric types</h4>
  4002  
  4003  <p>
  4004  For the conversion of non-constant numeric values, the following rules apply:
  4005  </p>
  4006  
  4007  <ol>
  4008  <li>
  4009  When converting between integer types, if the value is a signed integer, it is
  4010  sign extended to implicit infinite precision; otherwise it is zero extended.
  4011  It is then truncated to fit in the result type's size.
  4012  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  4013  The conversion always yields a valid value; there is no indication of overflow.
  4014  </li>
  4015  <li>
  4016  When converting a floating-point number to an integer, the fraction is discarded
  4017  (truncation towards zero).
  4018  </li>
  4019  <li>
  4020  When converting an integer or floating-point number to a floating-point type,
  4021  or a complex number to another complex type, the result value is rounded
  4022  to the precision specified by the destination type.
  4023  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  4024  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  4025  but float32(x) represents the result of rounding <code>x</code>'s value to
  4026  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  4027  of precision, but <code>float32(x + 0.1)</code> does not.
  4028  </li>
  4029  </ol>
  4030  
  4031  <p>
  4032  In all non-constant conversions involving floating-point or complex values,
  4033  if the result type cannot represent the value the conversion
  4034  succeeds but the result value is implementation-dependent.
  4035  </p>
  4036  
  4037  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4038  
  4039  <ol>
  4040  <li>
  4041  Converting a signed or unsigned integer value to a string type yields a
  4042  string containing the UTF-8 representation of the integer. Values outside
  4043  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4044  
  4045  <pre>
  4046  string('a')       // "a"
  4047  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4048  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4049  type MyString string
  4050  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4051  </pre>
  4052  </li>
  4053  
  4054  <li>
  4055  Converting a slice of bytes to a string type yields
  4056  a string whose successive bytes are the elements of the slice.
  4057  
  4058  <pre>
  4059  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4060  string([]byte{})                                     // ""
  4061  string([]byte(nil))                                  // ""
  4062  
  4063  type MyBytes []byte
  4064  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4065  </pre>
  4066  </li>
  4067  
  4068  <li>
  4069  Converting a slice of runes to a string type yields
  4070  a string that is the concatenation of the individual rune values
  4071  converted to strings.
  4072  
  4073  <pre>
  4074  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4075  string([]rune{})                         // ""
  4076  string([]rune(nil))                      // ""
  4077  
  4078  type MyRunes []rune
  4079  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4080  </pre>
  4081  </li>
  4082  
  4083  <li>
  4084  Converting a value of a string type to a slice of bytes type
  4085  yields a slice whose successive elements are the bytes of the string.
  4086  
  4087  <pre>
  4088  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4089  []byte("")        // []byte{}
  4090  
  4091  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4092  </pre>
  4093  </li>
  4094  
  4095  <li>
  4096  Converting a value of a string type to a slice of runes type
  4097  yields a slice containing the individual Unicode code points of the string.
  4098  
  4099  <pre>
  4100  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4101  []rune("")                 // []rune{}
  4102  
  4103  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4104  </pre>
  4105  </li>
  4106  </ol>
  4107  
  4108  
  4109  <h3 id="Constant_expressions">Constant expressions</h3>
  4110  
  4111  <p>
  4112  Constant expressions may contain only <a href="#Constants">constant</a>
  4113  operands and are evaluated at compile time.
  4114  </p>
  4115  
  4116  <p>
  4117  Untyped boolean, numeric, and string constants may be used as operands
  4118  wherever it is legal to use an operand of boolean, numeric, or string type,
  4119  respectively.
  4120  Except for shift operations, if the operands of a binary operation are
  4121  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4122  the kind that appears later in this list: integer, rune, floating-point, complex.
  4123  For example, an untyped integer constant divided by an
  4124  untyped complex constant yields an untyped complex constant.
  4125  </p>
  4126  
  4127  <p>
  4128  A constant <a href="#Comparison_operators">comparison</a> always yields
  4129  an untyped boolean constant.  If the left operand of a constant
  4130  <a href="#Operators">shift expression</a> is an untyped constant, the
  4131  result is an integer constant; otherwise it is a constant of the same
  4132  type as the left operand, which must be of
  4133  <a href="#Numeric_types">integer type</a>.
  4134  Applying all other operators to untyped constants results in an untyped
  4135  constant of the same kind (that is, a boolean, integer, floating-point,
  4136  complex, or string constant).
  4137  </p>
  4138  
  4139  <pre>
  4140  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4141  const b = 15 / 4           // b == 3     (untyped integer constant)
  4142  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4143  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4144  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4145  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4146  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4147  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4148  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4149  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4150  const j = true             // j == true  (untyped boolean constant)
  4151  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4152  const l = "hi"             // l == "hi"  (untyped string constant)
  4153  const m = string(k)        // m == "x"   (type string)
  4154  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4155  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4156  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4157  </pre>
  4158  
  4159  <p>
  4160  Applying the built-in function <code>complex</code> to untyped
  4161  integer, rune, or floating-point constants yields
  4162  an untyped complex constant.
  4163  </p>
  4164  
  4165  <pre>
  4166  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4167  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4168  </pre>
  4169  
  4170  <p>
  4171  Constant expressions are always evaluated exactly; intermediate values and the
  4172  constants themselves may require precision significantly larger than supported
  4173  by any predeclared type in the language. The following are legal declarations:
  4174  </p>
  4175  
  4176  <pre>
  4177  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4178  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4179  </pre>
  4180  
  4181  <p>
  4182  The divisor of a constant division or remainder operation must not be zero:
  4183  </p>
  4184  
  4185  <pre>
  4186  3.14 / 0.0   // illegal: division by zero
  4187  </pre>
  4188  
  4189  <p>
  4190  The values of <i>typed</i> constants must always be accurately representable as values
  4191  of the constant type. The following constant expressions are illegal:
  4192  </p>
  4193  
  4194  <pre>
  4195  uint(-1)     // -1 cannot be represented as a uint
  4196  int(3.14)    // 3.14 cannot be represented as an int
  4197  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4198  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4199  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4200  </pre>
  4201  
  4202  <p>
  4203  The mask used by the unary bitwise complement operator <code>^</code> matches
  4204  the rule for non-constants: the mask is all 1s for unsigned constants
  4205  and -1 for signed and untyped constants.
  4206  </p>
  4207  
  4208  <pre>
  4209  ^1         // untyped integer constant, equal to -2
  4210  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4211  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4212  int8(^1)   // same as int8(-2)
  4213  ^int8(1)   // same as -1 ^ int8(1) = -2
  4214  </pre>
  4215  
  4216  <p>
  4217  Implementation restriction: A compiler may use rounding while
  4218  computing untyped floating-point or complex constant expressions; see
  4219  the implementation restriction in the section
  4220  on <a href="#Constants">constants</a>.  This rounding may cause a
  4221  floating-point constant expression to be invalid in an integer
  4222  context, even if it would be integral when calculated using infinite
  4223  precision, and vice versa.
  4224  </p>
  4225  
  4226  
  4227  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4228  
  4229  <p>
  4230  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4231  determine the evaluation order of individual initialization expressions in
  4232  <a href="#Variable_declarations">variable declarations</a>.
  4233  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4234  expression, assignment, or
  4235  <a href="#Return_statements">return statement</a>,
  4236  all function calls, method calls, and
  4237  communication operations are evaluated in lexical left-to-right
  4238  order.
  4239  </p>
  4240  
  4241  <p>
  4242  For example, in the (function-local) assignment
  4243  </p>
  4244  <pre>
  4245  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4246  </pre>
  4247  <p>
  4248  the function calls and communication happen in the order
  4249  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4250  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4251  However, the order of those events compared to the evaluation
  4252  and indexing of <code>x</code> and the evaluation
  4253  of <code>y</code> is not specified.
  4254  </p>
  4255  
  4256  <pre>
  4257  a := 1
  4258  f := func() int { a++; return a }
  4259  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4260  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4261  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4262  </pre>
  4263  
  4264  <p>
  4265  At package level, initialization dependencies override the left-to-right rule
  4266  for individual initialization expressions, but not for operands within each
  4267  expression:
  4268  </p>
  4269  
  4270  <pre>
  4271  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4272  
  4273  func f() int        { return c }
  4274  func g() int        { return a }
  4275  func sqr(x int) int { return x*x }
  4276  
  4277  // functions u and v are independent of all other variables and functions
  4278  </pre>
  4279  
  4280  <p>
  4281  The function calls happen in the order
  4282  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4283  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4284  </p>
  4285  
  4286  <p>
  4287  Floating-point operations within a single expression are evaluated according to
  4288  the associativity of the operators.  Explicit parentheses affect the evaluation
  4289  by overriding the default associativity.
  4290  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4291  is performed before adding <code>x</code>.
  4292  </p>
  4293  
  4294  <h2 id="Statements">Statements</h2>
  4295  
  4296  <p>
  4297  Statements control execution.
  4298  </p>
  4299  
  4300  <pre class="ebnf">
  4301  Statement =
  4302  	Declaration | LabeledStmt | SimpleStmt |
  4303  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4304  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4305  	DeferStmt .
  4306  
  4307  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4308  </pre>
  4309  
  4310  <h3 id="Terminating_statements">Terminating statements</h3>
  4311  
  4312  <p>
  4313  A terminating statement is one of the following:
  4314  </p>
  4315  
  4316  <ol>
  4317  <li>
  4318  	A <a href="#Return_statements">"return"</a> or
  4319      	<a href="#Goto_statements">"goto"</a> statement.
  4320  	<!-- ul below only for regular layout -->
  4321  	<ul> </ul>
  4322  </li>
  4323  
  4324  <li>
  4325  	A call to the built-in function
  4326  	<a href="#Handling_panics"><code>panic</code></a>.
  4327  	<!-- ul below only for regular layout -->
  4328  	<ul> </ul>
  4329  </li>
  4330  
  4331  <li>
  4332  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4333  	<!-- ul below only for regular layout -->
  4334  	<ul> </ul>
  4335  </li>
  4336  
  4337  <li>
  4338  	An <a href="#If_statements">"if" statement</a> in which:
  4339  	<ul>
  4340  	<li>the "else" branch is present, and</li>
  4341  	<li>both branches are terminating statements.</li>
  4342  	</ul>
  4343  </li>
  4344  
  4345  <li>
  4346  	A <a href="#For_statements">"for" statement</a> in which:
  4347  	<ul>
  4348  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4349  	<li>the loop condition is absent.</li>
  4350  	</ul>
  4351  </li>
  4352  
  4353  <li>
  4354  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4355  	<ul>
  4356  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4357  	<li>there is a default case, and</li>
  4358  	<li>the statement lists in each case, including the default, end in a terminating
  4359  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4360  	    statement</a>.</li>
  4361  	</ul>
  4362  </li>
  4363  
  4364  <li>
  4365  	A <a href="#Select_statements">"select" statement</a> in which:
  4366  	<ul>
  4367  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4368  	<li>the statement lists in each case, including the default if present,
  4369  	    end in a terminating statement.</li>
  4370  	</ul>
  4371  </li>
  4372  
  4373  <li>
  4374  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4375  	a terminating statement.
  4376  </li>
  4377  </ol>
  4378  
  4379  <p>
  4380  All other statements are not terminating.
  4381  </p>
  4382  
  4383  <p>
  4384  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4385  is not empty and its final non-empty statement is terminating.
  4386  </p>
  4387  
  4388  
  4389  <h3 id="Empty_statements">Empty statements</h3>
  4390  
  4391  <p>
  4392  The empty statement does nothing.
  4393  </p>
  4394  
  4395  <pre class="ebnf">
  4396  EmptyStmt = .
  4397  </pre>
  4398  
  4399  
  4400  <h3 id="Labeled_statements">Labeled statements</h3>
  4401  
  4402  <p>
  4403  A labeled statement may be the target of a <code>goto</code>,
  4404  <code>break</code> or <code>continue</code> statement.
  4405  </p>
  4406  
  4407  <pre class="ebnf">
  4408  LabeledStmt = Label ":" Statement .
  4409  Label       = identifier .
  4410  </pre>
  4411  
  4412  <pre>
  4413  Error: log.Panic("error encountered")
  4414  </pre>
  4415  
  4416  
  4417  <h3 id="Expression_statements">Expression statements</h3>
  4418  
  4419  <p>
  4420  With the exception of specific built-in functions,
  4421  function and method <a href="#Calls">calls</a> and
  4422  <a href="#Receive_operator">receive operations</a>
  4423  can appear in statement context. Such statements may be parenthesized.
  4424  </p>
  4425  
  4426  <pre class="ebnf">
  4427  ExpressionStmt = Expression .
  4428  </pre>
  4429  
  4430  <p>
  4431  The following built-in functions are not permitted in statement context:
  4432  </p>
  4433  
  4434  <pre>
  4435  append cap complex imag len make new real
  4436  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4437  </pre>
  4438  
  4439  <pre>
  4440  h(x+y)
  4441  f.Close()
  4442  &lt;-ch
  4443  (&lt;-ch)
  4444  len("foo")  // illegal if len is the built-in function
  4445  </pre>
  4446  
  4447  
  4448  <h3 id="Send_statements">Send statements</h3>
  4449  
  4450  <p>
  4451  A send statement sends a value on a channel.
  4452  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4453  the channel direction must permit send operations,
  4454  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4455  to the channel's element type.
  4456  </p>
  4457  
  4458  <pre class="ebnf">
  4459  SendStmt = Channel "&lt;-" Expression .
  4460  Channel  = Expression .
  4461  </pre>
  4462  
  4463  <p>
  4464  Both the channel and the value expression are evaluated before communication
  4465  begins. Communication blocks until the send can proceed.
  4466  A send on an unbuffered channel can proceed if a receiver is ready.
  4467  A send on a buffered channel can proceed if there is room in the buffer.
  4468  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4469  A send on a <code>nil</code> channel blocks forever.
  4470  </p>
  4471  
  4472  <pre>
  4473  ch &lt;- 3  // send value 3 to channel ch
  4474  </pre>
  4475  
  4476  
  4477  <h3 id="IncDec_statements">IncDec statements</h3>
  4478  
  4479  <p>
  4480  The "++" and "--" statements increment or decrement their operands
  4481  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4482  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4483  or a map index expression.
  4484  </p>
  4485  
  4486  <pre class="ebnf">
  4487  IncDecStmt = Expression ( "++" | "--" ) .
  4488  </pre>
  4489  
  4490  <p>
  4491  The following <a href="#Assignments">assignment statements</a> are semantically
  4492  equivalent:
  4493  </p>
  4494  
  4495  <pre class="grammar">
  4496  IncDec statement    Assignment
  4497  x++                 x += 1
  4498  x--                 x -= 1
  4499  </pre>
  4500  
  4501  
  4502  <h3 id="Assignments">Assignments</h3>
  4503  
  4504  <pre class="ebnf">
  4505  Assignment = ExpressionList assign_op ExpressionList .
  4506  
  4507  assign_op = [ add_op | mul_op ] "=" .
  4508  </pre>
  4509  
  4510  <p>
  4511  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4512  a map index expression, or (for <code>=</code> assignments only) the
  4513  <a href="#Blank_identifier">blank identifier</a>.
  4514  Operands may be parenthesized.
  4515  </p>
  4516  
  4517  <pre>
  4518  x = 1
  4519  *p = f()
  4520  a[i] = 23
  4521  (k) = &lt;-ch  // same as: k = &lt;-ch
  4522  </pre>
  4523  
  4524  <p>
  4525  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4526  <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a>
  4527  is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4528  <code>(y)</code> but evaluates <code>x</code>
  4529  only once.  The <i>op</i><code>=</code> construct is a single token.
  4530  In assignment operations, both the left- and right-hand expression lists
  4531  must contain exactly one single-valued expression, and the left-hand
  4532  expression must not be the blank identifier.
  4533  </p>
  4534  
  4535  <pre>
  4536  a[i] &lt;&lt;= 2
  4537  i &amp;^= 1&lt;&lt;n
  4538  </pre>
  4539  
  4540  <p>
  4541  A tuple assignment assigns the individual elements of a multi-valued
  4542  operation to a list of variables.  There are two forms.  In the
  4543  first, the right hand operand is a single multi-valued expression
  4544  such as a function call, a <a href="#Channel_types">channel</a> or
  4545  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4546  The number of operands on the left
  4547  hand side must match the number of values.  For instance, if
  4548  <code>f</code> is a function returning two values,
  4549  </p>
  4550  
  4551  <pre>
  4552  x, y = f()
  4553  </pre>
  4554  
  4555  <p>
  4556  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4557  In the second form, the number of operands on the left must equal the number
  4558  of expressions on the right, each of which must be single-valued, and the
  4559  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4560  operand on the left:
  4561  </p>
  4562  
  4563  <pre>
  4564  one, two, three = '一', '二', '三'
  4565  </pre>
  4566  
  4567  <p>
  4568  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4569  ignore right-hand side values in an assignment:
  4570  </p>
  4571  
  4572  <pre>
  4573  _ = x       // evaluate x but ignore it
  4574  x, _ = f()  // evaluate f() but ignore second result value
  4575  </pre>
  4576  
  4577  <p>
  4578  The assignment proceeds in two phases.
  4579  First, the operands of <a href="#Index_expressions">index expressions</a>
  4580  and <a href="#Address_operators">pointer indirections</a>
  4581  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4582  on the left and the expressions on the right are all
  4583  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4584  Second, the assignments are carried out in left-to-right order.
  4585  </p>
  4586  
  4587  <pre>
  4588  a, b = b, a  // exchange a and b
  4589  
  4590  x := []int{1, 2, 3}
  4591  i := 0
  4592  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4593  
  4594  i = 0
  4595  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4596  
  4597  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4598  
  4599  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4600  
  4601  type Point struct { x, y int }
  4602  var p *Point
  4603  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4604  
  4605  i = 2
  4606  x = []int{3, 5, 7}
  4607  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4608  	break
  4609  }
  4610  // after this loop, i == 0 and x == []int{3, 5, 3}
  4611  </pre>
  4612  
  4613  <p>
  4614  In assignments, each value must be <a href="#Assignability">assignable</a>
  4615  to the type of the operand to which it is assigned, with the following special cases:
  4616  </p>
  4617  
  4618  <ol>
  4619  <li>
  4620  	Any typed value may be assigned to the blank identifier.
  4621  </li>
  4622  
  4623  <li>
  4624  	If an untyped constant
  4625  	is assigned to a variable of interface type or the blank identifier,
  4626  	the constant is first <a href="#Conversions">converted</a> to its
  4627  	 <a href="#Constants">default type</a>.
  4628  </li>
  4629  
  4630  <li>
  4631  	If an untyped boolean value is assigned to a variable of interface type or
  4632  	the blank identifier, it is first converted to type <code>bool</code>.
  4633  </li>
  4634  </ol>
  4635  
  4636  <h3 id="If_statements">If statements</h3>
  4637  
  4638  <p>
  4639  "If" statements specify the conditional execution of two branches
  4640  according to the value of a boolean expression.  If the expression
  4641  evaluates to true, the "if" branch is executed, otherwise, if
  4642  present, the "else" branch is executed.
  4643  </p>
  4644  
  4645  <pre class="ebnf">
  4646  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4647  </pre>
  4648  
  4649  <pre>
  4650  if x &gt; max {
  4651  	x = max
  4652  }
  4653  </pre>
  4654  
  4655  <p>
  4656  The expression may be preceded by a simple statement, which
  4657  executes before the expression is evaluated.
  4658  </p>
  4659  
  4660  <pre>
  4661  if x := f(); x &lt; y {
  4662  	return x
  4663  } else if x &gt; z {
  4664  	return z
  4665  } else {
  4666  	return y
  4667  }
  4668  </pre>
  4669  
  4670  
  4671  <h3 id="Switch_statements">Switch statements</h3>
  4672  
  4673  <p>
  4674  "Switch" statements provide multi-way execution.
  4675  An expression or type specifier is compared to the "cases"
  4676  inside the "switch" to determine which branch
  4677  to execute.
  4678  </p>
  4679  
  4680  <pre class="ebnf">
  4681  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4682  </pre>
  4683  
  4684  <p>
  4685  There are two forms: expression switches and type switches.
  4686  In an expression switch, the cases contain expressions that are compared
  4687  against the value of the switch expression.
  4688  In a type switch, the cases contain types that are compared against the
  4689  type of a specially annotated switch expression.
  4690  The switch expression is evaluated exactly once in a switch statement.
  4691  </p>
  4692  
  4693  <h4 id="Expression_switches">Expression switches</h4>
  4694  
  4695  <p>
  4696  In an expression switch,
  4697  the switch expression is evaluated and
  4698  the case expressions, which need not be constants,
  4699  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4700  switch expression
  4701  triggers execution of the statements of the associated case;
  4702  the other cases are skipped.
  4703  If no case matches and there is a "default" case,
  4704  its statements are executed.
  4705  There can be at most one default case and it may appear anywhere in the
  4706  "switch" statement.
  4707  A missing switch expression is equivalent to the boolean value
  4708  <code>true</code>.
  4709  </p>
  4710  
  4711  <pre class="ebnf">
  4712  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4713  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4714  ExprSwitchCase = "case" ExpressionList | "default" .
  4715  </pre>
  4716  
  4717  <p>
  4718  If the switch expression evaluates to an untyped constant, it is first
  4719  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4720  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4721  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4722  </p>
  4723  
  4724  <p>
  4725  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4726  to the type of the switch expression.
  4727  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4728  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4729  </p>
  4730  
  4731  <p>
  4732  In other words, the switch expression is treated as if it were used to declare and
  4733  initialize a temporary variable <code>t</code> without explicit type; it is that
  4734  value of <code>t</code> against which each case expression <code>x</code> is tested
  4735  for equality.
  4736  </p>
  4737  
  4738  <p>
  4739  In a case or default clause, the last non-empty statement
  4740  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4741  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4742  indicate that control should flow from the end of this clause to
  4743  the first statement of the next clause.
  4744  Otherwise control flows to the end of the "switch" statement.
  4745  A "fallthrough" statement may appear as the last statement of all
  4746  but the last clause of an expression switch.
  4747  </p>
  4748  
  4749  <p>
  4750  The switch expression may be preceded by a simple statement, which
  4751  executes before the expression is evaluated.
  4752  </p>
  4753  
  4754  <pre>
  4755  switch tag {
  4756  default: s3()
  4757  case 0, 1, 2, 3: s1()
  4758  case 4, 5, 6, 7: s2()
  4759  }
  4760  
  4761  switch x := f(); {  // missing switch expression means "true"
  4762  case x &lt; 0: return -x
  4763  default: return x
  4764  }
  4765  
  4766  switch {
  4767  case x &lt; y: f1()
  4768  case x &lt; z: f2()
  4769  case x == 4: f3()
  4770  }
  4771  </pre>
  4772  
  4773  <p>
  4774  Implementation restriction: A compiler may disallow multiple case
  4775  expressions evaluating to the same constant.
  4776  For instance, the current compilers disallow duplicate integer,
  4777  floating point, or string constants in case expressions.
  4778  </p>
  4779  
  4780  <h4 id="Type_switches">Type switches</h4>
  4781  
  4782  <p>
  4783  A type switch compares types rather than values. It is otherwise similar
  4784  to an expression switch. It is marked by a special switch expression that
  4785  has the form of a <a href="#Type_assertions">type assertion</a>
  4786  using the reserved word <code>type</code> rather than an actual type:
  4787  </p>
  4788  
  4789  <pre>
  4790  switch x.(type) {
  4791  // cases
  4792  }
  4793  </pre>
  4794  
  4795  <p>
  4796  Cases then match actual types <code>T</code> against the dynamic type of the
  4797  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4798  <a href="#Interface_types">interface type</a>, and each non-interface type
  4799  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4800  The types listed in the cases of a type switch must all be
  4801  <a href="#Type_identity">different</a>.
  4802  </p>
  4803  
  4804  <pre class="ebnf">
  4805  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4806  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4807  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4808  TypeSwitchCase  = "case" TypeList | "default" .
  4809  TypeList        = Type { "," Type } .
  4810  </pre>
  4811  
  4812  <p>
  4813  The TypeSwitchGuard may include a
  4814  <a href="#Short_variable_declarations">short variable declaration</a>.
  4815  When that form is used, the variable is declared at the end of the
  4816  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4817  In clauses with a case listing exactly one type, the variable
  4818  has that type; otherwise, the variable has the type of the expression
  4819  in the TypeSwitchGuard.
  4820  </p>
  4821  
  4822  <p>
  4823  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4824  that case is used when the expression in the TypeSwitchGuard
  4825  is a <code>nil</code> interface value.
  4826  There may be at most one <code>nil</code> case.
  4827  </p>
  4828  
  4829  <p>
  4830  Given an expression <code>x</code> of type <code>interface{}</code>,
  4831  the following type switch:
  4832  </p>
  4833  
  4834  <pre>
  4835  switch i := x.(type) {
  4836  case nil:
  4837  	printString("x is nil")                // type of i is type of x (interface{})
  4838  case int:
  4839  	printInt(i)                            // type of i is int
  4840  case float64:
  4841  	printFloat64(i)                        // type of i is float64
  4842  case func(int) float64:
  4843  	printFunction(i)                       // type of i is func(int) float64
  4844  case bool, string:
  4845  	printString("type is bool or string")  // type of i is type of x (interface{})
  4846  default:
  4847  	printString("don't know the type")     // type of i is type of x (interface{})
  4848  }
  4849  </pre>
  4850  
  4851  <p>
  4852  could be rewritten:
  4853  </p>
  4854  
  4855  <pre>
  4856  v := x  // x is evaluated exactly once
  4857  if v == nil {
  4858  	i := v                                 // type of i is type of x (interface{})
  4859  	printString("x is nil")
  4860  } else if i, isInt := v.(int); isInt {
  4861  	printInt(i)                            // type of i is int
  4862  } else if i, isFloat64 := v.(float64); isFloat64 {
  4863  	printFloat64(i)                        // type of i is float64
  4864  } else if i, isFunc := v.(func(int) float64); isFunc {
  4865  	printFunction(i)                       // type of i is func(int) float64
  4866  } else {
  4867  	_, isBool := v.(bool)
  4868  	_, isString := v.(string)
  4869  	if isBool || isString {
  4870  		i := v                         // type of i is type of x (interface{})
  4871  		printString("type is bool or string")
  4872  	} else {
  4873  		i := v                         // type of i is type of x (interface{})
  4874  		printString("don't know the type")
  4875  	}
  4876  }
  4877  </pre>
  4878  
  4879  <p>
  4880  The type switch guard may be preceded by a simple statement, which
  4881  executes before the guard is evaluated.
  4882  </p>
  4883  
  4884  <p>
  4885  The "fallthrough" statement is not permitted in a type switch.
  4886  </p>
  4887  
  4888  <h3 id="For_statements">For statements</h3>
  4889  
  4890  <p>
  4891  A "for" statement specifies repeated execution of a block. There are three forms:
  4892  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4893  </p>
  4894  
  4895  <pre class="ebnf">
  4896  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4897  Condition = Expression .
  4898  </pre>
  4899  
  4900  <h4 id="For_condition">For statements with single condition</h4>
  4901  
  4902  <p>
  4903  In its simplest form, a "for" statement specifies the repeated execution of
  4904  a block as long as a boolean condition evaluates to true.
  4905  The condition is evaluated before each iteration.
  4906  If the condition is absent, it is equivalent to the boolean value
  4907  <code>true</code>.
  4908  </p>
  4909  
  4910  <pre>
  4911  for a &lt; b {
  4912  	a *= 2
  4913  }
  4914  </pre>
  4915  
  4916  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4917  
  4918  <p>
  4919  A "for" statement with a ForClause is also controlled by its condition, but
  4920  additionally it may specify an <i>init</i>
  4921  and a <i>post</i> statement, such as an assignment,
  4922  an increment or decrement statement. The init statement may be a
  4923  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4924  Variables declared by the init statement are re-used in each iteration.
  4925  </p>
  4926  
  4927  <pre class="ebnf">
  4928  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4929  InitStmt = SimpleStmt .
  4930  PostStmt = SimpleStmt .
  4931  </pre>
  4932  
  4933  <pre>
  4934  for i := 0; i &lt; 10; i++ {
  4935  	f(i)
  4936  }
  4937  </pre>
  4938  
  4939  <p>
  4940  If non-empty, the init statement is executed once before evaluating the
  4941  condition for the first iteration;
  4942  the post statement is executed after each execution of the block (and
  4943  only if the block was executed).
  4944  Any element of the ForClause may be empty but the
  4945  <a href="#Semicolons">semicolons</a> are
  4946  required unless there is only a condition.
  4947  If the condition is absent, it is equivalent to the boolean value
  4948  <code>true</code>.
  4949  </p>
  4950  
  4951  <pre>
  4952  for cond { S() }    is the same as    for ; cond ; { S() }
  4953  for      { S() }    is the same as    for true     { S() }
  4954  </pre>
  4955  
  4956  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  4957  
  4958  <p>
  4959  A "for" statement with a "range" clause
  4960  iterates through all entries of an array, slice, string or map,
  4961  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4962  to corresponding <i>iteration variables</i> if present and then executes the block.
  4963  </p>
  4964  
  4965  <pre class="ebnf">
  4966  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4967  </pre>
  4968  
  4969  <p>
  4970  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4971  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4972  <a href="#Receive_operator">receive operations</a>.
  4973  As with an assignment, if present the operands on the left must be
  4974  <a href="#Address_operators">addressable</a> or map index expressions; they
  4975  denote the iteration variables. If the range expression is a channel, at most
  4976  one iteration variable is permitted, otherwise there may be up to two.
  4977  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4978  the range clause is equivalent to the same clause without that identifier.
  4979  </p>
  4980  
  4981  <p>
  4982  The range expression is evaluated once before beginning the loop,
  4983  with one exception: if the range expression is an array or a pointer to an array
  4984  and at most one iteration variable is present, only the range expression's
  4985  length is evaluated; if that length is constant,
  4986  <a href="#Length_and_capacity">by definition</a>
  4987  the range expression itself will not be evaluated.
  4988  </p>
  4989  
  4990  <p>
  4991  Function calls on the left are evaluated once per iteration.
  4992  For each iteration, iteration values are produced as follows
  4993  if the respective iteration variables are present:
  4994  </p>
  4995  
  4996  <pre class="grammar">
  4997  Range expression                          1st value          2nd value
  4998  
  4999  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  5000  string          s  string type            index    i  int    see below  rune
  5001  map             m  map[K]V                key      k  K      m[k]       V
  5002  channel         c  chan E, &lt;-chan E       element  e  E
  5003  </pre>
  5004  
  5005  <ol>
  5006  <li>
  5007  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  5008  values are produced in increasing order, starting at element index 0.
  5009  If at most one iteration variable is present, the range loop produces
  5010  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  5011  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  5012  </li>
  5013  
  5014  <li>
  5015  For a string value, the "range" clause iterates over the Unicode code points
  5016  in the string starting at byte index 0.  On successive iterations, the index value will be the
  5017  index of the first byte of successive UTF-8-encoded code points in the string,
  5018  and the second value, of type <code>rune</code>, will be the value of
  5019  the corresponding code point.  If the iteration encounters an invalid
  5020  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  5021  the Unicode replacement character, and the next iteration will advance
  5022  a single byte in the string.
  5023  </li>
  5024  
  5025  <li>
  5026  The iteration order over maps is not specified
  5027  and is not guaranteed to be the same from one iteration to the next.
  5028  If a map entry that has not yet been reached is removed during iteration,
  5029  the corresponding iteration value will not be produced. If a map entry is
  5030  created during iteration, that entry may be produced during the iteration or
  5031  may be skipped. The choice may vary for each entry created and from one
  5032  iteration to the next.
  5033  If the map is <code>nil</code>, the number of iterations is 0.
  5034  </li>
  5035  
  5036  <li>
  5037  For channels, the iteration values produced are the successive values sent on
  5038  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5039  is <code>nil</code>, the range expression blocks forever.
  5040  </li>
  5041  </ol>
  5042  
  5043  <p>
  5044  The iteration values are assigned to the respective
  5045  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5046  </p>
  5047  
  5048  <p>
  5049  The iteration variables may be declared by the "range" clause using a form of
  5050  <a href="#Short_variable_declarations">short variable declaration</a>
  5051  (<code>:=</code>).
  5052  In this case their types are set to the types of the respective iteration values
  5053  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5054  statement; they are re-used in each iteration.
  5055  If the iteration variables are declared outside the "for" statement,
  5056  after execution their values will be those of the last iteration.
  5057  </p>
  5058  
  5059  <pre>
  5060  var testdata *struct {
  5061  	a *[7]int
  5062  }
  5063  for i, _ := range testdata.a {
  5064  	// testdata.a is never evaluated; len(testdata.a) is constant
  5065  	// i ranges from 0 to 6
  5066  	f(i)
  5067  }
  5068  
  5069  var a [10]string
  5070  for i, s := range a {
  5071  	// type of i is int
  5072  	// type of s is string
  5073  	// s == a[i]
  5074  	g(i, s)
  5075  }
  5076  
  5077  var key string
  5078  var val interface {}  // value type of m is assignable to val
  5079  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5080  for key, val = range m {
  5081  	h(key, val)
  5082  }
  5083  // key == last map key encountered in iteration
  5084  // val == map[key]
  5085  
  5086  var ch chan Work = producer()
  5087  for w := range ch {
  5088  	doWork(w)
  5089  }
  5090  
  5091  // empty a channel
  5092  for range ch {}
  5093  </pre>
  5094  
  5095  
  5096  <h3 id="Go_statements">Go statements</h3>
  5097  
  5098  <p>
  5099  A "go" statement starts the execution of a function call
  5100  as an independent concurrent thread of control, or <i>goroutine</i>,
  5101  within the same address space.
  5102  </p>
  5103  
  5104  <pre class="ebnf">
  5105  GoStmt = "go" Expression .
  5106  </pre>
  5107  
  5108  <p>
  5109  The expression must be a function or method call; it cannot be parenthesized.
  5110  Calls of built-in functions are restricted as for
  5111  <a href="#Expression_statements">expression statements</a>.
  5112  </p>
  5113  
  5114  <p>
  5115  The function value and parameters are
  5116  <a href="#Calls">evaluated as usual</a>
  5117  in the calling goroutine, but
  5118  unlike with a regular call, program execution does not wait
  5119  for the invoked function to complete.
  5120  Instead, the function begins executing independently
  5121  in a new goroutine.
  5122  When the function terminates, its goroutine also terminates.
  5123  If the function has any return values, they are discarded when the
  5124  function completes.
  5125  </p>
  5126  
  5127  <pre>
  5128  go Server()
  5129  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true }} (c)
  5130  </pre>
  5131  
  5132  
  5133  <h3 id="Select_statements">Select statements</h3>
  5134  
  5135  <p>
  5136  A "select" statement chooses which of a set of possible
  5137  <a href="#Send_statements">send</a> or
  5138  <a href="#Receive_operator">receive</a>
  5139  operations will proceed.
  5140  It looks similar to a
  5141  <a href="#Switch_statements">"switch"</a> statement but with the
  5142  cases all referring to communication operations.
  5143  </p>
  5144  
  5145  <pre class="ebnf">
  5146  SelectStmt = "select" "{" { CommClause } "}" .
  5147  CommClause = CommCase ":" StatementList .
  5148  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5149  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5150  RecvExpr   = Expression .
  5151  </pre>
  5152  
  5153  <p>
  5154  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5155  two variables, which may be declared using a
  5156  <a href="#Short_variable_declarations">short variable declaration</a>.
  5157  The RecvExpr must be a (possibly parenthesized) receive operation.
  5158  There can be at most one default case and it may appear anywhere
  5159  in the list of cases.
  5160  </p>
  5161  
  5162  <p>
  5163  Execution of a "select" statement proceeds in several steps:
  5164  </p>
  5165  
  5166  <ol>
  5167  <li>
  5168  For all the cases in the statement, the channel operands of receive operations
  5169  and the channel and right-hand-side expressions of send statements are
  5170  evaluated exactly once, in source order, upon entering the "select" statement.
  5171  The result is a set of channels to receive from or send to,
  5172  and the corresponding values to send.
  5173  Any side effects in that evaluation will occur irrespective of which (if any)
  5174  communication operation is selected to proceed.
  5175  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5176  or assignment are not yet evaluated.
  5177  </li>
  5178  
  5179  <li>
  5180  If one or more of the communications can proceed,
  5181  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5182  Otherwise, if there is a default case, that case is chosen.
  5183  If there is no default case, the "select" statement blocks until
  5184  at least one of the communications can proceed.
  5185  </li>
  5186  
  5187  <li>
  5188  Unless the selected case is the default case, the respective communication
  5189  operation is executed.
  5190  </li>
  5191  
  5192  <li>
  5193  If the selected case is a RecvStmt with a short variable declaration or
  5194  an assignment, the left-hand side expressions are evaluated and the
  5195  received value (or values) are assigned.
  5196  </li>
  5197  
  5198  <li>
  5199  The statement list of the selected case is executed.
  5200  </li>
  5201  </ol>
  5202  
  5203  <p>
  5204  Since communication on <code>nil</code> channels can never proceed,
  5205  a select with only <code>nil</code> channels and no default case blocks forever.
  5206  </p>
  5207  
  5208  <pre>
  5209  var a []int
  5210  var c, c1, c2, c3, c4 chan int
  5211  var i1, i2 int
  5212  select {
  5213  case i1 = &lt;-c1:
  5214  	print("received ", i1, " from c1\n")
  5215  case c2 &lt;- i2:
  5216  	print("sent ", i2, " to c2\n")
  5217  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5218  	if ok {
  5219  		print("received ", i3, " from c3\n")
  5220  	} else {
  5221  		print("c3 is closed\n")
  5222  	}
  5223  case a[f()] = &lt;-c4:
  5224  	// same as:
  5225  	// case t := &lt;-c4
  5226  	//	a[f()] = t
  5227  default:
  5228  	print("no communication\n")
  5229  }
  5230  
  5231  for {  // send random sequence of bits to c
  5232  	select {
  5233  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5234  	case c &lt;- 1:
  5235  	}
  5236  }
  5237  
  5238  select {}  // block forever
  5239  </pre>
  5240  
  5241  
  5242  <h3 id="Return_statements">Return statements</h3>
  5243  
  5244  <p>
  5245  A "return" statement in a function <code>F</code> terminates the execution
  5246  of <code>F</code>, and optionally provides one or more result values.
  5247  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5248  are executed before <code>F</code> returns to its caller.
  5249  </p>
  5250  
  5251  <pre class="ebnf">
  5252  ReturnStmt = "return" [ ExpressionList ] .
  5253  </pre>
  5254  
  5255  <p>
  5256  In a function without a result type, a "return" statement must not
  5257  specify any result values.
  5258  </p>
  5259  <pre>
  5260  func noResult() {
  5261  	return
  5262  }
  5263  </pre>
  5264  
  5265  <p>
  5266  There are three ways to return values from a function with a result
  5267  type:
  5268  </p>
  5269  
  5270  <ol>
  5271  	<li>The return value or values may be explicitly listed
  5272  		in the "return" statement. Each expression must be single-valued
  5273  		and <a href="#Assignability">assignable</a>
  5274  		to the corresponding element of the function's result type.
  5275  <pre>
  5276  func simpleF() int {
  5277  	return 2
  5278  }
  5279  
  5280  func complexF1() (re float64, im float64) {
  5281  	return -7.0, -4.0
  5282  }
  5283  </pre>
  5284  	</li>
  5285  	<li>The expression list in the "return" statement may be a single
  5286  		call to a multi-valued function. The effect is as if each value
  5287  		returned from that function were assigned to a temporary
  5288  		variable with the type of the respective value, followed by a
  5289  		"return" statement listing these variables, at which point the
  5290  		rules of the previous case apply.
  5291  <pre>
  5292  func complexF2() (re float64, im float64) {
  5293  	return complexF1()
  5294  }
  5295  </pre>
  5296  	</li>
  5297  	<li>The expression list may be empty if the function's result
  5298  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5299  		The result parameters act as ordinary local variables
  5300  		and the function may assign values to them as necessary.
  5301  		The "return" statement returns the values of these variables.
  5302  <pre>
  5303  func complexF3() (re float64, im float64) {
  5304  	re = 7.0
  5305  	im = 4.0
  5306  	return
  5307  }
  5308  
  5309  func (devnull) Write(p []byte) (n int, _ error) {
  5310  	n = len(p)
  5311  	return
  5312  }
  5313  </pre>
  5314  	</li>
  5315  </ol>
  5316  
  5317  <p>
  5318  Regardless of how they are declared, all the result values are initialized to
  5319  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5320  function. A "return" statement that specifies results sets the result parameters before
  5321  any deferred functions are executed.
  5322  </p>
  5323  
  5324  <p>
  5325  Implementation restriction: A compiler may disallow an empty expression list
  5326  in a "return" statement if a different entity (constant, type, or variable)
  5327  with the same name as a result parameter is in
  5328  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5329  </p>
  5330  
  5331  <pre>
  5332  func f(n int) (res int, err error) {
  5333  	if _, err := f(n-1); err != nil {
  5334  		return  // invalid return statement: err is shadowed
  5335  	}
  5336  	return
  5337  }
  5338  </pre>
  5339  
  5340  <h3 id="Break_statements">Break statements</h3>
  5341  
  5342  <p>
  5343  A "break" statement terminates execution of the innermost
  5344  <a href="#For_statements">"for"</a>,
  5345  <a href="#Switch_statements">"switch"</a>, or
  5346  <a href="#Select_statements">"select"</a> statement
  5347  within the same function.
  5348  </p>
  5349  
  5350  <pre class="ebnf">
  5351  BreakStmt = "break" [ Label ] .
  5352  </pre>
  5353  
  5354  <p>
  5355  If there is a label, it must be that of an enclosing
  5356  "for", "switch", or "select" statement,
  5357  and that is the one whose execution terminates.
  5358  </p>
  5359  
  5360  <pre>
  5361  OuterLoop:
  5362  	for i = 0; i &lt; n; i++ {
  5363  		for j = 0; j &lt; m; j++ {
  5364  			switch a[i][j] {
  5365  			case nil:
  5366  				state = Error
  5367  				break OuterLoop
  5368  			case item:
  5369  				state = Found
  5370  				break OuterLoop
  5371  			}
  5372  		}
  5373  	}
  5374  </pre>
  5375  
  5376  <h3 id="Continue_statements">Continue statements</h3>
  5377  
  5378  <p>
  5379  A "continue" statement begins the next iteration of the
  5380  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5381  The "for" loop must be within the same function.
  5382  </p>
  5383  
  5384  <pre class="ebnf">
  5385  ContinueStmt = "continue" [ Label ] .
  5386  </pre>
  5387  
  5388  <p>
  5389  If there is a label, it must be that of an enclosing
  5390  "for" statement, and that is the one whose execution
  5391  advances.
  5392  </p>
  5393  
  5394  <pre>
  5395  RowLoop:
  5396  	for y, row := range rows {
  5397  		for x, data := range row {
  5398  			if data == endOfRow {
  5399  				continue RowLoop
  5400  			}
  5401  			row[x] = data + bias(x, y)
  5402  		}
  5403  	}
  5404  </pre>
  5405  
  5406  <h3 id="Goto_statements">Goto statements</h3>
  5407  
  5408  <p>
  5409  A "goto" statement transfers control to the statement with the corresponding label
  5410  within the same function.
  5411  </p>
  5412  
  5413  <pre class="ebnf">
  5414  GotoStmt = "goto" Label .
  5415  </pre>
  5416  
  5417  <pre>
  5418  goto Error
  5419  </pre>
  5420  
  5421  <p>
  5422  Executing the "goto" statement must not cause any variables to come into
  5423  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5424  For instance, this example:
  5425  </p>
  5426  
  5427  <pre>
  5428  	goto L  // BAD
  5429  	v := 3
  5430  L:
  5431  </pre>
  5432  
  5433  <p>
  5434  is erroneous because the jump to label <code>L</code> skips
  5435  the creation of <code>v</code>.
  5436  </p>
  5437  
  5438  <p>
  5439  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5440  For instance, this example:
  5441  </p>
  5442  
  5443  <pre>
  5444  if n%2 == 1 {
  5445  	goto L1
  5446  }
  5447  for n &gt; 0 {
  5448  	f()
  5449  	n--
  5450  L1:
  5451  	f()
  5452  	n--
  5453  }
  5454  </pre>
  5455  
  5456  <p>
  5457  is erroneous because the label <code>L1</code> is inside
  5458  the "for" statement's block but the <code>goto</code> is not.
  5459  </p>
  5460  
  5461  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5462  
  5463  <p>
  5464  A "fallthrough" statement transfers control to the first statement of the
  5465  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5466  It may be used only as the final non-empty statement in such a clause.
  5467  </p>
  5468  
  5469  <pre class="ebnf">
  5470  FallthroughStmt = "fallthrough" .
  5471  </pre>
  5472  
  5473  
  5474  <h3 id="Defer_statements">Defer statements</h3>
  5475  
  5476  <p>
  5477  A "defer" statement invokes a function whose execution is deferred
  5478  to the moment the surrounding function returns, either because the
  5479  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5480  reached the end of its <a href="#Function_declarations">function body</a>,
  5481  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5482  </p>
  5483  
  5484  <pre class="ebnf">
  5485  DeferStmt = "defer" Expression .
  5486  </pre>
  5487  
  5488  <p>
  5489  The expression must be a function or method call; it cannot be parenthesized.
  5490  Calls of built-in functions are restricted as for
  5491  <a href="#Expression_statements">expression statements</a>.
  5492  </p>
  5493  
  5494  <p>
  5495  Each time a "defer" statement
  5496  executes, the function value and parameters to the call are
  5497  <a href="#Calls">evaluated as usual</a>
  5498  and saved anew but the actual function is not invoked.
  5499  Instead, deferred functions are invoked immediately before
  5500  the surrounding function returns, in the reverse order
  5501  they were deferred.
  5502  If a deferred function value evaluates
  5503  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5504  when the function is invoked, not when the "defer" statement is executed.
  5505  </p>
  5506  
  5507  <p>
  5508  For instance, if the deferred function is
  5509  a <a href="#Function_literals">function literal</a> and the surrounding
  5510  function has <a href="#Function_types">named result parameters</a> that
  5511  are in scope within the literal, the deferred function may access and modify
  5512  the result parameters before they are returned.
  5513  If the deferred function has any return values, they are discarded when
  5514  the function completes.
  5515  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5516  </p>
  5517  
  5518  <pre>
  5519  lock(l)
  5520  defer unlock(l)  // unlocking happens before surrounding function returns
  5521  
  5522  // prints 3 2 1 0 before surrounding function returns
  5523  for i := 0; i &lt;= 3; i++ {
  5524  	defer fmt.Print(i)
  5525  }
  5526  
  5527  // f returns 1
  5528  func f() (result int) {
  5529  	defer func() {
  5530  		result++
  5531  	}()
  5532  	return 0
  5533  }
  5534  </pre>
  5535  
  5536  <h2 id="Built-in_functions">Built-in functions</h2>
  5537  
  5538  <p>
  5539  Built-in functions are
  5540  <a href="#Predeclared_identifiers">predeclared</a>.
  5541  They are called like any other function but some of them
  5542  accept a type instead of an expression as the first argument.
  5543  </p>
  5544  
  5545  <p>
  5546  The built-in functions do not have standard Go types,
  5547  so they can only appear in <a href="#Calls">call expressions</a>;
  5548  they cannot be used as function values.
  5549  </p>
  5550  
  5551  <h3 id="Close">Close</h3>
  5552  
  5553  <p>
  5554  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5555  records that no more values will be sent on the channel.
  5556  It is an error if <code>c</code> is a receive-only channel.
  5557  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5558  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5559  After calling <code>close</code>, and after any previously
  5560  sent values have been received, receive operations will return
  5561  the zero value for the channel's type without blocking.
  5562  The multi-valued <a href="#Receive_operator">receive operation</a>
  5563  returns a received value along with an indication of whether the channel is closed.
  5564  </p>
  5565  
  5566  
  5567  <h3 id="Length_and_capacity">Length and capacity</h3>
  5568  
  5569  <p>
  5570  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5571  of various types and return a result of type <code>int</code>.
  5572  The implementation guarantees that the result always fits into an <code>int</code>.
  5573  </p>
  5574  
  5575  <pre class="grammar">
  5576  Call      Argument type    Result
  5577  
  5578  len(s)    string type      string length in bytes
  5579            [n]T, *[n]T      array length (== n)
  5580            []T              slice length
  5581            map[K]T          map length (number of defined keys)
  5582            chan T           number of elements queued in channel buffer
  5583  
  5584  cap(s)    [n]T, *[n]T      array length (== n)
  5585            []T              slice capacity
  5586            chan T           channel buffer capacity
  5587  </pre>
  5588  
  5589  <p>
  5590  The capacity of a slice is the number of elements for which there is
  5591  space allocated in the underlying array.
  5592  At any time the following relationship holds:
  5593  </p>
  5594  
  5595  <pre>
  5596  0 &lt;= len(s) &lt;= cap(s)
  5597  </pre>
  5598  
  5599  <p>
  5600  The length of a <code>nil</code> slice, map or channel is 0.
  5601  The capacity of a <code>nil</code> slice or channel is 0.
  5602  </p>
  5603  
  5604  <p>
  5605  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5606  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5607  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5608  or pointer to an array and the expression <code>s</code> does not contain
  5609  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5610  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5611  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5612  constant and <code>s</code> is evaluated.
  5613  </p>
  5614  
  5615  <pre>
  5616  const (
  5617  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5618  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5619  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5620  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5621  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5622  )
  5623  var z complex128
  5624  </pre>
  5625  
  5626  <h3 id="Allocation">Allocation</h3>
  5627  
  5628  <p>
  5629  The built-in function <code>new</code> takes a type <code>T</code>,
  5630  allocates storage for a <a href="#Variables">variable</a> of that type
  5631  at run time, and returns a value of type <code>*T</code>
  5632  <a href="#Pointer_types">pointing</a> to it.
  5633  The variable is initialized as described in the section on
  5634  <a href="#The_zero_value">initial values</a>.
  5635  </p>
  5636  
  5637  <pre class="grammar">
  5638  new(T)
  5639  </pre>
  5640  
  5641  <p>
  5642  For instance
  5643  </p>
  5644  
  5645  <pre>
  5646  type S struct { a int; b float64 }
  5647  new(S)
  5648  </pre>
  5649  
  5650  <p>
  5651  allocates storage for a variable of type <code>S</code>,
  5652  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5653  and returns a value of type <code>*S</code> containing the address
  5654  of the location.
  5655  </p>
  5656  
  5657  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5658  
  5659  <p>
  5660  The built-in function <code>make</code> takes a type <code>T</code>,
  5661  which must be a slice, map or channel type,
  5662  optionally followed by a type-specific list of expressions.
  5663  It returns a value of type <code>T</code> (not <code>*T</code>).
  5664  The memory is initialized as described in the section on
  5665  <a href="#The_zero_value">initial values</a>.
  5666  </p>
  5667  
  5668  <pre class="grammar">
  5669  Call             Type T     Result
  5670  
  5671  make(T, n)       slice      slice of type T with length n and capacity n
  5672  make(T, n, m)    slice      slice of type T with length n and capacity m
  5673  
  5674  make(T)          map        map of type T
  5675  make(T, n)       map        map of type T with initial space for approximately n elements
  5676  
  5677  make(T)          channel    unbuffered channel of type T
  5678  make(T, n)       channel    buffered channel of type T, buffer size n
  5679  </pre>
  5680  
  5681  
  5682  <p>
  5683  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5684  A <a href="#Constants">constant</a> size argument must be non-negative and
  5685  representable by a value of type <code>int</code>.
  5686  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5687  <code>n</code> must be no larger than <code>m</code>.
  5688  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5689  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5690  </p>
  5691  
  5692  <pre>
  5693  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5694  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5695  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5696  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5697  c := make(chan int, 10)         // channel with a buffer size of 10
  5698  m := make(map[string]int, 100)  // map with initial space for approximately 100 elements
  5699  </pre>
  5700  
  5701  <p>
  5702  Calling <code>make</code> with a map type and size hint <code>n</code> will
  5703  create a map with initial space to hold <code>n</code> map elements.
  5704  The precise behavior is implementation-dependent.
  5705  </p>
  5706  
  5707  
  5708  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5709  
  5710  <p>
  5711  The built-in functions <code>append</code> and <code>copy</code> assist in
  5712  common slice operations.
  5713  For both functions, the result is independent of whether the memory referenced
  5714  by the arguments overlaps.
  5715  </p>
  5716  
  5717  <p>
  5718  The <a href="#Function_types">variadic</a> function <code>append</code>
  5719  appends zero or more values <code>x</code>
  5720  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5721  returns the resulting slice, also of type <code>S</code>.
  5722  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5723  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5724  <code>S</code> and the respective
  5725  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5726  As a special case, <code>append</code> also accepts a first argument
  5727  assignable to type <code>[]byte</code> with a second argument of
  5728  string type followed by <code>...</code>. This form appends the
  5729  bytes of the string.
  5730  </p>
  5731  
  5732  <pre class="grammar">
  5733  append(s S, x ...T) S  // T is the element type of S
  5734  </pre>
  5735  
  5736  <p>
  5737  If the capacity of <code>s</code> is not large enough to fit the additional
  5738  values, <code>append</code> allocates a new, sufficiently large underlying
  5739  array that fits both the existing slice elements and the additional values.
  5740  Otherwise, <code>append</code> re-uses the underlying array.
  5741  </p>
  5742  
  5743  <pre>
  5744  s0 := []int{0, 0}
  5745  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5746  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5747  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5748  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5749  
  5750  var t []interface{}
  5751  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5752  
  5753  var b []byte
  5754  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5755  </pre>
  5756  
  5757  <p>
  5758  The function <code>copy</code> copies slice elements from
  5759  a source <code>src</code> to a destination <code>dst</code> and returns the
  5760  number of elements copied.
  5761  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5762  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5763  The number of elements copied is the minimum of
  5764  <code>len(src)</code> and <code>len(dst)</code>.
  5765  As a special case, <code>copy</code> also accepts a destination argument assignable
  5766  to type <code>[]byte</code> with a source argument of a string type.
  5767  This form copies the bytes from the string into the byte slice.
  5768  </p>
  5769  
  5770  <pre class="grammar">
  5771  copy(dst, src []T) int
  5772  copy(dst []byte, src string) int
  5773  </pre>
  5774  
  5775  <p>
  5776  Examples:
  5777  </p>
  5778  
  5779  <pre>
  5780  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5781  var s = make([]int, 6)
  5782  var b = make([]byte, 5)
  5783  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5784  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5785  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5786  </pre>
  5787  
  5788  
  5789  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5790  
  5791  <p>
  5792  The built-in function <code>delete</code> removes the element with key
  5793  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5794  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5795  to the key type of <code>m</code>.
  5796  </p>
  5797  
  5798  <pre class="grammar">
  5799  delete(m, k)  // remove element m[k] from map m
  5800  </pre>
  5801  
  5802  <p>
  5803  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5804  does not exist, <code>delete</code> is a no-op.
  5805  </p>
  5806  
  5807  
  5808  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5809  
  5810  <p>
  5811  Three functions assemble and disassemble complex numbers.
  5812  The built-in function <code>complex</code> constructs a complex
  5813  value from a floating-point real and imaginary part, while
  5814  <code>real</code> and <code>imag</code>
  5815  extract the real and imaginary parts of a complex value.
  5816  </p>
  5817  
  5818  <pre class="grammar">
  5819  complex(realPart, imaginaryPart floatT) complexT
  5820  real(complexT) floatT
  5821  imag(complexT) floatT
  5822  </pre>
  5823  
  5824  <p>
  5825  The type of the arguments and return value correspond.
  5826  For <code>complex</code>, the two arguments must be of the same
  5827  floating-point type and the return type is the complex type
  5828  with the corresponding floating-point constituents:
  5829  <code>complex64</code> for <code>float32</code> arguments, and
  5830  <code>complex128</code> for <code>float64</code> arguments.
  5831  If one of the arguments evaluates to an untyped constant, it is first
  5832  <a href="#Conversions">converted</a> to the type of the other argument.
  5833  If both arguments evaluate to untyped constants, they must be non-complex
  5834  numbers or their imaginary parts must be zero, and the return value of
  5835  the function is an untyped complex constant.
  5836  </p>
  5837  
  5838  <p>
  5839  For <code>real</code> and <code>imag</code>, the argument must be
  5840  of complex type, and the return type is the corresponding floating-point
  5841  type: <code>float32</code> for a <code>complex64</code> argument, and
  5842  <code>float64</code> for a <code>complex128</code> argument.
  5843  If the argument evaluates to an untyped constant, it must be a number,
  5844  and the return value of the function is an untyped floating-point constant.
  5845  </p>
  5846  
  5847  <p>
  5848  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5849  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5850  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5851  </p>
  5852  
  5853  <p>
  5854  If the operands of these functions are all constants, the return
  5855  value is a constant.
  5856  </p>
  5857  
  5858  <pre>
  5859  var a = complex(2, -2)             // complex128
  5860  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5861  x := float32(math.Cos(math.Pi/2))  // float32
  5862  var c64 = complex(5, -x)           // complex64
  5863  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5864  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5865  var rl = real(c64)                 // float32
  5866  var im = imag(a)                   // float64
  5867  const c = imag(b)                  // untyped constant -1.4
  5868  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5869  </pre>
  5870  
  5871  <h3 id="Handling_panics">Handling panics</h3>
  5872  
  5873  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5874  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5875  and program-defined error conditions.
  5876  </p>
  5877  
  5878  <pre class="grammar">
  5879  func panic(interface{})
  5880  func recover() interface{}
  5881  </pre>
  5882  
  5883  <p>
  5884  While executing a function <code>F</code>,
  5885  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5886  terminates the execution of <code>F</code>.
  5887  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5888  are then executed as usual.
  5889  Next, any deferred functions run by <code>F's</code> caller are run,
  5890  and so on up to any deferred by the top-level function in the executing goroutine.
  5891  At that point, the program is terminated and the error
  5892  condition is reported, including the value of the argument to <code>panic</code>.
  5893  This termination sequence is called <i>panicking</i>.
  5894  </p>
  5895  
  5896  <pre>
  5897  panic(42)
  5898  panic("unreachable")
  5899  panic(Error("cannot parse"))
  5900  </pre>
  5901  
  5902  <p>
  5903  The <code>recover</code> function allows a program to manage behavior
  5904  of a panicking goroutine.
  5905  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5906  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5907  is executing.
  5908  When the running of deferred functions reaches <code>D</code>,
  5909  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5910  If <code>D</code> returns normally, without starting a new
  5911  <code>panic</code>, the panicking sequence stops. In that case,
  5912  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5913  is discarded, and normal execution resumes.
  5914  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5915  execution terminates by returning to its caller.
  5916  </p>
  5917  
  5918  <p>
  5919  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5920  </p>
  5921  <ul>
  5922  <li>
  5923  <code>panic</code>'s argument was <code>nil</code>;
  5924  </li>
  5925  <li>
  5926  the goroutine is not panicking;
  5927  </li>
  5928  <li>
  5929  <code>recover</code> was not called directly by a deferred function.
  5930  </li>
  5931  </ul>
  5932  
  5933  <p>
  5934  The <code>protect</code> function in the example below invokes
  5935  the function argument <code>g</code> and protects callers from
  5936  run-time panics raised by <code>g</code>.
  5937  </p>
  5938  
  5939  <pre>
  5940  func protect(g func()) {
  5941  	defer func() {
  5942  		log.Println("done")  // Println executes normally even if there is a panic
  5943  		if x := recover(); x != nil {
  5944  			log.Printf("run time panic: %v", x)
  5945  		}
  5946  	}()
  5947  	log.Println("start")
  5948  	g()
  5949  }
  5950  </pre>
  5951  
  5952  
  5953  <h3 id="Bootstrapping">Bootstrapping</h3>
  5954  
  5955  <p>
  5956  Current implementations provide several built-in functions useful during
  5957  bootstrapping. These functions are documented for completeness but are not
  5958  guaranteed to stay in the language. They do not return a result.
  5959  </p>
  5960  
  5961  <pre class="grammar">
  5962  Function   Behavior
  5963  
  5964  print      prints all arguments; formatting of arguments is implementation-specific
  5965  println    like print but prints spaces between arguments and a newline at the end
  5966  </pre>
  5967  
  5968  <p>
  5969  Implementation restriction: <code>print</code> and <code>println</code> need not
  5970  accept arbitrary argument types, but printing of boolean, numeric, and string
  5971  <a href="#Types">types</a> must be supported.
  5972  </p>
  5973  
  5974  <h2 id="Packages">Packages</h2>
  5975  
  5976  <p>
  5977  Go programs are constructed by linking together <i>packages</i>.
  5978  A package in turn is constructed from one or more source files
  5979  that together declare constants, types, variables and functions
  5980  belonging to the package and which are accessible in all files
  5981  of the same package. Those elements may be
  5982  <a href="#Exported_identifiers">exported</a> and used in another package.
  5983  </p>
  5984  
  5985  <h3 id="Source_file_organization">Source file organization</h3>
  5986  
  5987  <p>
  5988  Each source file consists of a package clause defining the package
  5989  to which it belongs, followed by a possibly empty set of import
  5990  declarations that declare packages whose contents it wishes to use,
  5991  followed by a possibly empty set of declarations of functions,
  5992  types, variables, and constants.
  5993  </p>
  5994  
  5995  <pre class="ebnf">
  5996  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5997  </pre>
  5998  
  5999  <h3 id="Package_clause">Package clause</h3>
  6000  
  6001  <p>
  6002  A package clause begins each source file and defines the package
  6003  to which the file belongs.
  6004  </p>
  6005  
  6006  <pre class="ebnf">
  6007  PackageClause  = "package" PackageName .
  6008  PackageName    = identifier .
  6009  </pre>
  6010  
  6011  <p>
  6012  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  6013  </p>
  6014  
  6015  <pre>
  6016  package math
  6017  </pre>
  6018  
  6019  <p>
  6020  A set of files sharing the same PackageName form the implementation of a package.
  6021  An implementation may require that all source files for a package inhabit the same directory.
  6022  </p>
  6023  
  6024  <h3 id="Import_declarations">Import declarations</h3>
  6025  
  6026  <p>
  6027  An import declaration states that the source file containing the declaration
  6028  depends on functionality of the <i>imported</i> package
  6029  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  6030  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  6031  of that package.
  6032  The import names an identifier (PackageName) to be used for access and an ImportPath
  6033  that specifies the package to be imported.
  6034  </p>
  6035  
  6036  <pre class="ebnf">
  6037  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  6038  ImportSpec       = [ "." | PackageName ] ImportPath .
  6039  ImportPath       = string_lit .
  6040  </pre>
  6041  
  6042  <p>
  6043  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6044  to access exported identifiers of the package within the importing source file.
  6045  It is declared in the <a href="#Blocks">file block</a>.
  6046  If the PackageName is omitted, it defaults to the identifier specified in the
  6047  <a href="#Package_clause">package clause</a> of the imported package.
  6048  If an explicit period (<code>.</code>) appears instead of a name, all the
  6049  package's exported identifiers declared in that package's
  6050  <a href="#Blocks">package block</a> will be declared in the importing source
  6051  file's file block and must be accessed without a qualifier.
  6052  </p>
  6053  
  6054  <p>
  6055  The interpretation of the ImportPath is implementation-dependent but
  6056  it is typically a substring of the full file name of the compiled
  6057  package and may be relative to a repository of installed packages.
  6058  </p>
  6059  
  6060  <p>
  6061  Implementation restriction: A compiler may restrict ImportPaths to
  6062  non-empty strings using only characters belonging to
  6063  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6064  L, M, N, P, and S general categories (the Graphic characters without
  6065  spaces) and may also exclude the characters
  6066  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6067  and the Unicode replacement character U+FFFD.
  6068  </p>
  6069  
  6070  <p>
  6071  Assume we have compiled a package containing the package clause
  6072  <code>package math</code>, which exports function <code>Sin</code>, and
  6073  installed the compiled package in the file identified by
  6074  <code>"lib/math"</code>.
  6075  This table illustrates how <code>Sin</code> is accessed in files
  6076  that import the package after the
  6077  various types of import declaration.
  6078  </p>
  6079  
  6080  <pre class="grammar">
  6081  Import declaration          Local name of Sin
  6082  
  6083  import   "lib/math"         math.Sin
  6084  import m "lib/math"         m.Sin
  6085  import . "lib/math"         Sin
  6086  </pre>
  6087  
  6088  <p>
  6089  An import declaration declares a dependency relation between
  6090  the importing and imported package.
  6091  It is illegal for a package to import itself, directly or indirectly,
  6092  or to directly import a package without
  6093  referring to any of its exported identifiers. To import a package solely for
  6094  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6095  identifier as explicit package name:
  6096  </p>
  6097  
  6098  <pre>
  6099  import _ "lib/math"
  6100  </pre>
  6101  
  6102  
  6103  <h3 id="An_example_package">An example package</h3>
  6104  
  6105  <p>
  6106  Here is a complete Go package that implements a concurrent prime sieve.
  6107  </p>
  6108  
  6109  <pre>
  6110  package main
  6111  
  6112  import "fmt"
  6113  
  6114  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6115  func generate(ch chan&lt;- int) {
  6116  	for i := 2; ; i++ {
  6117  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6118  	}
  6119  }
  6120  
  6121  // Copy the values from channel 'src' to channel 'dst',
  6122  // removing those divisible by 'prime'.
  6123  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6124  	for i := range src {  // Loop over values received from 'src'.
  6125  		if i%prime != 0 {
  6126  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6127  		}
  6128  	}
  6129  }
  6130  
  6131  // The prime sieve: Daisy-chain filter processes together.
  6132  func sieve() {
  6133  	ch := make(chan int)  // Create a new channel.
  6134  	go generate(ch)       // Start generate() as a subprocess.
  6135  	for {
  6136  		prime := &lt;-ch
  6137  		fmt.Print(prime, "\n")
  6138  		ch1 := make(chan int)
  6139  		go filter(ch, ch1, prime)
  6140  		ch = ch1
  6141  	}
  6142  }
  6143  
  6144  func main() {
  6145  	sieve()
  6146  }
  6147  </pre>
  6148  
  6149  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6150  
  6151  <h3 id="The_zero_value">The zero value</h3>
  6152  <p>
  6153  When storage is allocated for a <a href="#Variables">variable</a>,
  6154  either through a declaration or a call of <code>new</code>, or when
  6155  a new value is created, either through a composite literal or a call
  6156  of <code>make</code>,
  6157  and no explicit initialization is provided, the variable or value is
  6158  given a default value.  Each element of such a variable or value is
  6159  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6160  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6161  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6162  This initialization is done recursively, so for instance each element of an
  6163  array of structs will have its fields zeroed if no value is specified.
  6164  </p>
  6165  <p>
  6166  These two simple declarations are equivalent:
  6167  </p>
  6168  
  6169  <pre>
  6170  var i int
  6171  var i int = 0
  6172  </pre>
  6173  
  6174  <p>
  6175  After
  6176  </p>
  6177  
  6178  <pre>
  6179  type T struct { i int; f float64; next *T }
  6180  t := new(T)
  6181  </pre>
  6182  
  6183  <p>
  6184  the following holds:
  6185  </p>
  6186  
  6187  <pre>
  6188  t.i == 0
  6189  t.f == 0.0
  6190  t.next == nil
  6191  </pre>
  6192  
  6193  <p>
  6194  The same would also be true after
  6195  </p>
  6196  
  6197  <pre>
  6198  var t T
  6199  </pre>
  6200  
  6201  <h3 id="Package_initialization">Package initialization</h3>
  6202  
  6203  <p>
  6204  Within a package, package-level variables are initialized in
  6205  <i>declaration order</i> but after any of the variables
  6206  they <i>depend</i> on.
  6207  </p>
  6208  
  6209  <p>
  6210  More precisely, a package-level variable is considered <i>ready for
  6211  initialization</i> if it is not yet initialized and either has
  6212  no <a href="#Variable_declarations">initialization expression</a> or
  6213  its initialization expression has no dependencies on uninitialized variables.
  6214  Initialization proceeds by repeatedly initializing the next package-level
  6215  variable that is earliest in declaration order and ready for initialization,
  6216  until there are no variables ready for initialization.
  6217  </p>
  6218  
  6219  <p>
  6220  If any variables are still uninitialized when this
  6221  process ends, those variables are part of one or more initialization cycles,
  6222  and the program is not valid.
  6223  </p>
  6224  
  6225  <p>
  6226  The declaration order of variables declared in multiple files is determined
  6227  by the order in which the files are presented to the compiler: Variables
  6228  declared in the first file are declared before any of the variables declared
  6229  in the second file, and so on.
  6230  </p>
  6231  
  6232  <p>
  6233  Dependency analysis does not rely on the actual values of the
  6234  variables, only on lexical <i>references</i> to them in the source,
  6235  analyzed transitively. For instance, if a variable <code>x</code>'s
  6236  initialization expression refers to a function whose body refers to
  6237  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6238  Specifically:
  6239  </p>
  6240  
  6241  <ul>
  6242  <li>
  6243  A reference to a variable or function is an identifier denoting that
  6244  variable or function.
  6245  </li>
  6246  
  6247  <li>
  6248  A reference to a method <code>m</code> is a
  6249  <a href="#Method_values">method value</a> or
  6250  <a href="#Method_expressions">method expression</a> of the form
  6251  <code>t.m</code>, where the (static) type of <code>t</code> is
  6252  not an interface type, and the method <code>m</code> is in the
  6253  <a href="#Method_sets">method set</a> of <code>t</code>.
  6254  It is immaterial whether the resulting function value
  6255  <code>t.m</code> is invoked.
  6256  </li>
  6257  
  6258  <li>
  6259  A variable, function, or method <code>x</code> depends on a variable
  6260  <code>y</code> if <code>x</code>'s initialization expression or body
  6261  (for functions and methods) contains a reference to <code>y</code>
  6262  or to a function or method that depends on <code>y</code>.
  6263  </li>
  6264  </ul>
  6265  
  6266  <p>
  6267  Dependency analysis is performed per package; only references referring
  6268  to variables, functions, and methods declared in the current package
  6269  are considered.
  6270  </p>
  6271  
  6272  <p>
  6273  For example, given the declarations
  6274  </p>
  6275  
  6276  <pre>
  6277  var (
  6278  	a = c + b
  6279  	b = f()
  6280  	c = f()
  6281  	d = 3
  6282  )
  6283  
  6284  func f() int {
  6285  	d++
  6286  	return d
  6287  }
  6288  </pre>
  6289  
  6290  <p>
  6291  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6292  </p>
  6293  
  6294  <p>
  6295  Variables may also be initialized using functions named <code>init</code>
  6296  declared in the package block, with no arguments and no result parameters.
  6297  </p>
  6298  
  6299  <pre>
  6300  func init() { … }
  6301  </pre>
  6302  
  6303  <p>
  6304  Multiple such functions may be defined per package, even within a single
  6305  source file. In the package block, the <code>init</code> identifier can
  6306  be used only to declare <code>init</code> functions, yet the identifier
  6307  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6308  <code>init</code> functions cannot be referred to from anywhere
  6309  in a program.
  6310  </p>
  6311  
  6312  <p>
  6313  A package with no imports is initialized by assigning initial values
  6314  to all its package-level variables followed by calling all <code>init</code>
  6315  functions in the order they appear in the source, possibly in multiple files,
  6316  as presented to the compiler.
  6317  If a package has imports, the imported packages are initialized
  6318  before initializing the package itself. If multiple packages import
  6319  a package, the imported package will be initialized only once.
  6320  The importing of packages, by construction, guarantees that there
  6321  can be no cyclic initialization dependencies.
  6322  </p>
  6323  
  6324  <p>
  6325  Package initialization&mdash;variable initialization and the invocation of
  6326  <code>init</code> functions&mdash;happens in a single goroutine,
  6327  sequentially, one package at a time.
  6328  An <code>init</code> function may launch other goroutines, which can run
  6329  concurrently with the initialization code. However, initialization
  6330  always sequences
  6331  the <code>init</code> functions: it will not invoke the next one
  6332  until the previous one has returned.
  6333  </p>
  6334  
  6335  <p>
  6336  To ensure reproducible initialization behavior, build systems are encouraged
  6337  to present multiple files belonging to the same package in lexical file name
  6338  order to a compiler.
  6339  </p>
  6340  
  6341  
  6342  <h3 id="Program_execution">Program execution</h3>
  6343  <p>
  6344  A complete program is created by linking a single, unimported package
  6345  called the <i>main package</i> with all the packages it imports, transitively.
  6346  The main package must
  6347  have package name <code>main</code> and
  6348  declare a function <code>main</code> that takes no
  6349  arguments and returns no value.
  6350  </p>
  6351  
  6352  <pre>
  6353  func main() { … }
  6354  </pre>
  6355  
  6356  <p>
  6357  Program execution begins by initializing the main package and then
  6358  invoking the function <code>main</code>.
  6359  When that function invocation returns, the program exits.
  6360  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6361  </p>
  6362  
  6363  <h2 id="Errors">Errors</h2>
  6364  
  6365  <p>
  6366  The predeclared type <code>error</code> is defined as
  6367  </p>
  6368  
  6369  <pre>
  6370  type error interface {
  6371  	Error() string
  6372  }
  6373  </pre>
  6374  
  6375  <p>
  6376  It is the conventional interface for representing an error condition,
  6377  with the nil value representing no error.
  6378  For instance, a function to read data from a file might be defined:
  6379  </p>
  6380  
  6381  <pre>
  6382  func Read(f *File, b []byte) (n int, err error)
  6383  </pre>
  6384  
  6385  <h2 id="Run_time_panics">Run-time panics</h2>
  6386  
  6387  <p>
  6388  Execution errors such as attempting to index an array out
  6389  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6390  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6391  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6392  That type satisfies the predeclared interface type
  6393  <a href="#Errors"><code>error</code></a>.
  6394  The exact error values that
  6395  represent distinct run-time error conditions are unspecified.
  6396  </p>
  6397  
  6398  <pre>
  6399  package runtime
  6400  
  6401  type Error interface {
  6402  	error
  6403  	// and perhaps other methods
  6404  }
  6405  </pre>
  6406  
  6407  <h2 id="System_considerations">System considerations</h2>
  6408  
  6409  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6410  
  6411  <p>
  6412  The built-in package <code>unsafe</code>, known to the compiler,
  6413  provides facilities for low-level programming including operations
  6414  that violate the type system. A package using <code>unsafe</code>
  6415  must be vetted manually for type safety and may not be portable.
  6416  The package provides the following interface:
  6417  </p>
  6418  
  6419  <pre class="grammar">
  6420  package unsafe
  6421  
  6422  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6423  type Pointer *ArbitraryType
  6424  
  6425  func Alignof(variable ArbitraryType) uintptr
  6426  func Offsetof(selector ArbitraryType) uintptr
  6427  func Sizeof(variable ArbitraryType) uintptr
  6428  </pre>
  6429  
  6430  <p>
  6431  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6432  value may not be <a href="#Address_operators">dereferenced</a>.
  6433  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6434  a type of underlying type <code>Pointer</code> and vice versa.
  6435  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6436  </p>
  6437  
  6438  <pre>
  6439  var f float64
  6440  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6441  
  6442  type ptr unsafe.Pointer
  6443  bits = *(*uint64)(ptr(&amp;f))
  6444  
  6445  var p ptr = nil
  6446  </pre>
  6447  
  6448  <p>
  6449  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6450  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6451  as if <code>v</code> was declared via <code>var v = x</code>.
  6452  </p>
  6453  <p>
  6454  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6455  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6456  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6457  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6458  without pointer indirections through fields of the struct.
  6459  For a struct <code>s</code> with field <code>f</code>:
  6460  </p>
  6461  
  6462  <pre>
  6463  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6464  </pre>
  6465  
  6466  <p>
  6467  Computer architectures may require memory addresses to be <i>aligned</i>;
  6468  that is, for addresses of a variable to be a multiple of a factor,
  6469  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6470  takes an expression denoting a variable of any type and returns the
  6471  alignment of the (type of the) variable in bytes.  For a variable
  6472  <code>x</code>:
  6473  </p>
  6474  
  6475  <pre>
  6476  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6477  </pre>
  6478  
  6479  <p>
  6480  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6481  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6482  </p>
  6483  
  6484  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6485  
  6486  <p>
  6487  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6488  </p>
  6489  
  6490  <pre class="grammar">
  6491  type                                 size in bytes
  6492  
  6493  byte, uint8, int8                     1
  6494  uint16, int16                         2
  6495  uint32, int32, float32                4
  6496  uint64, int64, float64, complex64     8
  6497  complex128                           16
  6498  </pre>
  6499  
  6500  <p>
  6501  The following minimal alignment properties are guaranteed:
  6502  </p>
  6503  <ol>
  6504  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6505  </li>
  6506  
  6507  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6508     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6509  </li>
  6510  
  6511  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6512  	the alignment of a variable of the array's element type.
  6513  </li>
  6514  </ol>
  6515  
  6516  <p>
  6517  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6518  </p>