github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/doc/go_spec.html (about) 1 <!--{ 2 "Title": "The Go Programming Language Specification", 3 "Subtitle": "Version of June 28, 2017", 4 "Path": "/ref/spec" 5 }--> 6 7 <h2 id="Introduction">Introduction</h2> 8 9 <p> 10 This is a reference manual for the Go programming language. For 11 more information and other documents, see <a href="/">golang.org</a>. 12 </p> 13 14 <p> 15 Go is a general-purpose language designed with systems programming 16 in mind. It is strongly typed and garbage-collected and has explicit 17 support for concurrent programming. Programs are constructed from 18 <i>packages</i>, whose properties allow efficient management of 19 dependencies. The existing implementations use a traditional 20 compile/link model to generate executable binaries. 21 </p> 22 23 <p> 24 The grammar is compact and regular, allowing for easy analysis by 25 automatic tools such as integrated development environments. 26 </p> 27 28 <h2 id="Notation">Notation</h2> 29 <p> 30 The syntax is specified using Extended Backus-Naur Form (EBNF): 31 </p> 32 33 <pre class="grammar"> 34 Production = production_name "=" [ Expression ] "." . 35 Expression = Alternative { "|" Alternative } . 36 Alternative = Term { Term } . 37 Term = production_name | token [ "…" token ] | Group | Option | Repetition . 38 Group = "(" Expression ")" . 39 Option = "[" Expression "]" . 40 Repetition = "{" Expression "}" . 41 </pre> 42 43 <p> 44 Productions are expressions constructed from terms and the following 45 operators, in increasing precedence: 46 </p> 47 <pre class="grammar"> 48 | alternation 49 () grouping 50 [] option (0 or 1 times) 51 {} repetition (0 to n times) 52 </pre> 53 54 <p> 55 Lower-case production names are used to identify lexical tokens. 56 Non-terminals are in CamelCase. Lexical tokens are enclosed in 57 double quotes <code>""</code> or back quotes <code>``</code>. 58 </p> 59 60 <p> 61 The form <code>a … b</code> represents the set of characters from 62 <code>a</code> through <code>b</code> as alternatives. The horizontal 63 ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various 64 enumerations or code snippets that are not further specified. The character <code>…</code> 65 (as opposed to the three characters <code>...</code>) is not a token of the Go 66 language. 67 </p> 68 69 <h2 id="Source_code_representation">Source code representation</h2> 70 71 <p> 72 Source code is Unicode text encoded in 73 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not 74 canonicalized, so a single accented code point is distinct from the 75 same character constructed from combining an accent and a letter; 76 those are treated as two code points. For simplicity, this document 77 will use the unqualified term <i>character</i> to refer to a Unicode code point 78 in the source text. 79 </p> 80 <p> 81 Each code point is distinct; for instance, upper and lower case letters 82 are different characters. 83 </p> 84 <p> 85 Implementation restriction: For compatibility with other tools, a 86 compiler may disallow the NUL character (U+0000) in the source text. 87 </p> 88 <p> 89 Implementation restriction: For compatibility with other tools, a 90 compiler may ignore a UTF-8-encoded byte order mark 91 (U+FEFF) if it is the first Unicode code point in the source text. 92 A byte order mark may be disallowed anywhere else in the source. 93 </p> 94 95 <h3 id="Characters">Characters</h3> 96 97 <p> 98 The following terms are used to denote specific Unicode character classes: 99 </p> 100 <pre class="ebnf"> 101 newline = /* the Unicode code point U+000A */ . 102 unicode_char = /* an arbitrary Unicode code point except newline */ . 103 unicode_letter = /* a Unicode code point classified as "Letter" */ . 104 unicode_digit = /* a Unicode code point classified as "Number, decimal digit" */ . 105 </pre> 106 107 <p> 108 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>, 109 Section 4.5 "General Category" defines a set of character categories. 110 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo 111 as Unicode letters, and those in the Number category Nd as Unicode digits. 112 </p> 113 114 <h3 id="Letters_and_digits">Letters and digits</h3> 115 116 <p> 117 The underscore character <code>_</code> (U+005F) is considered a letter. 118 </p> 119 <pre class="ebnf"> 120 letter = unicode_letter | "_" . 121 decimal_digit = "0" … "9" . 122 octal_digit = "0" … "7" . 123 hex_digit = "0" … "9" | "A" … "F" | "a" … "f" . 124 </pre> 125 126 <h2 id="Lexical_elements">Lexical elements</h2> 127 128 <h3 id="Comments">Comments</h3> 129 130 <p> 131 Comments serve as program documentation. There are two forms: 132 </p> 133 134 <ol> 135 <li> 136 <i>Line comments</i> start with the character sequence <code>//</code> 137 and stop at the end of the line. 138 </li> 139 <li> 140 <i>General comments</i> start with the character sequence <code>/*</code> 141 and stop with the first subsequent character sequence <code>*/</code>. 142 </li> 143 </ol> 144 145 <p> 146 A comment cannot start inside a <a href="#Rune_literals">rune</a> or 147 <a href="#String_literals">string literal</a>, or inside a comment. 148 A general comment containing no newlines acts like a space. 149 Any other comment acts like a newline. 150 </p> 151 152 <h3 id="Tokens">Tokens</h3> 153 154 <p> 155 Tokens form the vocabulary of the Go language. 156 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators 157 and punctuation</i>, and <i>literals</i>. <i>White space</i>, formed from 158 spaces (U+0020), horizontal tabs (U+0009), 159 carriage returns (U+000D), and newlines (U+000A), 160 is ignored except as it separates tokens 161 that would otherwise combine into a single token. Also, a newline or end of file 162 may trigger the insertion of a <a href="#Semicolons">semicolon</a>. 163 While breaking the input into tokens, 164 the next token is the longest sequence of characters that form a 165 valid token. 166 </p> 167 168 <h3 id="Semicolons">Semicolons</h3> 169 170 <p> 171 The formal grammar uses semicolons <code>";"</code> as terminators in 172 a number of productions. Go programs may omit most of these semicolons 173 using the following two rules: 174 </p> 175 176 <ol> 177 <li> 178 When the input is broken into tokens, a semicolon is automatically inserted 179 into the token stream immediately after a line's final token if that token is 180 <ul> 181 <li>an 182 <a href="#Identifiers">identifier</a> 183 </li> 184 185 <li>an 186 <a href="#Integer_literals">integer</a>, 187 <a href="#Floating-point_literals">floating-point</a>, 188 <a href="#Imaginary_literals">imaginary</a>, 189 <a href="#Rune_literals">rune</a>, or 190 <a href="#String_literals">string</a> literal 191 </li> 192 193 <li>one of the <a href="#Keywords">keywords</a> 194 <code>break</code>, 195 <code>continue</code>, 196 <code>fallthrough</code>, or 197 <code>return</code> 198 </li> 199 200 <li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a> 201 <code>++</code>, 202 <code>--</code>, 203 <code>)</code>, 204 <code>]</code>, or 205 <code>}</code> 206 </li> 207 </ul> 208 </li> 209 210 <li> 211 To allow complex statements to occupy a single line, a semicolon 212 may be omitted before a closing <code>")"</code> or <code>"}"</code>. 213 </li> 214 </ol> 215 216 <p> 217 To reflect idiomatic use, code examples in this document elide semicolons 218 using these rules. 219 </p> 220 221 222 <h3 id="Identifiers">Identifiers</h3> 223 224 <p> 225 Identifiers name program entities such as variables and types. 226 An identifier is a sequence of one or more letters and digits. 227 The first character in an identifier must be a letter. 228 </p> 229 <pre class="ebnf"> 230 identifier = letter { letter | unicode_digit } . 231 </pre> 232 <pre> 233 a 234 _x9 235 ThisVariableIsExported 236 αβ 237 </pre> 238 239 <p> 240 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. 241 </p> 242 243 244 <h3 id="Keywords">Keywords</h3> 245 246 <p> 247 The following keywords are reserved and may not be used as identifiers. 248 </p> 249 <pre class="grammar"> 250 break default func interface select 251 case defer go map struct 252 chan else goto package switch 253 const fallthrough if range type 254 continue for import return var 255 </pre> 256 257 <h3 id="Operators_and_punctuation">Operators and punctuation</h3> 258 259 <p> 260 The following character sequences represent <a href="#Operators">operators</a> 261 (including <a href="#assign_op">assignment operators</a>) and punctuation: 262 </p> 263 <pre class="grammar"> 264 + & += &= && == != ( ) 265 - | -= |= || < <= [ ] 266 * ^ *= ^= <- > >= { } 267 / << /= <<= ++ = := , ; 268 % >> %= >>= -- ! ... . : 269 &^ &^= 270 </pre> 271 272 <h3 id="Integer_literals">Integer literals</h3> 273 274 <p> 275 An integer literal is a sequence of digits representing an 276 <a href="#Constants">integer constant</a>. 277 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or 278 <code>0X</code> for hexadecimal. In hexadecimal literals, letters 279 <code>a-f</code> and <code>A-F</code> represent values 10 through 15. 280 </p> 281 <pre class="ebnf"> 282 int_lit = decimal_lit | octal_lit | hex_lit . 283 decimal_lit = ( "1" … "9" ) { decimal_digit } . 284 octal_lit = "0" { octal_digit } . 285 hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . 286 </pre> 287 288 <pre> 289 42 290 0600 291 0xBadFace 292 170141183460469231731687303715884105727 293 </pre> 294 295 <h3 id="Floating-point_literals">Floating-point literals</h3> 296 <p> 297 A floating-point literal is a decimal representation of a 298 <a href="#Constants">floating-point constant</a>. 299 It has an integer part, a decimal point, a fractional part, 300 and an exponent part. The integer and fractional part comprise 301 decimal digits; the exponent part is an <code>e</code> or <code>E</code> 302 followed by an optionally signed decimal exponent. One of the 303 integer part or the fractional part may be elided; one of the decimal 304 point or the exponent may be elided. 305 </p> 306 <pre class="ebnf"> 307 float_lit = decimals "." [ decimals ] [ exponent ] | 308 decimals exponent | 309 "." decimals [ exponent ] . 310 decimals = decimal_digit { decimal_digit } . 311 exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . 312 </pre> 313 314 <pre> 315 0. 316 72.40 317 072.40 // == 72.40 318 2.71828 319 1.e+0 320 6.67428e-11 321 1E6 322 .25 323 .12345E+5 324 </pre> 325 326 <h3 id="Imaginary_literals">Imaginary literals</h3> 327 <p> 328 An imaginary literal is a decimal representation of the imaginary part of a 329 <a href="#Constants">complex constant</a>. 330 It consists of a 331 <a href="#Floating-point_literals">floating-point literal</a> 332 or decimal integer followed 333 by the lower-case letter <code>i</code>. 334 </p> 335 <pre class="ebnf"> 336 imaginary_lit = (decimals | float_lit) "i" . 337 </pre> 338 339 <pre> 340 0i 341 011i // == 11i 342 0.i 343 2.71828i 344 1.e+0i 345 6.67428e-11i 346 1E6i 347 .25i 348 .12345E+5i 349 </pre> 350 351 352 <h3 id="Rune_literals">Rune literals</h3> 353 354 <p> 355 A rune literal represents a <a href="#Constants">rune constant</a>, 356 an integer value identifying a Unicode code point. 357 A rune literal is expressed as one or more characters enclosed in single quotes, 358 as in <code>'x'</code> or <code>'\n'</code>. 359 Within the quotes, any character may appear except newline and unescaped single 360 quote. A single quoted character represents the Unicode value 361 of the character itself, 362 while multi-character sequences beginning with a backslash encode 363 values in various formats. 364 </p> 365 <p> 366 The simplest form represents the single character within the quotes; 367 since Go source text is Unicode characters encoded in UTF-8, multiple 368 UTF-8-encoded bytes may represent a single integer value. For 369 instance, the literal <code>'a'</code> holds a single byte representing 370 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while 371 <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing 372 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. 373 </p> 374 <p> 375 Several backslash escapes allow arbitrary values to be encoded as 376 ASCII text. There are four ways to represent the integer value 377 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal 378 digits; <code>\u</code> followed by exactly four hexadecimal digits; 379 <code>\U</code> followed by exactly eight hexadecimal digits, and a 380 plain backslash <code>\</code> followed by exactly three octal digits. 381 In each case the value of the literal is the value represented by 382 the digits in the corresponding base. 383 </p> 384 <p> 385 Although these representations all result in an integer, they have 386 different valid ranges. Octal escapes must represent a value between 387 0 and 255 inclusive. Hexadecimal escapes satisfy this condition 388 by construction. The escapes <code>\u</code> and <code>\U</code> 389 represent Unicode code points so within them some values are illegal, 390 in particular those above <code>0x10FFFF</code> and surrogate halves. 391 </p> 392 <p> 393 After a backslash, certain single-character escapes represent special values: 394 </p> 395 <pre class="grammar"> 396 \a U+0007 alert or bell 397 \b U+0008 backspace 398 \f U+000C form feed 399 \n U+000A line feed or newline 400 \r U+000D carriage return 401 \t U+0009 horizontal tab 402 \v U+000b vertical tab 403 \\ U+005c backslash 404 \' U+0027 single quote (valid escape only within rune literals) 405 \" U+0022 double quote (valid escape only within string literals) 406 </pre> 407 <p> 408 All other sequences starting with a backslash are illegal inside rune literals. 409 </p> 410 <pre class="ebnf"> 411 rune_lit = "'" ( unicode_value | byte_value ) "'" . 412 unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . 413 byte_value = octal_byte_value | hex_byte_value . 414 octal_byte_value = `\` octal_digit octal_digit octal_digit . 415 hex_byte_value = `\` "x" hex_digit hex_digit . 416 little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . 417 big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit 418 hex_digit hex_digit hex_digit hex_digit . 419 escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . 420 </pre> 421 422 <pre> 423 'a' 424 'ä' 425 '本' 426 '\t' 427 '\000' 428 '\007' 429 '\377' 430 '\x07' 431 '\xff' 432 '\u12e4' 433 '\U00101234' 434 '\'' // rune literal containing single quote character 435 'aa' // illegal: too many characters 436 '\xa' // illegal: too few hexadecimal digits 437 '\0' // illegal: too few octal digits 438 '\uDFFF' // illegal: surrogate half 439 '\U00110000' // illegal: invalid Unicode code point 440 </pre> 441 442 443 <h3 id="String_literals">String literals</h3> 444 445 <p> 446 A string literal represents a <a href="#Constants">string constant</a> 447 obtained from concatenating a sequence of characters. There are two forms: 448 raw string literals and interpreted string literals. 449 </p> 450 <p> 451 Raw string literals are character sequences between back quotes, as in 452 <code>`foo`</code>. Within the quotes, any character may appear except 453 back quote. The value of a raw string literal is the 454 string composed of the uninterpreted (implicitly UTF-8-encoded) characters 455 between the quotes; 456 in particular, backslashes have no special meaning and the string may 457 contain newlines. 458 Carriage return characters ('\r') inside raw string literals 459 are discarded from the raw string value. 460 </p> 461 <p> 462 Interpreted string literals are character sequences between double 463 quotes, as in <code>"bar"</code>. 464 Within the quotes, any character may appear except newline and unescaped double quote. 465 The text between the quotes forms the 466 value of the literal, with backslash escapes interpreted as they 467 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and 468 <code>\"</code> is legal), with the same restrictions. 469 The three-digit octal (<code>\</code><i>nnn</i>) 470 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual 471 <i>bytes</i> of the resulting string; all other escapes represent 472 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. 473 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent 474 a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, 475 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent 476 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character 477 U+00FF. 478 </p> 479 480 <pre class="ebnf"> 481 string_lit = raw_string_lit | interpreted_string_lit . 482 raw_string_lit = "`" { unicode_char | newline } "`" . 483 interpreted_string_lit = `"` { unicode_value | byte_value } `"` . 484 </pre> 485 486 <pre> 487 `abc` // same as "abc" 488 `\n 489 \n` // same as "\\n\n\\n" 490 "\n" 491 "\"" // same as `"` 492 "Hello, world!\n" 493 "日本語" 494 "\u65e5本\U00008a9e" 495 "\xff\u00FF" 496 "\uD800" // illegal: surrogate half 497 "\U00110000" // illegal: invalid Unicode code point 498 </pre> 499 500 <p> 501 These examples all represent the same string: 502 </p> 503 504 <pre> 505 "日本語" // UTF-8 input text 506 `日本語` // UTF-8 input text as a raw literal 507 "\u65e5\u672c\u8a9e" // the explicit Unicode code points 508 "\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points 509 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes 510 </pre> 511 512 <p> 513 If the source code represents a character as two code points, such as 514 a combining form involving an accent and a letter, the result will be 515 an error if placed in a rune literal (it is not a single code 516 point), and will appear as two code points if placed in a string 517 literal. 518 </p> 519 520 521 <h2 id="Constants">Constants</h2> 522 523 <p>There are <i>boolean constants</i>, 524 <i>rune constants</i>, 525 <i>integer constants</i>, 526 <i>floating-point constants</i>, <i>complex constants</i>, 527 and <i>string constants</i>. Rune, integer, floating-point, 528 and complex constants are 529 collectively called <i>numeric constants</i>. 530 </p> 531 532 <p> 533 A constant value is represented by a 534 <a href="#Rune_literals">rune</a>, 535 <a href="#Integer_literals">integer</a>, 536 <a href="#Floating-point_literals">floating-point</a>, 537 <a href="#Imaginary_literals">imaginary</a>, 538 or 539 <a href="#String_literals">string</a> literal, 540 an identifier denoting a constant, 541 a <a href="#Constant_expressions">constant expression</a>, 542 a <a href="#Conversions">conversion</a> with a result that is a constant, or 543 the result value of some built-in functions such as 544 <code>unsafe.Sizeof</code> applied to any value, 545 <code>cap</code> or <code>len</code> applied to 546 <a href="#Length_and_capacity">some expressions</a>, 547 <code>real</code> and <code>imag</code> applied to a complex constant 548 and <code>complex</code> applied to numeric constants. 549 The boolean truth values are represented by the predeclared constants 550 <code>true</code> and <code>false</code>. The predeclared identifier 551 <a href="#Iota">iota</a> denotes an integer constant. 552 </p> 553 554 <p> 555 In general, complex constants are a form of 556 <a href="#Constant_expressions">constant expression</a> 557 and are discussed in that section. 558 </p> 559 560 <p> 561 Numeric constants represent exact values of arbitrary precision and do not overflow. 562 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity, 563 and not-a-number values. 564 </p> 565 566 <p> 567 Constants may be <a href="#Types">typed</a> or <i>untyped</i>. 568 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, 569 and certain <a href="#Constant_expressions">constant expressions</a> 570 containing only untyped constant operands are untyped. 571 </p> 572 573 <p> 574 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> 575 or <a href="#Conversions">conversion</a>, or implicitly when used in a 576 <a href="#Variable_declarations">variable declaration</a> or an 577 <a href="#Assignments">assignment</a> or as an 578 operand in an <a href="#Expressions">expression</a>. 579 It is an error if the constant value 580 cannot be represented as a value of the respective type. 581 For instance, <code>3.0</code> can be given any integer or any 582 floating-point type, while <code>2147483648.0</code> (equal to <code>1<<31</code>) 583 can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but 584 not <code>int32</code> or <code>string</code>. 585 </p> 586 587 <p> 588 An untyped constant has a <i>default type</i> which is the type to which the 589 constant is implicitly converted in contexts where a typed value is required, 590 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a> 591 such as <code>i := 0</code> where there is no explicit type. 592 The default type of an untyped constant is <code>bool</code>, <code>rune</code>, 593 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code> 594 respectively, depending on whether it is a boolean, rune, integer, floating-point, 595 complex, or string constant. 596 </p> 597 598 <p> 599 Implementation restriction: Although numeric constants have arbitrary 600 precision in the language, a compiler may implement them using an 601 internal representation with limited precision. That said, every 602 implementation must: 603 </p> 604 <ul> 605 <li>Represent integer constants with at least 256 bits.</li> 606 607 <li>Represent floating-point constants, including the parts of 608 a complex constant, with a mantissa of at least 256 bits 609 and a signed binary exponent of at least 16 bits.</li> 610 611 <li>Give an error if unable to represent an integer constant 612 precisely.</li> 613 614 <li>Give an error if unable to represent a floating-point or 615 complex constant due to overflow.</li> 616 617 <li>Round to the nearest representable constant if unable to 618 represent a floating-point or complex constant due to limits 619 on precision.</li> 620 </ul> 621 <p> 622 These requirements apply both to literal constants and to the result 623 of evaluating <a href="#Constant_expressions">constant 624 expressions</a>. 625 </p> 626 627 <h2 id="Variables">Variables</h2> 628 629 <p> 630 A variable is a storage location for holding a <i>value</i>. 631 The set of permissible values is determined by the 632 variable's <i><a href="#Types">type</a></i>. 633 </p> 634 635 <p> 636 A <a href="#Variable_declarations">variable declaration</a> 637 or, for function parameters and results, the signature 638 of a <a href="#Function_declarations">function declaration</a> 639 or <a href="#Function_literals">function literal</a> reserves 640 storage for a named variable. 641 642 Calling the built-in function <a href="#Allocation"><code>new</code></a> 643 or taking the address of a <a href="#Composite_literals">composite literal</a> 644 allocates storage for a variable at run time. 645 Such an anonymous variable is referred to via a (possibly implicit) 646 <a href="#Address_operators">pointer indirection</a>. 647 </p> 648 649 <p> 650 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>, 651 and <a href="#Struct_types">struct</a> types have elements and fields that may 652 be <a href="#Address_operators">addressed</a> individually. Each such element 653 acts like a variable. 654 </p> 655 656 <p> 657 The <i>static type</i> (or just <i>type</i>) of a variable is the 658 type given in its declaration, the type provided in the 659 <code>new</code> call or composite literal, or the type of 660 an element of a structured variable. 661 Variables of interface type also have a distinct <i>dynamic type</i>, 662 which is the concrete type of the value assigned to the variable at run time 663 (unless the value is the predeclared identifier <code>nil</code>, 664 which has no type). 665 The dynamic type may vary during execution but values stored in interface 666 variables are always <a href="#Assignability">assignable</a> 667 to the static type of the variable. 668 </p> 669 670 <pre> 671 var x interface{} // x is nil and has static type interface{} 672 var v *T // v has value nil, static type *T 673 x = 42 // x has value 42 and dynamic type int 674 x = v // x has value (*T)(nil) and dynamic type *T 675 </pre> 676 677 <p> 678 A variable's value is retrieved by referring to the variable in an 679 <a href="#Expressions">expression</a>; it is the most recent value 680 <a href="#Assignments">assigned</a> to the variable. 681 If a variable has not yet been assigned a value, its value is the 682 <a href="#The_zero_value">zero value</a> for its type. 683 </p> 684 685 686 <h2 id="Types">Types</h2> 687 688 <p> 689 A type determines a set of values together with operations and methods specific 690 to those values. A type may be denoted by a <i>type name</i>, if it has one, 691 or specified using a <i>type literal</i>, which composes a type from existing types. 692 </p> 693 694 <pre class="ebnf"> 695 Type = TypeName | TypeLit | "(" Type ")" . 696 TypeName = identifier | QualifiedIdent . 697 TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | 698 SliceType | MapType | ChannelType . 699 </pre> 700 701 <p> 702 Named instances of the boolean, numeric, and string types are 703 <a href="#Predeclared_identifiers">predeclared</a>. 704 Other named types are introduced with <a href="#Type_declarations">type declarations</a>. 705 <i>Composite types</i>—array, struct, pointer, function, 706 interface, slice, map, and channel types—may be constructed using 707 type literals. 708 </p> 709 710 <p> 711 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> 712 is one of the predeclared boolean, numeric, or string types, or a type literal, 713 the corresponding underlying 714 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type 715 is the underlying type of the type to which <code>T</code> refers in its 716 <a href="#Type_declarations">type declaration</a>. 717 </p> 718 719 <pre> 720 type ( 721 A1 = string 722 A2 = A1 723 ) 724 725 type ( 726 B1 string 727 B2 B1 728 B3 []B1 729 B4 B3 730 ) 731 </pre> 732 733 <p> 734 The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>, 735 and <code>B2</code> is <code>string</code>. 736 The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>. 737 </p> 738 739 <h3 id="Method_sets">Method sets</h3> 740 <p> 741 A type may have a <i>method set</i> associated with it. 742 The method set of an <a href="#Interface_types">interface type</a> is its interface. 743 The method set of any other type <code>T</code> consists of all 744 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>. 745 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code> 746 is the set of all methods declared with receiver <code>*T</code> or <code>T</code> 747 (that is, it also contains the method set of <code>T</code>). 748 Further rules apply to structs containing embedded fields, as described 749 in the section on <a href="#Struct_types">struct types</a>. 750 Any other type has an empty method set. 751 In a method set, each method must have a 752 <a href="#Uniqueness_of_identifiers">unique</a> 753 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>. 754 </p> 755 756 <p> 757 The method set of a type determines the interfaces that the 758 type <a href="#Interface_types">implements</a> 759 and the methods that can be <a href="#Calls">called</a> 760 using a receiver of that type. 761 </p> 762 763 <h3 id="Boolean_types">Boolean types</h3> 764 765 <p> 766 A <i>boolean type</i> represents the set of Boolean truth values 767 denoted by the predeclared constants <code>true</code> 768 and <code>false</code>. The predeclared boolean type is <code>bool</code>. 769 </p> 770 771 <h3 id="Numeric_types">Numeric types</h3> 772 773 <p> 774 A <i>numeric type</i> represents sets of integer or floating-point values. 775 The predeclared architecture-independent numeric types are: 776 </p> 777 778 <pre class="grammar"> 779 uint8 the set of all unsigned 8-bit integers (0 to 255) 780 uint16 the set of all unsigned 16-bit integers (0 to 65535) 781 uint32 the set of all unsigned 32-bit integers (0 to 4294967295) 782 uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) 783 784 int8 the set of all signed 8-bit integers (-128 to 127) 785 int16 the set of all signed 16-bit integers (-32768 to 32767) 786 int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) 787 int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) 788 789 float32 the set of all IEEE-754 32-bit floating-point numbers 790 float64 the set of all IEEE-754 64-bit floating-point numbers 791 792 complex64 the set of all complex numbers with float32 real and imaginary parts 793 complex128 the set of all complex numbers with float64 real and imaginary parts 794 795 byte alias for uint8 796 rune alias for int32 797 </pre> 798 799 <p> 800 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using 801 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. 802 </p> 803 804 <p> 805 There is also a set of predeclared numeric types with implementation-specific sizes: 806 </p> 807 808 <pre class="grammar"> 809 uint either 32 or 64 bits 810 int same size as uint 811 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 812 </pre> 813 814 <p> 815 To avoid portability issues all numeric types are distinct except 816 <code>byte</code>, which is an alias for <code>uint8</code>, and 817 <code>rune</code>, which is an alias for <code>int32</code>. 818 Conversions 819 are required when different numeric types are mixed in an expression 820 or assignment. For instance, <code>int32</code> and <code>int</code> 821 are not the same type even though they may have the same size on a 822 particular architecture. 823 824 825 <h3 id="String_types">String types</h3> 826 827 <p> 828 A <i>string type</i> represents the set of string values. 829 A string value is a (possibly empty) sequence of bytes. 830 Strings are immutable: once created, 831 it is impossible to change the contents of a string. 832 The predeclared string type is <code>string</code>. 833 </p> 834 835 <p> 836 The length of a string <code>s</code> (its size in bytes) can be discovered using 837 the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 838 The length is a compile-time constant if the string is a constant. 839 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a> 840 0 through <code>len(s)-1</code>. 841 It is illegal to take the address of such an element; if 842 <code>s[i]</code> is the <code>i</code>'th byte of a 843 string, <code>&s[i]</code> is invalid. 844 </p> 845 846 847 <h3 id="Array_types">Array types</h3> 848 849 <p> 850 An array is a numbered sequence of elements of a single 851 type, called the element type. 852 The number of elements is called the length and is never 853 negative. 854 </p> 855 856 <pre class="ebnf"> 857 ArrayType = "[" ArrayLength "]" ElementType . 858 ArrayLength = Expression . 859 ElementType = Type . 860 </pre> 861 862 <p> 863 The length is part of the array's type; it must evaluate to a 864 non-negative <a href="#Constants">constant</a> representable by a value 865 of type <code>int</code>. 866 The length of array <code>a</code> can be discovered 867 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 868 The elements can be addressed by integer <a href="#Index_expressions">indices</a> 869 0 through <code>len(a)-1</code>. 870 Array types are always one-dimensional but may be composed to form 871 multi-dimensional types. 872 </p> 873 874 <pre> 875 [32]byte 876 [2*N] struct { x, y int32 } 877 [1000]*float64 878 [3][5]int 879 [2][2][2]float64 // same as [2]([2]([2]float64)) 880 </pre> 881 882 <h3 id="Slice_types">Slice types</h3> 883 884 <p> 885 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and 886 provides access to a numbered sequence of elements from that array. 887 A slice type denotes the set of all slices of arrays of its element type. 888 The value of an uninitialized slice is <code>nil</code>. 889 </p> 890 891 <pre class="ebnf"> 892 SliceType = "[" "]" ElementType . 893 </pre> 894 895 <p> 896 Like arrays, slices are indexable and have a length. The length of a 897 slice <code>s</code> can be discovered by the built-in function 898 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during 899 execution. The elements can be addressed by integer <a href="#Index_expressions">indices</a> 900 0 through <code>len(s)-1</code>. The slice index of a 901 given element may be less than the index of the same element in the 902 underlying array. 903 </p> 904 <p> 905 A slice, once initialized, is always associated with an underlying 906 array that holds its elements. A slice therefore shares storage 907 with its array and with other slices of the same array; by contrast, 908 distinct arrays always represent distinct storage. 909 </p> 910 <p> 911 The array underlying a slice may extend past the end of the slice. 912 The <i>capacity</i> is a measure of that extent: it is the sum of 913 the length of the slice and the length of the array beyond the slice; 914 a slice of length up to that capacity can be created by 915 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice. 916 The capacity of a slice <code>a</code> can be discovered using the 917 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. 918 </p> 919 920 <p> 921 A new, initialized slice value for a given element type <code>T</code> is 922 made using the built-in function 923 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 924 which takes a slice type 925 and parameters specifying the length and optionally the capacity. 926 A slice created with <code>make</code> always allocates a new, hidden array 927 to which the returned slice value refers. That is, executing 928 </p> 929 930 <pre> 931 make([]T, length, capacity) 932 </pre> 933 934 <p> 935 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a> 936 it, so these two expressions are equivalent: 937 </p> 938 939 <pre> 940 make([]int, 50, 100) 941 new([100]int)[0:50] 942 </pre> 943 944 <p> 945 Like arrays, slices are always one-dimensional but may be composed to construct 946 higher-dimensional objects. 947 With arrays of arrays, the inner arrays are, by construction, always the same length; 948 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically. 949 Moreover, the inner slices must be initialized individually. 950 </p> 951 952 <h3 id="Struct_types">Struct types</h3> 953 954 <p> 955 A struct is a sequence of named elements, called fields, each of which has a 956 name and a type. Field names may be specified explicitly (IdentifierList) or 957 implicitly (EmbeddedField). 958 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must 959 be <a href="#Uniqueness_of_identifiers">unique</a>. 960 </p> 961 962 <pre class="ebnf"> 963 StructType = "struct" "{" { FieldDecl ";" } "}" . 964 FieldDecl = (IdentifierList Type | EmbeddedField) [ Tag ] . 965 EmbeddedField = [ "*" ] TypeName . 966 Tag = string_lit . 967 </pre> 968 969 <pre> 970 // An empty struct. 971 struct {} 972 973 // A struct with 6 fields. 974 struct { 975 x, y int 976 u float32 977 _ float32 // padding 978 A *[]int 979 F func() 980 } 981 </pre> 982 983 <p> 984 A field declared with a type but no explicit field name is called an <i>embedded field</i>. 985 An embedded field must be specified as 986 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, 987 and <code>T</code> itself may not be 988 a pointer type. The unqualified type name acts as the field name. 989 </p> 990 991 <pre> 992 // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4 993 struct { 994 T1 // field name is T1 995 *T2 // field name is T2 996 P.T3 // field name is T3 997 *P.T4 // field name is T4 998 x, y int // field names are x and y 999 } 1000 </pre> 1001 1002 <p> 1003 The following declaration is illegal because field names must be unique 1004 in a struct type: 1005 </p> 1006 1007 <pre> 1008 struct { 1009 T // conflicts with embedded field *T and *P.T 1010 *T // conflicts with embedded field T and *P.T 1011 *P.T // conflicts with embedded field T and *T 1012 } 1013 </pre> 1014 1015 <p> 1016 A field or <a href="#Method_declarations">method</a> <code>f</code> of an 1017 embedded field in a struct <code>x</code> is called <i>promoted</i> if 1018 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes 1019 that field or method <code>f</code>. 1020 </p> 1021 1022 <p> 1023 Promoted fields act like ordinary fields 1024 of a struct except that they cannot be used as field names in 1025 <a href="#Composite_literals">composite literals</a> of the struct. 1026 </p> 1027 1028 <p> 1029 Given a struct type <code>S</code> and a type named <code>T</code>, 1030 promoted methods are included in the method set of the struct as follows: 1031 </p> 1032 <ul> 1033 <li> 1034 If <code>S</code> contains an embedded field <code>T</code>, 1035 the <a href="#Method_sets">method sets</a> of <code>S</code> 1036 and <code>*S</code> both include promoted methods with receiver 1037 <code>T</code>. The method set of <code>*S</code> also 1038 includes promoted methods with receiver <code>*T</code>. 1039 </li> 1040 1041 <li> 1042 If <code>S</code> contains an embedded field <code>*T</code>, 1043 the method sets of <code>S</code> and <code>*S</code> both 1044 include promoted methods with receiver <code>T</code> or 1045 <code>*T</code>. 1046 </li> 1047 </ul> 1048 1049 <p> 1050 A field declaration may be followed by an optional string literal <i>tag</i>, 1051 which becomes an attribute for all the fields in the corresponding 1052 field declaration. An empty tag string is equivalent to an absent tag. 1053 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a> 1054 and take part in <a href="#Type_identity">type identity</a> for structs 1055 but are otherwise ignored. 1056 </p> 1057 1058 <pre> 1059 struct { 1060 x, y float64 "" // an empty tag string is like an absent tag 1061 name string "any string is permitted as a tag" 1062 _ [4]byte "ceci n'est pas un champ de structure" 1063 } 1064 1065 // A struct corresponding to a TimeStamp protocol buffer. 1066 // The tag strings define the protocol buffer field numbers; 1067 // they follow the convention outlined by the reflect package. 1068 struct { 1069 microsec uint64 `protobuf:"1"` 1070 serverIP6 uint64 `protobuf:"2"` 1071 } 1072 </pre> 1073 1074 <h3 id="Pointer_types">Pointer types</h3> 1075 1076 <p> 1077 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given 1078 type, called the <i>base type</i> of the pointer. 1079 The value of an uninitialized pointer is <code>nil</code>. 1080 </p> 1081 1082 <pre class="ebnf"> 1083 PointerType = "*" BaseType . 1084 BaseType = Type . 1085 </pre> 1086 1087 <pre> 1088 *Point 1089 *[4]int 1090 </pre> 1091 1092 <h3 id="Function_types">Function types</h3> 1093 1094 <p> 1095 A function type denotes the set of all functions with the same parameter 1096 and result types. The value of an uninitialized variable of function type 1097 is <code>nil</code>. 1098 </p> 1099 1100 <pre class="ebnf"> 1101 FunctionType = "func" Signature . 1102 Signature = Parameters [ Result ] . 1103 Result = Parameters | Type . 1104 Parameters = "(" [ ParameterList [ "," ] ] ")" . 1105 ParameterList = ParameterDecl { "," ParameterDecl } . 1106 ParameterDecl = [ IdentifierList ] [ "..." ] Type . 1107 </pre> 1108 1109 <p> 1110 Within a list of parameters or results, the names (IdentifierList) 1111 must either all be present or all be absent. If present, each name 1112 stands for one item (parameter or result) of the specified type and 1113 all non-<a href="#Blank_identifier">blank</a> names in the signature 1114 must be <a href="#Uniqueness_of_identifiers">unique</a>. 1115 If absent, each type stands for one item of that type. 1116 Parameter and result 1117 lists are always parenthesized except that if there is exactly 1118 one unnamed result it may be written as an unparenthesized type. 1119 </p> 1120 1121 <p> 1122 The final incoming parameter in a function signature may have 1123 a type prefixed with <code>...</code>. 1124 A function with such a parameter is called <i>variadic</i> and 1125 may be invoked with zero or more arguments for that parameter. 1126 </p> 1127 1128 <pre> 1129 func() 1130 func(x int) int 1131 func(a, _ int, z float32) bool 1132 func(a, b int, z float32) (bool) 1133 func(prefix string, values ...int) 1134 func(a, b int, z float64, opt ...interface{}) (success bool) 1135 func(int, int, float64) (float64, *[]int) 1136 func(n int) func(p *T) 1137 </pre> 1138 1139 1140 <h3 id="Interface_types">Interface types</h3> 1141 1142 <p> 1143 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. 1144 A variable of interface type can store a value of any type with a method set 1145 that is any superset of the interface. Such a type is said to 1146 <i>implement the interface</i>. 1147 The value of an uninitialized variable of interface type is <code>nil</code>. 1148 </p> 1149 1150 <pre class="ebnf"> 1151 InterfaceType = "interface" "{" { MethodSpec ";" } "}" . 1152 MethodSpec = MethodName Signature | InterfaceTypeName . 1153 MethodName = identifier . 1154 InterfaceTypeName = TypeName . 1155 </pre> 1156 1157 <p> 1158 As with all method sets, in an interface type, each method must have a 1159 <a href="#Uniqueness_of_identifiers">unique</a> 1160 non-<a href="#Blank_identifier">blank</a> name. 1161 </p> 1162 1163 <pre> 1164 // A simple File interface 1165 interface { 1166 Read(b Buffer) bool 1167 Write(b Buffer) bool 1168 Close() 1169 } 1170 </pre> 1171 1172 <p> 1173 More than one type may implement an interface. 1174 For instance, if two types <code>S1</code> and <code>S2</code> 1175 have the method set 1176 </p> 1177 1178 <pre> 1179 func (p T) Read(b Buffer) bool { return … } 1180 func (p T) Write(b Buffer) bool { return … } 1181 func (p T) Close() { … } 1182 </pre> 1183 1184 <p> 1185 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) 1186 then the <code>File</code> interface is implemented by both <code>S1</code> and 1187 <code>S2</code>, regardless of what other methods 1188 <code>S1</code> and <code>S2</code> may have or share. 1189 </p> 1190 1191 <p> 1192 A type implements any interface comprising any subset of its methods 1193 and may therefore implement several distinct interfaces. For 1194 instance, all types implement the <i>empty interface</i>: 1195 </p> 1196 1197 <pre> 1198 interface{} 1199 </pre> 1200 1201 <p> 1202 Similarly, consider this interface specification, 1203 which appears within a <a href="#Type_declarations">type declaration</a> 1204 to define an interface called <code>Locker</code>: 1205 </p> 1206 1207 <pre> 1208 type Locker interface { 1209 Lock() 1210 Unlock() 1211 } 1212 </pre> 1213 1214 <p> 1215 If <code>S1</code> and <code>S2</code> also implement 1216 </p> 1217 1218 <pre> 1219 func (p T) Lock() { … } 1220 func (p T) Unlock() { … } 1221 </pre> 1222 1223 <p> 1224 they implement the <code>Locker</code> interface as well 1225 as the <code>File</code> interface. 1226 </p> 1227 1228 <p> 1229 An interface <code>T</code> may use a (possibly qualified) interface type 1230 name <code>E</code> in place of a method specification. This is called 1231 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds 1232 all (exported and non-exported) methods of <code>E</code> to the interface 1233 <code>T</code>. 1234 </p> 1235 1236 <pre> 1237 type ReadWriter interface { 1238 Read(b Buffer) bool 1239 Write(b Buffer) bool 1240 } 1241 1242 type File interface { 1243 ReadWriter // same as adding the methods of ReadWriter 1244 Locker // same as adding the methods of Locker 1245 Close() 1246 } 1247 1248 type LockedFile interface { 1249 Locker 1250 File // illegal: Lock, Unlock not unique 1251 Lock() // illegal: Lock not unique 1252 } 1253 </pre> 1254 1255 <p> 1256 An interface type <code>T</code> may not embed itself 1257 or any interface type that embeds <code>T</code>, recursively. 1258 </p> 1259 1260 <pre> 1261 // illegal: Bad cannot embed itself 1262 type Bad interface { 1263 Bad 1264 } 1265 1266 // illegal: Bad1 cannot embed itself using Bad2 1267 type Bad1 interface { 1268 Bad2 1269 } 1270 type Bad2 interface { 1271 Bad1 1272 } 1273 </pre> 1274 1275 <h3 id="Map_types">Map types</h3> 1276 1277 <p> 1278 A map is an unordered group of elements of one type, called the 1279 element type, indexed by a set of unique <i>keys</i> of another type, 1280 called the key type. 1281 The value of an uninitialized map is <code>nil</code>. 1282 </p> 1283 1284 <pre class="ebnf"> 1285 MapType = "map" "[" KeyType "]" ElementType . 1286 KeyType = Type . 1287 </pre> 1288 1289 <p> 1290 The <a href="#Comparison_operators">comparison operators</a> 1291 <code>==</code> and <code>!=</code> must be fully defined 1292 for operands of the key type; thus the key type must not be a function, map, or 1293 slice. 1294 If the key type is an interface type, these 1295 comparison operators must be defined for the dynamic key values; 1296 failure will cause a <a href="#Run_time_panics">run-time panic</a>. 1297 1298 </p> 1299 1300 <pre> 1301 map[string]int 1302 map[*T]struct{ x, y float64 } 1303 map[string]interface{} 1304 </pre> 1305 1306 <p> 1307 The number of map elements is called its length. 1308 For a map <code>m</code>, it can be discovered using the 1309 built-in function <a href="#Length_and_capacity"><code>len</code></a> 1310 and may change during execution. Elements may be added during execution 1311 using <a href="#Assignments">assignments</a> and retrieved with 1312 <a href="#Index_expressions">index expressions</a>; they may be removed with the 1313 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function. 1314 </p> 1315 <p> 1316 A new, empty map value is made using the built-in 1317 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1318 which takes the map type and an optional capacity hint as arguments: 1319 </p> 1320 1321 <pre> 1322 make(map[string]int) 1323 make(map[string]int, 100) 1324 </pre> 1325 1326 <p> 1327 The initial capacity does not bound its size: 1328 maps grow to accommodate the number of items 1329 stored in them, with the exception of <code>nil</code> maps. 1330 A <code>nil</code> map is equivalent to an empty map except that no elements 1331 may be added. 1332 1333 <h3 id="Channel_types">Channel types</h3> 1334 1335 <p> 1336 A channel provides a mechanism for 1337 <a href="#Go_statements">concurrently executing functions</a> 1338 to communicate by 1339 <a href="#Send_statements">sending</a> and 1340 <a href="#Receive_operator">receiving</a> 1341 values of a specified element type. 1342 The value of an uninitialized channel is <code>nil</code>. 1343 </p> 1344 1345 <pre class="ebnf"> 1346 ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType . 1347 </pre> 1348 1349 <p> 1350 The optional <code><-</code> operator specifies the channel <i>direction</i>, 1351 <i>send</i> or <i>receive</i>. If no direction is given, the channel is 1352 <i>bidirectional</i>. 1353 A channel may be constrained only to send or only to receive by 1354 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. 1355 </p> 1356 1357 <pre> 1358 chan T // can be used to send and receive values of type T 1359 chan<- float64 // can only be used to send float64s 1360 <-chan int // can only be used to receive ints 1361 </pre> 1362 1363 <p> 1364 The <code><-</code> operator associates with the leftmost <code>chan</code> 1365 possible: 1366 </p> 1367 1368 <pre> 1369 chan<- chan int // same as chan<- (chan int) 1370 chan<- <-chan int // same as chan<- (<-chan int) 1371 <-chan <-chan int // same as <-chan (<-chan int) 1372 chan (<-chan int) 1373 </pre> 1374 1375 <p> 1376 A new, initialized channel 1377 value can be made using the built-in function 1378 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1379 which takes the channel type and an optional <i>capacity</i> as arguments: 1380 </p> 1381 1382 <pre> 1383 make(chan int, 100) 1384 </pre> 1385 1386 <p> 1387 The capacity, in number of elements, sets the size of the buffer in the channel. 1388 If the capacity is zero or absent, the channel is unbuffered and communication 1389 succeeds only when both a sender and receiver are ready. Otherwise, the channel 1390 is buffered and communication succeeds without blocking if the buffer 1391 is not full (sends) or not empty (receives). 1392 A <code>nil</code> channel is never ready for communication. 1393 </p> 1394 1395 <p> 1396 A channel may be closed with the built-in function 1397 <a href="#Close"><code>close</code></a>. 1398 The multi-valued assignment form of the 1399 <a href="#Receive_operator">receive operator</a> 1400 reports whether a received value was sent before 1401 the channel was closed. 1402 </p> 1403 1404 <p> 1405 A single channel may be used in 1406 <a href="#Send_statements">send statements</a>, 1407 <a href="#Receive_operator">receive operations</a>, 1408 and calls to the built-in functions 1409 <a href="#Length_and_capacity"><code>cap</code></a> and 1410 <a href="#Length_and_capacity"><code>len</code></a> 1411 by any number of goroutines without further synchronization. 1412 Channels act as first-in-first-out queues. 1413 For example, if one goroutine sends values on a channel 1414 and a second goroutine receives them, the values are 1415 received in the order sent. 1416 </p> 1417 1418 <h2 id="Properties_of_types_and_values">Properties of types and values</h2> 1419 1420 <h3 id="Type_identity">Type identity</h3> 1421 1422 <p> 1423 Two types are either <i>identical</i> or <i>different</i>. 1424 </p> 1425 1426 <p> 1427 A <a href="#Type_definitions">defined type</a> is always different from any other type. 1428 Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are 1429 structurally equivalent; that is, they have the same literal structure and corresponding 1430 components have identical types. In detail: 1431 </p> 1432 1433 <ul> 1434 <li>Two array types are identical if they have identical element types and 1435 the same array length.</li> 1436 1437 <li>Two slice types are identical if they have identical element types.</li> 1438 1439 <li>Two struct types are identical if they have the same sequence of fields, 1440 and if corresponding fields have the same names, and identical types, 1441 and identical tags. 1442 <a href="#Exported_identifiers">Non-exported</a> field names from different 1443 packages are always different.</li> 1444 1445 <li>Two pointer types are identical if they have identical base types.</li> 1446 1447 <li>Two function types are identical if they have the same number of parameters 1448 and result values, corresponding parameter and result types are 1449 identical, and either both functions are variadic or neither is. 1450 Parameter and result names are not required to match.</li> 1451 1452 <li>Two interface types are identical if they have the same set of methods 1453 with the same names and identical function types. 1454 <a href="#Exported_identifiers">Non-exported</a> method names from different 1455 packages are always different. The order of the methods is irrelevant.</li> 1456 1457 <li>Two map types are identical if they have identical key and value types.</li> 1458 1459 <li>Two channel types are identical if they have identical value types and 1460 the same direction.</li> 1461 </ul> 1462 1463 <p> 1464 Given the declarations 1465 </p> 1466 1467 <pre> 1468 type ( 1469 A0 = []string 1470 A1 = A0 1471 A2 = struct{ a, b int } 1472 A3 = int 1473 A4 = func(A3, float64) *A0 1474 A5 = func(x int, _ float64) *[]string 1475 ) 1476 1477 type ( 1478 B0 A0 1479 B1 []string 1480 B2 struct{ a, b int } 1481 B3 struct{ a, c int } 1482 B4 func(int, float64) *B0 1483 B5 func(x int, y float64) *A1 1484 ) 1485 1486 type C0 = B0 1487 </pre> 1488 1489 <p> 1490 these types are identical: 1491 </p> 1492 1493 <pre> 1494 A0, A1, and []string 1495 A2 and struct{ a, b int } 1496 A3 and int 1497 A4, func(int, float64) *[]string, and A5 1498 1499 B0, B0, and C0 1500 []int and []int 1501 struct{ a, b *T5 } and struct{ a, b *T5 } 1502 func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5 1503 </pre> 1504 1505 <p> 1506 <code>B0</code> and <code>B1</code> are different because they are new types 1507 created by distinct <a href="#Type_definitions">type definitions</a>; 1508 <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code> 1509 are different because <code>B0</code> is different from <code>[]string</code>. 1510 </p> 1511 1512 1513 <h3 id="Assignability">Assignability</h3> 1514 1515 <p> 1516 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code> 1517 ("<code>x</code> is assignable to <code>T</code>") in any of these cases: 1518 </p> 1519 1520 <ul> 1521 <li> 1522 <code>x</code>'s type is identical to <code>T</code>. 1523 </li> 1524 <li> 1525 <code>x</code>'s type <code>V</code> and <code>T</code> have identical 1526 <a href="#Types">underlying types</a> and at least one of <code>V</code> 1527 or <code>T</code> is not a <a href="#Type_definitions">defined</a> type. 1528 </li> 1529 <li> 1530 <code>T</code> is an interface type and 1531 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. 1532 </li> 1533 <li> 1534 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, 1535 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, 1536 and at least one of <code>V</code> or <code>T</code> is not a defined type. 1537 </li> 1538 <li> 1539 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> 1540 is a pointer, function, slice, map, channel, or interface type. 1541 </li> 1542 <li> 1543 <code>x</code> is an untyped <a href="#Constants">constant</a> representable 1544 by a value of type <code>T</code>. 1545 </li> 1546 </ul> 1547 1548 1549 <h2 id="Blocks">Blocks</h2> 1550 1551 <p> 1552 A <i>block</i> is a possibly empty sequence of declarations and statements 1553 within matching brace brackets. 1554 </p> 1555 1556 <pre class="ebnf"> 1557 Block = "{" StatementList "}" . 1558 StatementList = { Statement ";" } . 1559 </pre> 1560 1561 <p> 1562 In addition to explicit blocks in the source code, there are implicit blocks: 1563 </p> 1564 1565 <ol> 1566 <li>The <i>universe block</i> encompasses all Go source text.</li> 1567 1568 <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all 1569 Go source text for that package.</li> 1570 1571 <li>Each file has a <i>file block</i> containing all Go source text 1572 in that file.</li> 1573 1574 <li>Each <a href="#If_statements">"if"</a>, 1575 <a href="#For_statements">"for"</a>, and 1576 <a href="#Switch_statements">"switch"</a> 1577 statement is considered to be in its own implicit block.</li> 1578 1579 <li>Each clause in a <a href="#Switch_statements">"switch"</a> 1580 or <a href="#Select_statements">"select"</a> statement 1581 acts as an implicit block.</li> 1582 </ol> 1583 1584 <p> 1585 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. 1586 </p> 1587 1588 1589 <h2 id="Declarations_and_scope">Declarations and scope</h2> 1590 1591 <p> 1592 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a 1593 <a href="#Constant_declarations">constant</a>, 1594 <a href="#Type_declarations">type</a>, 1595 <a href="#Variable_declarations">variable</a>, 1596 <a href="#Function_declarations">function</a>, 1597 <a href="#Labeled_statements">label</a>, or 1598 <a href="#Import_declarations">package</a>. 1599 Every identifier in a program must be declared. 1600 No identifier may be declared twice in the same block, and 1601 no identifier may be declared in both the file and package block. 1602 </p> 1603 1604 <p> 1605 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier 1606 in a declaration, but it does not introduce a binding and thus is not declared. 1607 In the package block, the identifier <code>init</code> may only be used for 1608 <a href="#Package_initialization"><code>init</code> function</a> declarations, 1609 and like the blank identifier it does not introduce a new binding. 1610 </p> 1611 1612 <pre class="ebnf"> 1613 Declaration = ConstDecl | TypeDecl | VarDecl . 1614 TopLevelDecl = Declaration | FunctionDecl | MethodDecl . 1615 </pre> 1616 1617 <p> 1618 The <i>scope</i> of a declared identifier is the extent of source text in which 1619 the identifier denotes the specified constant, type, variable, function, label, or package. 1620 </p> 1621 1622 <p> 1623 Go is lexically scoped using <a href="#Blocks">blocks</a>: 1624 </p> 1625 1626 <ol> 1627 <li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li> 1628 1629 <li>The scope of an identifier denoting a constant, type, variable, 1630 or function (but not method) declared at top level (outside any 1631 function) is the package block.</li> 1632 1633 <li>The scope of the package name of an imported package is the file block 1634 of the file containing the import declaration.</li> 1635 1636 <li>The scope of an identifier denoting a method receiver, function parameter, 1637 or result variable is the function body.</li> 1638 1639 <li>The scope of a constant or variable identifier declared 1640 inside a function begins at the end of the ConstSpec or VarSpec 1641 (ShortVarDecl for short variable declarations) 1642 and ends at the end of the innermost containing block.</li> 1643 1644 <li>The scope of a type identifier declared inside a function 1645 begins at the identifier in the TypeSpec 1646 and ends at the end of the innermost containing block.</li> 1647 </ol> 1648 1649 <p> 1650 An identifier declared in a block may be redeclared in an inner block. 1651 While the identifier of the inner declaration is in scope, it denotes 1652 the entity declared by the inner declaration. 1653 </p> 1654 1655 <p> 1656 The <a href="#Package_clause">package clause</a> is not a declaration; the package name 1657 does not appear in any scope. Its purpose is to identify the files belonging 1658 to the same <a href="#Packages">package</a> and to specify the default package name for import 1659 declarations. 1660 </p> 1661 1662 1663 <h3 id="Label_scopes">Label scopes</h3> 1664 1665 <p> 1666 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are 1667 used in the <a href="#Break_statements">"break"</a>, 1668 <a href="#Continue_statements">"continue"</a>, and 1669 <a href="#Goto_statements">"goto"</a> statements. 1670 It is illegal to define a label that is never used. 1671 In contrast to other identifiers, labels are not block scoped and do 1672 not conflict with identifiers that are not labels. The scope of a label 1673 is the body of the function in which it is declared and excludes 1674 the body of any nested function. 1675 </p> 1676 1677 1678 <h3 id="Blank_identifier">Blank identifier</h3> 1679 1680 <p> 1681 The <i>blank identifier</i> is represented by the underscore character <code>_</code>. 1682 It serves as an anonymous placeholder instead of a regular (non-blank) 1683 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>, 1684 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>. 1685 </p> 1686 1687 1688 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3> 1689 1690 <p> 1691 The following identifiers are implicitly declared in the 1692 <a href="#Blocks">universe block</a>: 1693 </p> 1694 <pre class="grammar"> 1695 Types: 1696 bool byte complex64 complex128 error float32 float64 1697 int int8 int16 int32 int64 rune string 1698 uint uint8 uint16 uint32 uint64 uintptr 1699 1700 Constants: 1701 true false iota 1702 1703 Zero value: 1704 nil 1705 1706 Functions: 1707 append cap close complex copy delete imag len 1708 make new panic print println real recover 1709 </pre> 1710 1711 1712 <h3 id="Exported_identifiers">Exported identifiers</h3> 1713 1714 <p> 1715 An identifier may be <i>exported</i> to permit access to it from another package. 1716 An identifier is exported if both: 1717 </p> 1718 <ol> 1719 <li>the first character of the identifier's name is a Unicode upper case 1720 letter (Unicode class "Lu"); and</li> 1721 <li>the identifier is declared in the <a href="#Blocks">package block</a> 1722 or it is a <a href="#Struct_types">field name</a> or 1723 <a href="#MethodName">method name</a>.</li> 1724 </ol> 1725 <p> 1726 All other identifiers are not exported. 1727 </p> 1728 1729 1730 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3> 1731 1732 <p> 1733 Given a set of identifiers, an identifier is called <i>unique</i> if it is 1734 <i>different</i> from every other in the set. 1735 Two identifiers are different if they are spelled differently, or if they 1736 appear in different <a href="#Packages">packages</a> and are not 1737 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same. 1738 </p> 1739 1740 <h3 id="Constant_declarations">Constant declarations</h3> 1741 1742 <p> 1743 A constant declaration binds a list of identifiers (the names of 1744 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. 1745 The number of identifiers must be equal 1746 to the number of expressions, and the <i>n</i>th identifier on 1747 the left is bound to the value of the <i>n</i>th expression on the 1748 right. 1749 </p> 1750 1751 <pre class="ebnf"> 1752 ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . 1753 ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . 1754 1755 IdentifierList = identifier { "," identifier } . 1756 ExpressionList = Expression { "," Expression } . 1757 </pre> 1758 1759 <p> 1760 If the type is present, all constants take the type specified, and 1761 the expressions must be <a href="#Assignability">assignable</a> to that type. 1762 If the type is omitted, the constants take the 1763 individual types of the corresponding expressions. 1764 If the expression values are untyped <a href="#Constants">constants</a>, 1765 the declared constants remain untyped and the constant identifiers 1766 denote the constant values. For instance, if the expression is a 1767 floating-point literal, the constant identifier denotes a floating-point 1768 constant, even if the literal's fractional part is zero. 1769 </p> 1770 1771 <pre> 1772 const Pi float64 = 3.14159265358979323846 1773 const zero = 0.0 // untyped floating-point constant 1774 const ( 1775 size int64 = 1024 1776 eof = -1 // untyped integer constant 1777 ) 1778 const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants 1779 const u, v float32 = 0, 3 // u = 0.0, v = 3.0 1780 </pre> 1781 1782 <p> 1783 Within a parenthesized <code>const</code> declaration list the 1784 expression list may be omitted from any but the first declaration. 1785 Such an empty list is equivalent to the textual substitution of the 1786 first preceding non-empty expression list and its type if any. 1787 Omitting the list of expressions is therefore equivalent to 1788 repeating the previous list. The number of identifiers must be equal 1789 to the number of expressions in the previous list. 1790 Together with the <a href="#Iota"><code>iota</code> constant generator</a> 1791 this mechanism permits light-weight declaration of sequential values: 1792 </p> 1793 1794 <pre> 1795 const ( 1796 Sunday = iota 1797 Monday 1798 Tuesday 1799 Wednesday 1800 Thursday 1801 Friday 1802 Partyday 1803 numberOfDays // this constant is not exported 1804 ) 1805 </pre> 1806 1807 1808 <h3 id="Iota">Iota</h3> 1809 1810 <p> 1811 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier 1812 <code>iota</code> represents successive untyped integer <a href="#Constants"> 1813 constants</a>. It is reset to 0 whenever the reserved word <code>const</code> 1814 appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>. 1815 It can be used to construct a set of related constants: 1816 </p> 1817 1818 <pre> 1819 const ( // iota is reset to 0 1820 c0 = iota // c0 == 0 1821 c1 = iota // c1 == 1 1822 c2 = iota // c2 == 2 1823 ) 1824 1825 const ( // iota is reset to 0 1826 a = 1 << iota // a == 1 1827 b = 1 << iota // b == 2 1828 c = 3 // c == 3 (iota is not used but still incremented) 1829 d = 1 << iota // d == 8 1830 ) 1831 1832 const ( // iota is reset to 0 1833 u = iota * 42 // u == 0 (untyped integer constant) 1834 v float64 = iota * 42 // v == 42.0 (float64 constant) 1835 w = iota * 42 // w == 84 (untyped integer constant) 1836 ) 1837 1838 const x = iota // x == 0 (iota has been reset) 1839 const y = iota // y == 0 (iota has been reset) 1840 </pre> 1841 1842 <p> 1843 Within an ExpressionList, the value of each <code>iota</code> is the same because 1844 it is only incremented after each ConstSpec: 1845 </p> 1846 1847 <pre> 1848 const ( 1849 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 1850 bit1, mask1 // bit1 == 2, mask1 == 1 1851 _, _ // skips iota == 2 1852 bit3, mask3 // bit3 == 8, mask3 == 7 1853 ) 1854 </pre> 1855 1856 <p> 1857 This last example exploits the implicit repetition of the 1858 last non-empty expression list. 1859 </p> 1860 1861 1862 <h3 id="Type_declarations">Type declarations</h3> 1863 1864 <p> 1865 A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>. 1866 Type declarations come in two forms: alias declarations and type definitions. 1867 <p> 1868 1869 <pre class="ebnf"> 1870 TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . 1871 TypeSpec = AliasDecl | TypeDef . 1872 </pre> 1873 1874 <h4 id="Alias_declarations">Alias declarations</h4> 1875 1876 <p> 1877 An alias declaration binds an identifier to the given type. 1878 </p> 1879 1880 <pre class="ebnf"> 1881 AliasDecl = identifier "=" Type . 1882 </pre> 1883 1884 <p> 1885 Within the <a href="#Declarations_and_scope">scope</a> of 1886 the identifier, it serves as an <i>alias</i> for the type. 1887 </p> 1888 1889 <pre> 1890 type ( 1891 nodeList = []*Node // nodeList and []*Node are identical types 1892 Polar = polar // Polar and polar denote identical types 1893 ) 1894 </pre> 1895 1896 1897 <h4 id="Type_definitions">Type definitions</h4> 1898 1899 <p> 1900 A type definition creates a new, distinct type with the same 1901 <a href="#Types">underlying type</a> and operations as the given type, 1902 and binds an identifier to it. 1903 </p> 1904 1905 <pre class="ebnf"> 1906 TypeDef = identifier Type . 1907 </pre> 1908 1909 <p> 1910 The new type is called a <i>defined type</i>. 1911 It is <a href="#Type_identity">different</a> from any other type, 1912 including the type it is created from. 1913 </p> 1914 1915 <pre> 1916 type ( 1917 Point struct{ x, y float64 } // Point and struct{ x, y float64 } are different types 1918 polar Point // polar and Point denote different types 1919 ) 1920 1921 type TreeNode struct { 1922 left, right *TreeNode 1923 value *Comparable 1924 } 1925 1926 type Block interface { 1927 BlockSize() int 1928 Encrypt(src, dst []byte) 1929 Decrypt(src, dst []byte) 1930 } 1931 </pre> 1932 1933 <p> 1934 A defined type may have <a href="#Method_declarations">methods</a> associated with it. 1935 It does not inherit any methods bound to the given type, 1936 but the <a href="#Method_sets">method set</a> 1937 of an interface type or of elements of a composite type remains unchanged: 1938 </p> 1939 1940 <pre> 1941 // A Mutex is a data type with two methods, Lock and Unlock. 1942 type Mutex struct { /* Mutex fields */ } 1943 func (m *Mutex) Lock() { /* Lock implementation */ } 1944 func (m *Mutex) Unlock() { /* Unlock implementation */ } 1945 1946 // NewMutex has the same composition as Mutex but its method set is empty. 1947 type NewMutex Mutex 1948 1949 // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged, 1950 // but the method set of PtrMutex is empty. 1951 type PtrMutex *Mutex 1952 1953 // The method set of *PrintableMutex contains the methods 1954 // Lock and Unlock bound to its embedded field Mutex. 1955 type PrintableMutex struct { 1956 Mutex 1957 } 1958 1959 // MyBlock is an interface type that has the same method set as Block. 1960 type MyBlock Block 1961 </pre> 1962 1963 <p> 1964 Type definitions may be used to define different boolean, numeric, 1965 or string types and associate methods with them: 1966 </p> 1967 1968 <pre> 1969 type TimeZone int 1970 1971 const ( 1972 EST TimeZone = -(5 + iota) 1973 CST 1974 MST 1975 PST 1976 ) 1977 1978 func (tz TimeZone) String() string { 1979 return fmt.Sprintf("GMT%+dh", tz) 1980 } 1981 </pre> 1982 1983 1984 <h3 id="Variable_declarations">Variable declarations</h3> 1985 1986 <p> 1987 A variable declaration creates one or more <a href="#Variables">variables</a>, 1988 binds corresponding identifiers to them, and gives each a type and an initial value. 1989 </p> 1990 1991 <pre class="ebnf"> 1992 VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . 1993 VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . 1994 </pre> 1995 1996 <pre> 1997 var i int 1998 var U, V, W float64 1999 var k = 0 2000 var x, y float32 = -1, -2 2001 var ( 2002 i int 2003 u, v, s = 2.0, 3.0, "bar" 2004 ) 2005 var re, im = complexSqrt(-1) 2006 var _, found = entries[name] // map lookup; only interested in "found" 2007 </pre> 2008 2009 <p> 2010 If a list of expressions is given, the variables are initialized 2011 with the expressions following the rules for <a href="#Assignments">assignments</a>. 2012 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. 2013 </p> 2014 2015 <p> 2016 If a type is present, each variable is given that type. 2017 Otherwise, each variable is given the type of the corresponding 2018 initialization value in the assignment. 2019 If that value is an untyped constant, it is first 2020 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 2021 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 2022 The predeclared value <code>nil</code> cannot be used to initialize a variable 2023 with no explicit type. 2024 </p> 2025 2026 <pre> 2027 var d = math.Sin(0.5) // d is float64 2028 var i = 42 // i is int 2029 var t, ok = x.(T) // t is T, ok is bool 2030 var n = nil // illegal 2031 </pre> 2032 2033 <p> 2034 Implementation restriction: A compiler may make it illegal to declare a variable 2035 inside a <a href="#Function_declarations">function body</a> if the variable is 2036 never used. 2037 </p> 2038 2039 <h3 id="Short_variable_declarations">Short variable declarations</h3> 2040 2041 <p> 2042 A <i>short variable declaration</i> uses the syntax: 2043 </p> 2044 2045 <pre class="ebnf"> 2046 ShortVarDecl = IdentifierList ":=" ExpressionList . 2047 </pre> 2048 2049 <p> 2050 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a> 2051 with initializer expressions but no types: 2052 </p> 2053 2054 <pre class="grammar"> 2055 "var" IdentifierList = ExpressionList . 2056 </pre> 2057 2058 <pre> 2059 i, j := 0, 10 2060 f := func() int { return 7 } 2061 ch := make(chan int) 2062 r, w := os.Pipe(fd) // os.Pipe() returns two values 2063 _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate 2064 </pre> 2065 2066 <p> 2067 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i> 2068 variables provided they were originally declared earlier in the same block 2069 (or the parameter lists if the block is the function body) with the same type, 2070 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new. 2071 As a consequence, redeclaration can only appear in a multi-variable short declaration. 2072 Redeclaration does not introduce a new variable; it just assigns a new value to the original. 2073 </p> 2074 2075 <pre> 2076 field1, offset := nextField(str, 0) 2077 field2, offset := nextField(str, offset) // redeclares offset 2078 a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere 2079 </pre> 2080 2081 <p> 2082 Short variable declarations may appear only inside functions. 2083 In some contexts such as the initializers for 2084 <a href="#If_statements">"if"</a>, 2085 <a href="#For_statements">"for"</a>, or 2086 <a href="#Switch_statements">"switch"</a> statements, 2087 they can be used to declare local temporary variables. 2088 </p> 2089 2090 <h3 id="Function_declarations">Function declarations</h3> 2091 2092 <p> 2093 A function declaration binds an identifier, the <i>function name</i>, 2094 to a function. 2095 </p> 2096 2097 <pre class="ebnf"> 2098 FunctionDecl = "func" FunctionName ( Function | Signature ) . 2099 FunctionName = identifier . 2100 Function = Signature FunctionBody . 2101 FunctionBody = Block . 2102 </pre> 2103 2104 <p> 2105 If the function's <a href="#Function_types">signature</a> declares 2106 result parameters, the function body's statement list must end in 2107 a <a href="#Terminating_statements">terminating statement</a>. 2108 </p> 2109 2110 <pre> 2111 func IndexRune(s string, r rune) int { 2112 for i, c := range s { 2113 if c == r { 2114 return i 2115 } 2116 } 2117 // invalid: missing return statement 2118 } 2119 </pre> 2120 2121 <p> 2122 A function declaration may omit the body. Such a declaration provides the 2123 signature for a function implemented outside Go, such as an assembly routine. 2124 </p> 2125 2126 <pre> 2127 func min(x int, y int) int { 2128 if x < y { 2129 return x 2130 } 2131 return y 2132 } 2133 2134 func flushICache(begin, end uintptr) // implemented externally 2135 </pre> 2136 2137 <h3 id="Method_declarations">Method declarations</h3> 2138 2139 <p> 2140 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>. 2141 A method declaration binds an identifier, the <i>method name</i>, to a method, 2142 and associates the method with the receiver's <i>base type</i>. 2143 </p> 2144 2145 <pre class="ebnf"> 2146 MethodDecl = "func" Receiver MethodName ( Function | Signature ) . 2147 Receiver = Parameters . 2148 </pre> 2149 2150 <p> 2151 The receiver is specified via an extra parameter section preceding the method 2152 name. That parameter section must declare a single non-variadic parameter, the receiver. 2153 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using 2154 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called 2155 the receiver <i>base type</i>; it must not be a pointer or interface type and 2156 it must be <a href="#Type_definitions">defined</a> in the same package as the method. 2157 The method is said to be <i>bound</i> to the base type and the method name 2158 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code> 2159 or <code>*T</code>. 2160 </p> 2161 2162 <p> 2163 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be 2164 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature. 2165 If the receiver's value is not referenced inside the body of the method, 2166 its identifier may be omitted in the declaration. The same applies in 2167 general to parameters of functions and methods. 2168 </p> 2169 2170 <p> 2171 For a base type, the non-blank names of methods bound to it must be unique. 2172 If the base type is a <a href="#Struct_types">struct type</a>, 2173 the non-blank method and field names must be distinct. 2174 </p> 2175 2176 <p> 2177 Given type <code>Point</code>, the declarations 2178 </p> 2179 2180 <pre> 2181 func (p *Point) Length() float64 { 2182 return math.Sqrt(p.x * p.x + p.y * p.y) 2183 } 2184 2185 func (p *Point) Scale(factor float64) { 2186 p.x *= factor 2187 p.y *= factor 2188 } 2189 </pre> 2190 2191 <p> 2192 bind the methods <code>Length</code> and <code>Scale</code>, 2193 with receiver type <code>*Point</code>, 2194 to the base type <code>Point</code>. 2195 </p> 2196 2197 <p> 2198 The type of a method is the type of a function with the receiver as first 2199 argument. For instance, the method <code>Scale</code> has type 2200 </p> 2201 2202 <pre> 2203 func(p *Point, factor float64) 2204 </pre> 2205 2206 <p> 2207 However, a function declared this way is not a method. 2208 </p> 2209 2210 2211 <h2 id="Expressions">Expressions</h2> 2212 2213 <p> 2214 An expression specifies the computation of a value by applying 2215 operators and functions to operands. 2216 </p> 2217 2218 <h3 id="Operands">Operands</h3> 2219 2220 <p> 2221 Operands denote the elementary values in an expression. An operand may be a 2222 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>) 2223 non-<a href="#Blank_identifier">blank</a> identifier denoting a 2224 <a href="#Constant_declarations">constant</a>, 2225 <a href="#Variable_declarations">variable</a>, or 2226 <a href="#Function_declarations">function</a>, 2227 a <a href="#Method_expressions">method expression</a> yielding a function, 2228 or a parenthesized expression. 2229 </p> 2230 2231 <p> 2232 The <a href="#Blank_identifier">blank identifier</a> may appear as an 2233 operand only on the left-hand side of an <a href="#Assignments">assignment</a>. 2234 </p> 2235 2236 <pre class="ebnf"> 2237 Operand = Literal | OperandName | MethodExpr | "(" Expression ")" . 2238 Literal = BasicLit | CompositeLit | FunctionLit . 2239 BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . 2240 OperandName = identifier | QualifiedIdent. 2241 </pre> 2242 2243 <h3 id="Qualified_identifiers">Qualified identifiers</h3> 2244 2245 <p> 2246 A qualified identifier is an identifier qualified with a package name prefix. 2247 Both the package name and the identifier must not be 2248 <a href="#Blank_identifier">blank</a>. 2249 </p> 2250 2251 <pre class="ebnf"> 2252 QualifiedIdent = PackageName "." identifier . 2253 </pre> 2254 2255 <p> 2256 A qualified identifier accesses an identifier in a different package, which 2257 must be <a href="#Import_declarations">imported</a>. 2258 The identifier must be <a href="#Exported_identifiers">exported</a> and 2259 declared in the <a href="#Blocks">package block</a> of that package. 2260 </p> 2261 2262 <pre> 2263 math.Sin // denotes the Sin function in package math 2264 </pre> 2265 2266 <h3 id="Composite_literals">Composite literals</h3> 2267 2268 <p> 2269 Composite literals construct values for structs, arrays, slices, and maps 2270 and create a new value each time they are evaluated. 2271 They consist of the type of the literal followed by a brace-bound list of elements. 2272 Each element may optionally be preceded by a corresponding key. 2273 </p> 2274 2275 <pre class="ebnf"> 2276 CompositeLit = LiteralType LiteralValue . 2277 LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | 2278 SliceType | MapType | TypeName . 2279 LiteralValue = "{" [ ElementList [ "," ] ] "}" . 2280 ElementList = KeyedElement { "," KeyedElement } . 2281 KeyedElement = [ Key ":" ] Element . 2282 Key = FieldName | Expression | LiteralValue . 2283 FieldName = identifier . 2284 Element = Expression | LiteralValue . 2285 </pre> 2286 2287 <p> 2288 The LiteralType's underlying type must be a struct, array, slice, or map type 2289 (the grammar enforces this constraint except when the type is given 2290 as a TypeName). 2291 The types of the elements and keys must be <a href="#Assignability">assignable</a> 2292 to the respective field, element, and key types of the literal type; 2293 there is no additional conversion. 2294 The key is interpreted as a field name for struct literals, 2295 an index for array and slice literals, and a key for map literals. 2296 For map literals, all elements must have a key. It is an error 2297 to specify multiple elements with the same field name or 2298 constant key value. For non-constant map keys, see the section on 2299 <a href="#Order_of_evaluation">evaluation order</a>. 2300 </p> 2301 2302 <p> 2303 For struct literals the following rules apply: 2304 </p> 2305 <ul> 2306 <li>A key must be a field name declared in the struct type. 2307 </li> 2308 <li>An element list that does not contain any keys must 2309 list an element for each struct field in the 2310 order in which the fields are declared. 2311 </li> 2312 <li>If any element has a key, every element must have a key. 2313 </li> 2314 <li>An element list that contains keys does not need to 2315 have an element for each struct field. Omitted fields 2316 get the zero value for that field. 2317 </li> 2318 <li>A literal may omit the element list; such a literal evaluates 2319 to the zero value for its type. 2320 </li> 2321 <li>It is an error to specify an element for a non-exported 2322 field of a struct belonging to a different package. 2323 </li> 2324 </ul> 2325 2326 <p> 2327 Given the declarations 2328 </p> 2329 <pre> 2330 type Point3D struct { x, y, z float64 } 2331 type Line struct { p, q Point3D } 2332 </pre> 2333 2334 <p> 2335 one may write 2336 </p> 2337 2338 <pre> 2339 origin := Point3D{} // zero value for Point3D 2340 line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x 2341 </pre> 2342 2343 <p> 2344 For array and slice literals the following rules apply: 2345 </p> 2346 <ul> 2347 <li>Each element has an associated integer index marking 2348 its position in the array. 2349 </li> 2350 <li>An element with a key uses the key as its index. The 2351 key must be a non-negative constant representable by 2352 a value of type <code>int</code>; and if it is typed 2353 it must be of integer type. 2354 </li> 2355 <li>An element without a key uses the previous element's index plus one. 2356 If the first element has no key, its index is zero. 2357 </li> 2358 </ul> 2359 2360 <p> 2361 <a href="#Address_operators">Taking the address</a> of a composite literal 2362 generates a pointer to a unique <a href="#Variables">variable</a> initialized 2363 with the literal's value. 2364 </p> 2365 <pre> 2366 var pointer *Point3D = &Point3D{y: 1000} 2367 </pre> 2368 2369 <p> 2370 The length of an array literal is the length specified in the literal type. 2371 If fewer elements than the length are provided in the literal, the missing 2372 elements are set to the zero value for the array element type. 2373 It is an error to provide elements with index values outside the index range 2374 of the array. The notation <code>...</code> specifies an array length equal 2375 to the maximum element index plus one. 2376 </p> 2377 2378 <pre> 2379 buffer := [10]string{} // len(buffer) == 10 2380 intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 2381 days := [...]string{"Sat", "Sun"} // len(days) == 2 2382 </pre> 2383 2384 <p> 2385 A slice literal describes the entire underlying array literal. 2386 Thus the length and capacity of a slice literal are the maximum 2387 element index plus one. A slice literal has the form 2388 </p> 2389 2390 <pre> 2391 []T{x1, x2, … xn} 2392 </pre> 2393 2394 <p> 2395 and is shorthand for a slice operation applied to an array: 2396 </p> 2397 2398 <pre> 2399 tmp := [n]T{x1, x2, … xn} 2400 tmp[0 : n] 2401 </pre> 2402 2403 <p> 2404 Within a composite literal of array, slice, or map type <code>T</code>, 2405 elements or map keys that are themselves composite literals may elide the respective 2406 literal type if it is identical to the element or key type of <code>T</code>. 2407 Similarly, elements or keys that are addresses of composite literals may elide 2408 the <code>&T</code> when the element or key type is <code>*T</code>. 2409 </p> 2410 2411 <pre> 2412 [...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} 2413 [][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} 2414 [][]Point{{{0, 1}, {1, 2}}} // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}} 2415 map[string]Point{"orig": {0, 0}} // same as map[string]Point{"orig": Point{0, 0}} 2416 map[Point]string{{0, 0}: "orig"} // same as map[Point]string{Point{0, 0}: "orig"} 2417 2418 type PPoint *Point 2419 [2]*Point{{1.5, -3.5}, {}} // same as [2]*Point{&Point{1.5, -3.5}, &Point{}} 2420 [2]PPoint{{1.5, -3.5}, {}} // same as [2]PPoint{PPoint(&Point{1.5, -3.5}), PPoint(&Point{})} 2421 </pre> 2422 2423 <p> 2424 A parsing ambiguity arises when a composite literal using the 2425 TypeName form of the LiteralType appears as an operand between the 2426 <a href="#Keywords">keyword</a> and the opening brace of the block 2427 of an "if", "for", or "switch" statement, and the composite literal 2428 is not enclosed in parentheses, square brackets, or curly braces. 2429 In this rare case, the opening brace of the literal is erroneously parsed 2430 as the one introducing the block of statements. To resolve the ambiguity, 2431 the composite literal must appear within parentheses. 2432 </p> 2433 2434 <pre> 2435 if x == (T{a,b,c}[i]) { … } 2436 if (x == T{a,b,c}[i]) { … } 2437 </pre> 2438 2439 <p> 2440 Examples of valid array, slice, and map literals: 2441 </p> 2442 2443 <pre> 2444 // list of prime numbers 2445 primes := []int{2, 3, 5, 7, 9, 2147483647} 2446 2447 // vowels[ch] is true if ch is a vowel 2448 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} 2449 2450 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} 2451 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} 2452 2453 // frequencies in Hz for equal-tempered scale (A4 = 440Hz) 2454 noteFrequency := map[string]float32{ 2455 "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, 2456 "G0": 24.50, "A0": 27.50, "B0": 30.87, 2457 } 2458 </pre> 2459 2460 2461 <h3 id="Function_literals">Function literals</h3> 2462 2463 <p> 2464 A function literal represents an anonymous <a href="#Function_declarations">function</a>. 2465 </p> 2466 2467 <pre class="ebnf"> 2468 FunctionLit = "func" Function . 2469 </pre> 2470 2471 <pre> 2472 func(a, b int, z float64) bool { return a*b < int(z) } 2473 </pre> 2474 2475 <p> 2476 A function literal can be assigned to a variable or invoked directly. 2477 </p> 2478 2479 <pre> 2480 f := func(x, y int) int { return x + y } 2481 func(ch chan int) { ch <- ACK }(replyChan) 2482 </pre> 2483 2484 <p> 2485 Function literals are <i>closures</i>: they may refer to variables 2486 defined in a surrounding function. Those variables are then shared between 2487 the surrounding function and the function literal, and they survive as long 2488 as they are accessible. 2489 </p> 2490 2491 2492 <h3 id="Primary_expressions">Primary expressions</h3> 2493 2494 <p> 2495 Primary expressions are the operands for unary and binary expressions. 2496 </p> 2497 2498 <pre class="ebnf"> 2499 PrimaryExpr = 2500 Operand | 2501 Conversion | 2502 PrimaryExpr Selector | 2503 PrimaryExpr Index | 2504 PrimaryExpr Slice | 2505 PrimaryExpr TypeAssertion | 2506 PrimaryExpr Arguments . 2507 2508 Selector = "." identifier . 2509 Index = "[" Expression "]" . 2510 Slice = "[" [ Expression ] ":" [ Expression ] "]" | 2511 "[" [ Expression ] ":" Expression ":" Expression "]" . 2512 TypeAssertion = "." "(" Type ")" . 2513 Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . 2514 </pre> 2515 2516 2517 <pre> 2518 x 2519 2 2520 (s + ".txt") 2521 f(3.1415, true) 2522 Point{1, 2} 2523 m["foo"] 2524 s[i : j + 1] 2525 obj.color 2526 f.p[i].x() 2527 </pre> 2528 2529 2530 <h3 id="Selectors">Selectors</h3> 2531 2532 <p> 2533 For a <a href="#Primary_expressions">primary expression</a> <code>x</code> 2534 that is not a <a href="#Package_clause">package name</a>, the 2535 <i>selector expression</i> 2536 </p> 2537 2538 <pre> 2539 x.f 2540 </pre> 2541 2542 <p> 2543 denotes the field or method <code>f</code> of the value <code>x</code> 2544 (or sometimes <code>*x</code>; see below). 2545 The identifier <code>f</code> is called the (field or method) <i>selector</i>; 2546 it must not be the <a href="#Blank_identifier">blank identifier</a>. 2547 The type of the selector expression is the type of <code>f</code>. 2548 If <code>x</code> is a package name, see the section on 2549 <a href="#Qualified_identifiers">qualified identifiers</a>. 2550 </p> 2551 2552 <p> 2553 A selector <code>f</code> may denote a field or method <code>f</code> of 2554 a type <code>T</code>, or it may refer 2555 to a field or method <code>f</code> of a nested 2556 <a href="#Struct_types">embedded field</a> of <code>T</code>. 2557 The number of embedded fields traversed 2558 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. 2559 The depth of a field or method <code>f</code> 2560 declared in <code>T</code> is zero. 2561 The depth of a field or method <code>f</code> declared in 2562 an embedded field <code>A</code> in <code>T</code> is the 2563 depth of <code>f</code> in <code>A</code> plus one. 2564 </p> 2565 2566 <p> 2567 The following rules apply to selectors: 2568 </p> 2569 2570 <ol> 2571 <li> 2572 For a value <code>x</code> of type <code>T</code> or <code>*T</code> 2573 where <code>T</code> is not a pointer or interface type, 2574 <code>x.f</code> denotes the field or method at the shallowest depth 2575 in <code>T</code> where there 2576 is such an <code>f</code>. 2577 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a> 2578 with shallowest depth, the selector expression is illegal. 2579 </li> 2580 2581 <li> 2582 For a value <code>x</code> of type <code>I</code> where <code>I</code> 2583 is an interface type, <code>x.f</code> denotes the actual method with name 2584 <code>f</code> of the dynamic value of <code>x</code>. 2585 If there is no method with name <code>f</code> in the 2586 <a href="#Method_sets">method set</a> of <code>I</code>, the selector 2587 expression is illegal. 2588 </li> 2589 2590 <li> 2591 As an exception, if the type of <code>x</code> is a named pointer type 2592 and <code>(*x).f</code> is a valid selector expression denoting a field 2593 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>. 2594 </li> 2595 2596 <li> 2597 In all other cases, <code>x.f</code> is illegal. 2598 </li> 2599 2600 <li> 2601 If <code>x</code> is of pointer type and has the value 2602 <code>nil</code> and <code>x.f</code> denotes a struct field, 2603 assigning to or evaluating <code>x.f</code> 2604 causes a <a href="#Run_time_panics">run-time panic</a>. 2605 </li> 2606 2607 <li> 2608 If <code>x</code> is of interface type and has the value 2609 <code>nil</code>, <a href="#Calls">calling</a> or 2610 <a href="#Method_values">evaluating</a> the method <code>x.f</code> 2611 causes a <a href="#Run_time_panics">run-time panic</a>. 2612 </li> 2613 </ol> 2614 2615 <p> 2616 For example, given the declarations: 2617 </p> 2618 2619 <pre> 2620 type T0 struct { 2621 x int 2622 } 2623 2624 func (*T0) M0() 2625 2626 type T1 struct { 2627 y int 2628 } 2629 2630 func (T1) M1() 2631 2632 type T2 struct { 2633 z int 2634 T1 2635 *T0 2636 } 2637 2638 func (*T2) M2() 2639 2640 type Q *T2 2641 2642 var t T2 // with t.T0 != nil 2643 var p *T2 // with p != nil and (*p).T0 != nil 2644 var q Q = p 2645 </pre> 2646 2647 <p> 2648 one may write: 2649 </p> 2650 2651 <pre> 2652 t.z // t.z 2653 t.y // t.T1.y 2654 t.x // (*t.T0).x 2655 2656 p.z // (*p).z 2657 p.y // (*p).T1.y 2658 p.x // (*(*p).T0).x 2659 2660 q.x // (*(*q).T0).x (*q).x is a valid field selector 2661 2662 p.M0() // ((*p).T0).M0() M0 expects *T0 receiver 2663 p.M1() // ((*p).T1).M1() M1 expects T1 receiver 2664 p.M2() // p.M2() M2 expects *T2 receiver 2665 t.M2() // (&t).M2() M2 expects *T2 receiver, see section on Calls 2666 </pre> 2667 2668 <p> 2669 but the following is invalid: 2670 </p> 2671 2672 <pre> 2673 q.M0() // (*q).M0 is valid but not a field selector 2674 </pre> 2675 2676 2677 <h3 id="Method_expressions">Method expressions</h3> 2678 2679 <p> 2680 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2681 <code>T.M</code> is a function that is callable as a regular function 2682 with the same arguments as <code>M</code> prefixed by an additional 2683 argument that is the receiver of the method. 2684 </p> 2685 2686 <pre class="ebnf"> 2687 MethodExpr = ReceiverType "." MethodName . 2688 ReceiverType = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" . 2689 </pre> 2690 2691 <p> 2692 Consider a struct type <code>T</code> with two methods, 2693 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2694 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2695 </p> 2696 2697 <pre> 2698 type T struct { 2699 a int 2700 } 2701 func (tv T) Mv(a int) int { return 0 } // value receiver 2702 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2703 2704 var t T 2705 </pre> 2706 2707 <p> 2708 The expression 2709 </p> 2710 2711 <pre> 2712 T.Mv 2713 </pre> 2714 2715 <p> 2716 yields a function equivalent to <code>Mv</code> but 2717 with an explicit receiver as its first argument; it has signature 2718 </p> 2719 2720 <pre> 2721 func(tv T, a int) int 2722 </pre> 2723 2724 <p> 2725 That function may be called normally with an explicit receiver, so 2726 these five invocations are equivalent: 2727 </p> 2728 2729 <pre> 2730 t.Mv(7) 2731 T.Mv(t, 7) 2732 (T).Mv(t, 7) 2733 f1 := T.Mv; f1(t, 7) 2734 f2 := (T).Mv; f2(t, 7) 2735 </pre> 2736 2737 <p> 2738 Similarly, the expression 2739 </p> 2740 2741 <pre> 2742 (*T).Mp 2743 </pre> 2744 2745 <p> 2746 yields a function value representing <code>Mp</code> with signature 2747 </p> 2748 2749 <pre> 2750 func(tp *T, f float32) float32 2751 </pre> 2752 2753 <p> 2754 For a method with a value receiver, one can derive a function 2755 with an explicit pointer receiver, so 2756 </p> 2757 2758 <pre> 2759 (*T).Mv 2760 </pre> 2761 2762 <p> 2763 yields a function value representing <code>Mv</code> with signature 2764 </p> 2765 2766 <pre> 2767 func(tv *T, a int) int 2768 </pre> 2769 2770 <p> 2771 Such a function indirects through the receiver to create a value 2772 to pass as the receiver to the underlying method; 2773 the method does not overwrite the value whose address is passed in 2774 the function call. 2775 </p> 2776 2777 <p> 2778 The final case, a value-receiver function for a pointer-receiver method, 2779 is illegal because pointer-receiver methods are not in the method set 2780 of the value type. 2781 </p> 2782 2783 <p> 2784 Function values derived from methods are called with function call syntax; 2785 the receiver is provided as the first argument to the call. 2786 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked 2787 as <code>f(t, 7)</code> not <code>t.f(7)</code>. 2788 To construct a function that binds the receiver, use a 2789 <a href="#Function_literals">function literal</a> or 2790 <a href="#Method_values">method value</a>. 2791 </p> 2792 2793 <p> 2794 It is legal to derive a function value from a method of an interface type. 2795 The resulting function takes an explicit receiver of that interface type. 2796 </p> 2797 2798 <h3 id="Method_values">Method values</h3> 2799 2800 <p> 2801 If the expression <code>x</code> has static type <code>T</code> and 2802 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2803 <code>x.M</code> is called a <i>method value</i>. 2804 The method value <code>x.M</code> is a function value that is callable 2805 with the same arguments as a method call of <code>x.M</code>. 2806 The expression <code>x</code> is evaluated and saved during the evaluation of the 2807 method value; the saved copy is then used as the receiver in any calls, 2808 which may be executed later. 2809 </p> 2810 2811 <p> 2812 The type <code>T</code> may be an interface or non-interface type. 2813 </p> 2814 2815 <p> 2816 As in the discussion of <a href="#Method_expressions">method expressions</a> above, 2817 consider a struct type <code>T</code> with two methods, 2818 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2819 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2820 </p> 2821 2822 <pre> 2823 type T struct { 2824 a int 2825 } 2826 func (tv T) Mv(a int) int { return 0 } // value receiver 2827 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2828 2829 var t T 2830 var pt *T 2831 func makeT() T 2832 </pre> 2833 2834 <p> 2835 The expression 2836 </p> 2837 2838 <pre> 2839 t.Mv 2840 </pre> 2841 2842 <p> 2843 yields a function value of type 2844 </p> 2845 2846 <pre> 2847 func(int) int 2848 </pre> 2849 2850 <p> 2851 These two invocations are equivalent: 2852 </p> 2853 2854 <pre> 2855 t.Mv(7) 2856 f := t.Mv; f(7) 2857 </pre> 2858 2859 <p> 2860 Similarly, the expression 2861 </p> 2862 2863 <pre> 2864 pt.Mp 2865 </pre> 2866 2867 <p> 2868 yields a function value of type 2869 </p> 2870 2871 <pre> 2872 func(float32) float32 2873 </pre> 2874 2875 <p> 2876 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver 2877 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>. 2878 </p> 2879 2880 <p> 2881 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver 2882 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&t).Mp</code>. 2883 </p> 2884 2885 <pre> 2886 f := t.Mv; f(7) // like t.Mv(7) 2887 f := pt.Mp; f(7) // like pt.Mp(7) 2888 f := pt.Mv; f(7) // like (*pt).Mv(7) 2889 f := t.Mp; f(7) // like (&t).Mp(7) 2890 f := makeT().Mp // invalid: result of makeT() is not addressable 2891 </pre> 2892 2893 <p> 2894 Although the examples above use non-interface types, it is also legal to create a method value 2895 from a value of interface type. 2896 </p> 2897 2898 <pre> 2899 var i interface { M(int) } = myVal 2900 f := i.M; f(7) // like i.M(7) 2901 </pre> 2902 2903 2904 <h3 id="Index_expressions">Index expressions</h3> 2905 2906 <p> 2907 A primary expression of the form 2908 </p> 2909 2910 <pre> 2911 a[x] 2912 </pre> 2913 2914 <p> 2915 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>. 2916 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively. 2917 The following rules apply: 2918 </p> 2919 2920 <p> 2921 If <code>a</code> is not a map: 2922 </p> 2923 <ul> 2924 <li>the index <code>x</code> must be of integer type or untyped; 2925 it is <i>in range</i> if <code>0 <= x < len(a)</code>, 2926 otherwise it is <i>out of range</i></li> 2927 <li>a <a href="#Constants">constant</a> index must be non-negative 2928 and representable by a value of type <code>int</code> 2929 </ul> 2930 2931 <p> 2932 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>: 2933 </p> 2934 <ul> 2935 <li>a <a href="#Constants">constant</a> index must be in range</li> 2936 <li>if <code>x</code> is out of range at run time, 2937 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2938 <li><code>a[x]</code> is the array element at index <code>x</code> and the type of 2939 <code>a[x]</code> is the element type of <code>A</code></li> 2940 </ul> 2941 2942 <p> 2943 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type: 2944 </p> 2945 <ul> 2946 <li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li> 2947 </ul> 2948 2949 <p> 2950 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>: 2951 </p> 2952 <ul> 2953 <li>if <code>x</code> is out of range at run time, 2954 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2955 <li><code>a[x]</code> is the slice element at index <code>x</code> and the type of 2956 <code>a[x]</code> is the element type of <code>S</code></li> 2957 </ul> 2958 2959 <p> 2960 For <code>a</code> of <a href="#String_types">string type</a>: 2961 </p> 2962 <ul> 2963 <li>a <a href="#Constants">constant</a> index must be in range 2964 if the string <code>a</code> is also constant</li> 2965 <li>if <code>x</code> is out of range at run time, 2966 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2967 <li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of 2968 <code>a[x]</code> is <code>byte</code></li> 2969 <li><code>a[x]</code> may not be assigned to</li> 2970 </ul> 2971 2972 <p> 2973 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>: 2974 </p> 2975 <ul> 2976 <li><code>x</code>'s type must be 2977 <a href="#Assignability">assignable</a> 2978 to the key type of <code>M</code></li> 2979 <li>if the map contains an entry with key <code>x</code>, 2980 <code>a[x]</code> is the map value with key <code>x</code> 2981 and the type of <code>a[x]</code> is the value type of <code>M</code></li> 2982 <li>if the map is <code>nil</code> or does not contain such an entry, 2983 <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> 2984 for the value type of <code>M</code></li> 2985 </ul> 2986 2987 <p> 2988 Otherwise <code>a[x]</code> is illegal. 2989 </p> 2990 2991 <p> 2992 An index expression on a map <code>a</code> of type <code>map[K]V</code> 2993 used in an <a href="#Assignments">assignment</a> or initialization of the special form 2994 </p> 2995 2996 <pre> 2997 v, ok = a[x] 2998 v, ok := a[x] 2999 var v, ok = a[x] 3000 var v, ok T = a[x] 3001 </pre> 3002 3003 <p> 3004 yields an additional untyped boolean value. The value of <code>ok</code> is 3005 <code>true</code> if the key <code>x</code> is present in the map, and 3006 <code>false</code> otherwise. 3007 </p> 3008 3009 <p> 3010 Assigning to an element of a <code>nil</code> map causes a 3011 <a href="#Run_time_panics">run-time panic</a>. 3012 </p> 3013 3014 3015 <h3 id="Slice_expressions">Slice expressions</h3> 3016 3017 <p> 3018 Slice expressions construct a substring or slice from a string, array, pointer 3019 to array, or slice. There are two variants: a simple form that specifies a low 3020 and high bound, and a full form that also specifies a bound on the capacity. 3021 </p> 3022 3023 <h4>Simple slice expressions</h4> 3024 3025 <p> 3026 For a string, array, pointer to array, or slice <code>a</code>, the primary expression 3027 </p> 3028 3029 <pre> 3030 a[low : high] 3031 </pre> 3032 3033 <p> 3034 constructs a substring or slice. The <i>indices</i> <code>low</code> and 3035 <code>high</code> select which elements of operand <code>a</code> appear 3036 in the result. The result has indices starting at 0 and length equal to 3037 <code>high</code> - <code>low</code>. 3038 After slicing the array <code>a</code> 3039 </p> 3040 3041 <pre> 3042 a := [5]int{1, 2, 3, 4, 5} 3043 s := a[1:4] 3044 </pre> 3045 3046 <p> 3047 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements 3048 </p> 3049 3050 <pre> 3051 s[0] == 2 3052 s[1] == 3 3053 s[2] == 4 3054 </pre> 3055 3056 <p> 3057 For convenience, any of the indices may be omitted. A missing <code>low</code> 3058 index defaults to zero; a missing <code>high</code> index defaults to the length of the 3059 sliced operand: 3060 </p> 3061 3062 <pre> 3063 a[2:] // same as a[2 : len(a)] 3064 a[:3] // same as a[0 : 3] 3065 a[:] // same as a[0 : len(a)] 3066 </pre> 3067 3068 <p> 3069 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for 3070 <code>(*a)[low : high]</code>. 3071 </p> 3072 3073 <p> 3074 For arrays or strings, the indices are <i>in range</i> if 3075 <code>0</code> <= <code>low</code> <= <code>high</code> <= <code>len(a)</code>, 3076 otherwise they are <i>out of range</i>. 3077 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length. 3078 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type 3079 <code>int</code>; for arrays or constant strings, constant indices must also be in range. 3080 If both indices are constant, they must satisfy <code>low <= high</code>. 3081 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3082 </p> 3083 3084 <p> 3085 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice, 3086 the result of the slice operation is a non-constant value of the same type as the operand. 3087 For untyped string operands the result is a non-constant value of type <code>string</code>. 3088 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> 3089 and the result of the slice operation is a slice with the same element type as the array. 3090 </p> 3091 3092 <p> 3093 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result 3094 is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the 3095 operand. 3096 </p> 3097 3098 <h4>Full slice expressions</h4> 3099 3100 <p> 3101 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression 3102 </p> 3103 3104 <pre> 3105 a[low : high : max] 3106 </pre> 3107 3108 <p> 3109 constructs a slice of the same type, and with the same length and elements as the simple slice 3110 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity 3111 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0. 3112 After slicing the array <code>a</code> 3113 </p> 3114 3115 <pre> 3116 a := [5]int{1, 2, 3, 4, 5} 3117 t := a[1:3:5] 3118 </pre> 3119 3120 <p> 3121 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements 3122 </p> 3123 3124 <pre> 3125 t[0] == 2 3126 t[1] == 3 3127 </pre> 3128 3129 <p> 3130 As for simple slice expressions, if <code>a</code> is a pointer to an array, 3131 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>. 3132 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>. 3133 </p> 3134 3135 <p> 3136 The indices are <i>in range</i> if <code>0 <= low <= high <= max <= cap(a)</code>, 3137 otherwise they are <i>out of range</i>. 3138 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type 3139 <code>int</code>; for arrays, constant indices must also be in range. 3140 If multiple indices are constant, the constants that are present must be in range relative to each 3141 other. 3142 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3143 </p> 3144 3145 <h3 id="Type_assertions">Type assertions</h3> 3146 3147 <p> 3148 For an expression <code>x</code> of <a href="#Interface_types">interface type</a> 3149 and a type <code>T</code>, the primary expression 3150 </p> 3151 3152 <pre> 3153 x.(T) 3154 </pre> 3155 3156 <p> 3157 asserts that <code>x</code> is not <code>nil</code> 3158 and that the value stored in <code>x</code> is of type <code>T</code>. 3159 The notation <code>x.(T)</code> is called a <i>type assertion</i>. 3160 </p> 3161 <p> 3162 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts 3163 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> 3164 to the type <code>T</code>. 3165 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>; 3166 otherwise the type assertion is invalid since it is not possible for <code>x</code> 3167 to store a value of type <code>T</code>. 3168 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type 3169 of <code>x</code> implements the interface <code>T</code>. 3170 </p> 3171 <p> 3172 If the type assertion holds, the value of the expression is the value 3173 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, 3174 a <a href="#Run_time_panics">run-time panic</a> occurs. 3175 In other words, even though the dynamic type of <code>x</code> 3176 is known only at run time, the type of <code>x.(T)</code> is 3177 known to be <code>T</code> in a correct program. 3178 </p> 3179 3180 <pre> 3181 var x interface{} = 7 // x has dynamic type int and value 7 3182 i := x.(int) // i has type int and value 7 3183 3184 type I interface { m() } 3185 3186 func f(y I) { 3187 s := y.(string) // illegal: string does not implement I (missing method m) 3188 r := y.(io.Reader) // r has type io.Reader and the dynamic type of y must implement both I and io.Reader 3189 … 3190 } 3191 </pre> 3192 3193 <p> 3194 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form 3195 </p> 3196 3197 <pre> 3198 v, ok = x.(T) 3199 v, ok := x.(T) 3200 var v, ok = x.(T) 3201 var v, ok T1 = x.(T) 3202 </pre> 3203 3204 <p> 3205 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code> 3206 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is 3207 the <a href="#The_zero_value">zero value</a> for type <code>T</code>. 3208 No run-time panic occurs in this case. 3209 </p> 3210 3211 3212 <h3 id="Calls">Calls</h3> 3213 3214 <p> 3215 Given an expression <code>f</code> of function type 3216 <code>F</code>, 3217 </p> 3218 3219 <pre> 3220 f(a1, a2, … an) 3221 </pre> 3222 3223 <p> 3224 calls <code>f</code> with arguments <code>a1, a2, … an</code>. 3225 Except for one special case, arguments must be single-valued expressions 3226 <a href="#Assignability">assignable</a> to the parameter types of 3227 <code>F</code> and are evaluated before the function is called. 3228 The type of the expression is the result type 3229 of <code>F</code>. 3230 A method invocation is similar but the method itself 3231 is specified as a selector upon a value of the receiver type for 3232 the method. 3233 </p> 3234 3235 <pre> 3236 math.Atan2(x, y) // function call 3237 var pt *Point 3238 pt.Scale(3.5) // method call with receiver pt 3239 </pre> 3240 3241 <p> 3242 In a function call, the function value and arguments are evaluated in 3243 <a href="#Order_of_evaluation">the usual order</a>. 3244 After they are evaluated, the parameters of the call are passed by value to the function 3245 and the called function begins execution. 3246 The return parameters of the function are passed by value 3247 back to the calling function when the function returns. 3248 </p> 3249 3250 <p> 3251 Calling a <code>nil</code> function value 3252 causes a <a href="#Run_time_panics">run-time panic</a>. 3253 </p> 3254 3255 <p> 3256 As a special case, if the return values of a function or method 3257 <code>g</code> are equal in number and individually 3258 assignable to the parameters of another function or method 3259 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> 3260 will invoke <code>f</code> after binding the return values of 3261 <code>g</code> to the parameters of <code>f</code> in order. The call 3262 of <code>f</code> must contain no parameters other than the call of <code>g</code>, 3263 and <code>g</code> must have at least one return value. 3264 If <code>f</code> has a final <code>...</code> parameter, it is 3265 assigned the return values of <code>g</code> that remain after 3266 assignment of regular parameters. 3267 </p> 3268 3269 <pre> 3270 func Split(s string, pos int) (string, string) { 3271 return s[0:pos], s[pos:] 3272 } 3273 3274 func Join(s, t string) string { 3275 return s + t 3276 } 3277 3278 if Join(Split(value, len(value)/2)) != value { 3279 log.Panic("test fails") 3280 } 3281 </pre> 3282 3283 <p> 3284 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> 3285 of (the type of) <code>x</code> contains <code>m</code> and the 3286 argument list can be assigned to the parameter list of <code>m</code>. 3287 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method 3288 set contains <code>m</code>, <code>x.m()</code> is shorthand 3289 for <code>(&x).m()</code>: 3290 </p> 3291 3292 <pre> 3293 var p Point 3294 p.Scale(3.5) 3295 </pre> 3296 3297 <p> 3298 There is no distinct method type and there are no method literals. 3299 </p> 3300 3301 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> 3302 3303 <p> 3304 If <code>f</code> is <a href="#Function_types">variadic</a> with a final 3305 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code> 3306 the type of <code>p</code> is equivalent to type <code>[]T</code>. 3307 If <code>f</code> is invoked with no actual arguments for <code>p</code>, 3308 the value passed to <code>p</code> is <code>nil</code>. 3309 Otherwise, the value passed is a new slice 3310 of type <code>[]T</code> with a new underlying array whose successive elements 3311 are the actual arguments, which all must be <a href="#Assignability">assignable</a> 3312 to <code>T</code>. The length and capacity of the slice is therefore 3313 the number of arguments bound to <code>p</code> and may differ for each 3314 call site. 3315 </p> 3316 3317 <p> 3318 Given the function and calls 3319 </p> 3320 <pre> 3321 func Greeting(prefix string, who ...string) 3322 Greeting("nobody") 3323 Greeting("hello:", "Joe", "Anna", "Eileen") 3324 </pre> 3325 3326 <p> 3327 within <code>Greeting</code>, <code>who</code> will have the value 3328 <code>nil</code> in the first call, and 3329 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second. 3330 </p> 3331 3332 <p> 3333 If the final argument is assignable to a slice type <code>[]T</code>, it may be 3334 passed unchanged as the value for a <code>...T</code> parameter if the argument 3335 is followed by <code>...</code>. In this case no new slice is created. 3336 </p> 3337 3338 <p> 3339 Given the slice <code>s</code> and call 3340 </p> 3341 3342 <pre> 3343 s := []string{"James", "Jasmine"} 3344 Greeting("goodbye:", s...) 3345 </pre> 3346 3347 <p> 3348 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> 3349 with the same underlying array. 3350 </p> 3351 3352 3353 <h3 id="Operators">Operators</h3> 3354 3355 <p> 3356 Operators combine operands into expressions. 3357 </p> 3358 3359 <pre class="ebnf"> 3360 Expression = UnaryExpr | Expression binary_op Expression . 3361 UnaryExpr = PrimaryExpr | unary_op UnaryExpr . 3362 3363 binary_op = "||" | "&&" | rel_op | add_op | mul_op . 3364 rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . 3365 add_op = "+" | "-" | "|" | "^" . 3366 mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . 3367 3368 unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . 3369 </pre> 3370 3371 <p> 3372 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. 3373 For other binary operators, the operand types must be <a href="#Type_identity">identical</a> 3374 unless the operation involves shifts or untyped <a href="#Constants">constants</a>. 3375 For operations involving constants only, see the section on 3376 <a href="#Constant_expressions">constant expressions</a>. 3377 </p> 3378 3379 <p> 3380 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> 3381 and the other operand is not, the constant is <a href="#Conversions">converted</a> 3382 to the type of the other operand. 3383 </p> 3384 3385 <p> 3386 The right operand in a shift expression must have unsigned integer type 3387 or be an untyped constant representable by a value of type <code>uint</code>. 3388 If the left operand of a non-constant shift expression is an untyped constant, 3389 it is first converted to the type it would assume if the shift expression were 3390 replaced by its left operand alone. 3391 </p> 3392 3393 <pre> 3394 var s uint = 33 3395 var i = 1<<s // 1 has type int 3396 var j int32 = 1<<s // 1 has type int32; j == 0 3397 var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 3398 var m int = 1.0<<s // 1.0 has type int; m == 0 if ints are 32bits in size 3399 var n = 1.0<<s == j // 1.0 has type int32; n == true 3400 var o = 1<<s == 2<<s // 1 and 2 have type int; o == true if ints are 32bits in size 3401 var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int 3402 var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift 3403 var u1 = 1.0<<s != 0 // illegal: 1.0 has type float64, cannot shift 3404 var u2 = 1<<s != 1.0 // illegal: 1 has type float64, cannot shift 3405 var v float32 = 1<<s // illegal: 1 has type float32, cannot shift 3406 var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression 3407 </pre> 3408 3409 3410 <h4 id="Operator_precedence">Operator precedence</h4> 3411 <p> 3412 Unary operators have the highest precedence. 3413 As the <code>++</code> and <code>--</code> operators form 3414 statements, not expressions, they fall 3415 outside the operator hierarchy. 3416 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. 3417 <p> 3418 There are five precedence levels for binary operators. 3419 Multiplication operators bind strongest, followed by addition 3420 operators, comparison operators, <code>&&</code> (logical AND), 3421 and finally <code>||</code> (logical OR): 3422 </p> 3423 3424 <pre class="grammar"> 3425 Precedence Operator 3426 5 * / % << >> & &^ 3427 4 + - | ^ 3428 3 == != < <= > >= 3429 2 && 3430 1 || 3431 </pre> 3432 3433 <p> 3434 Binary operators of the same precedence associate from left to right. 3435 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. 3436 </p> 3437 3438 <pre> 3439 +x 3440 23 + 3*x[i] 3441 x <= f() 3442 ^a >> b 3443 f() || g() 3444 x == y+1 && <-chanPtr > 0 3445 </pre> 3446 3447 3448 <h3 id="Arithmetic_operators">Arithmetic operators</h3> 3449 <p> 3450 Arithmetic operators apply to numeric values and yield a result of the same 3451 type as the first operand. The four standard arithmetic operators (<code>+</code>, 3452 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer, 3453 floating-point, and complex types; <code>+</code> also applies to strings. 3454 The bitwise logical and shift operators apply to integers only. 3455 </p> 3456 3457 <pre class="grammar"> 3458 + sum integers, floats, complex values, strings 3459 - difference integers, floats, complex values 3460 * product integers, floats, complex values 3461 / quotient integers, floats, complex values 3462 % remainder integers 3463 3464 & bitwise AND integers 3465 | bitwise OR integers 3466 ^ bitwise XOR integers 3467 &^ bit clear (AND NOT) integers 3468 3469 << left shift integer << unsigned integer 3470 >> right shift integer >> unsigned integer 3471 </pre> 3472 3473 3474 <h4 id="Integer_operators">Integer operators</h4> 3475 3476 <p> 3477 For two integer values <code>x</code> and <code>y</code>, the integer quotient 3478 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following 3479 relationships: 3480 </p> 3481 3482 <pre> 3483 x = q*y + r and |r| < |y| 3484 </pre> 3485 3486 <p> 3487 with <code>x / y</code> truncated towards zero 3488 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). 3489 </p> 3490 3491 <pre> 3492 x y x / y x % y 3493 5 3 1 2 3494 -5 3 -1 -2 3495 5 -3 -1 2 3496 -5 -3 1 -2 3497 </pre> 3498 3499 <p> 3500 As an exception to this rule, if the dividend <code>x</code> is the most 3501 negative value for the int type of <code>x</code>, the quotient 3502 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>). 3503 </p> 3504 3505 <pre> 3506 x, q 3507 int8 -128 3508 int16 -32768 3509 int32 -2147483648 3510 int64 -9223372036854775808 3511 </pre> 3512 3513 <p> 3514 If the divisor is a <a href="#Constants">constant</a>, it must not be zero. 3515 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3516 If the dividend is non-negative and the divisor is a constant power of 2, 3517 the division may be replaced by a right shift, and computing the remainder may 3518 be replaced by a bitwise AND operation: 3519 </p> 3520 3521 <pre> 3522 x x / 4 x % 4 x >> 2 x & 3 3523 11 2 3 2 3 3524 -11 -2 -3 -3 1 3525 </pre> 3526 3527 <p> 3528 The shift operators shift the left operand by the shift count specified by the 3529 right operand. They implement arithmetic shifts if the left operand is a signed 3530 integer and logical shifts if it is an unsigned integer. 3531 There is no upper limit on the shift count. Shifts behave 3532 as if the left operand is shifted <code>n</code> times by 1 for a shift 3533 count of <code>n</code>. 3534 As a result, <code>x << 1</code> is the same as <code>x*2</code> 3535 and <code>x >> 1</code> is the same as 3536 <code>x/2</code> but truncated towards negative infinity. 3537 </p> 3538 3539 <p> 3540 For integer operands, the unary operators 3541 <code>+</code>, <code>-</code>, and <code>^</code> are defined as 3542 follows: 3543 </p> 3544 3545 <pre class="grammar"> 3546 +x is 0 + x 3547 -x negation is 0 - x 3548 ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x 3549 and m = -1 for signed x 3550 </pre> 3551 3552 3553 <h4 id="Integer_overflow">Integer overflow</h4> 3554 3555 <p> 3556 For unsigned integer values, the operations <code>+</code>, 3557 <code>-</code>, <code>*</code>, and <code><<</code> are 3558 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of 3559 the <a href="#Numeric_types">unsigned integer</a>'s type. 3560 Loosely speaking, these unsigned integer operations 3561 discard high bits upon overflow, and programs may rely on ``wrap around''. 3562 </p> 3563 <p> 3564 For signed integers, the operations <code>+</code>, 3565 <code>-</code>, <code>*</code>, and <code><<</code> may legally 3566 overflow and the resulting value exists and is deterministically defined 3567 by the signed integer representation, the operation, and its operands. 3568 No exception is raised as a result of overflow. A 3569 compiler may not optimize code under the assumption that overflow does 3570 not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. 3571 </p> 3572 3573 3574 <h4 id="Floating_point_operators">Floating-point operators</h4> 3575 3576 <p> 3577 For floating-point and complex numbers, 3578 <code>+x</code> is the same as <code>x</code>, 3579 while <code>-x</code> is the negation of <code>x</code>. 3580 The result of a floating-point or complex division by zero is not specified beyond the 3581 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> 3582 occurs is implementation-specific. 3583 </p> 3584 3585 <p> 3586 An implementation may combine multiple floating-point operations into a single 3587 fused operation, possibly across statements, and produce a result that differs 3588 from the value obtained by executing and rounding the instructions individually. 3589 A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to 3590 the precision of the target type, preventing fusion that would discard that rounding. 3591 </p> 3592 3593 <p> 3594 For instance, some architectures provide a "fused multiply and add" (FMA) instruction 3595 that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>. 3596 These examples show when a Go implementation can use that instruction: 3597 </p> 3598 3599 <pre> 3600 // FMA allowed for computing r, because x*y is not explicitly rounded: 3601 r = x*y + z 3602 r = z; r += x*y 3603 t = x*y; r = t + z 3604 *p = x*y; r = *p + z 3605 r = x*y + float64(z) 3606 3607 // FMA disallowed for computing r, because it would omit rounding of x*y: 3608 r = float64(x*y) + z 3609 r = z; r += float64(x*y) 3610 t = float64(x*y); r = t + z 3611 </pre> 3612 3613 <h4 id="String_concatenation">String concatenation</h4> 3614 3615 <p> 3616 Strings can be concatenated using the <code>+</code> operator 3617 or the <code>+=</code> assignment operator: 3618 </p> 3619 3620 <pre> 3621 s := "hi" + string(c) 3622 s += " and good bye" 3623 </pre> 3624 3625 <p> 3626 String addition creates a new string by concatenating the operands. 3627 </p> 3628 3629 3630 <h3 id="Comparison_operators">Comparison operators</h3> 3631 3632 <p> 3633 Comparison operators compare two operands and yield an untyped boolean value. 3634 </p> 3635 3636 <pre class="grammar"> 3637 == equal 3638 != not equal 3639 < less 3640 <= less or equal 3641 > greater 3642 >= greater or equal 3643 </pre> 3644 3645 <p> 3646 In any comparison, the first operand 3647 must be <a href="#Assignability">assignable</a> 3648 to the type of the second operand, or vice versa. 3649 </p> 3650 <p> 3651 The equality operators <code>==</code> and <code>!=</code> apply 3652 to operands that are <i>comparable</i>. 3653 The ordering operators <code><</code>, <code><=</code>, <code>></code>, and <code>>=</code> 3654 apply to operands that are <i>ordered</i>. 3655 These terms and the result of the comparisons are defined as follows: 3656 </p> 3657 3658 <ul> 3659 <li> 3660 Boolean values are comparable. 3661 Two boolean values are equal if they are either both 3662 <code>true</code> or both <code>false</code>. 3663 </li> 3664 3665 <li> 3666 Integer values are comparable and ordered, in the usual way. 3667 </li> 3668 3669 <li> 3670 Floating-point values are comparable and ordered, 3671 as defined by the IEEE-754 standard. 3672 </li> 3673 3674 <li> 3675 Complex values are comparable. 3676 Two complex values <code>u</code> and <code>v</code> are 3677 equal if both <code>real(u) == real(v)</code> and 3678 <code>imag(u) == imag(v)</code>. 3679 </li> 3680 3681 <li> 3682 String values are comparable and ordered, lexically byte-wise. 3683 </li> 3684 3685 <li> 3686 Pointer values are comparable. 3687 Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>. 3688 Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal. 3689 </li> 3690 3691 <li> 3692 Channel values are comparable. 3693 Two channel values are equal if they were created by the same call to 3694 <a href="#Making_slices_maps_and_channels"><code>make</code></a> 3695 or if both have value <code>nil</code>. 3696 </li> 3697 3698 <li> 3699 Interface values are comparable. 3700 Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types 3701 and equal dynamic values or if both have value <code>nil</code>. 3702 </li> 3703 3704 <li> 3705 A value <code>x</code> of non-interface type <code>X</code> and 3706 a value <code>t</code> of interface type <code>T</code> are comparable when values 3707 of type <code>X</code> are comparable and 3708 <code>X</code> implements <code>T</code>. 3709 They are equal if <code>t</code>'s dynamic type is identical to <code>X</code> 3710 and <code>t</code>'s dynamic value is equal to <code>x</code>. 3711 </li> 3712 3713 <li> 3714 Struct values are comparable if all their fields are comparable. 3715 Two struct values are equal if their corresponding 3716 non-<a href="#Blank_identifier">blank</a> fields are equal. 3717 </li> 3718 3719 <li> 3720 Array values are comparable if values of the array element type are comparable. 3721 Two array values are equal if their corresponding elements are equal. 3722 </li> 3723 </ul> 3724 3725 <p> 3726 A comparison of two interface values with identical dynamic types 3727 causes a <a href="#Run_time_panics">run-time panic</a> if values 3728 of that type are not comparable. This behavior applies not only to direct interface 3729 value comparisons but also when comparing arrays of interface values 3730 or structs with interface-valued fields. 3731 </p> 3732 3733 <p> 3734 Slice, map, and function values are not comparable. 3735 However, as a special case, a slice, map, or function value may 3736 be compared to the predeclared identifier <code>nil</code>. 3737 Comparison of pointer, channel, and interface values to <code>nil</code> 3738 is also allowed and follows from the general rules above. 3739 </p> 3740 3741 <pre> 3742 const c = 3 < 4 // c is the untyped boolean constant true 3743 3744 type MyBool bool 3745 var x, y int 3746 var ( 3747 // The result of a comparison is an untyped boolean. 3748 // The usual assignment rules apply. 3749 b3 = x == y // b3 has type bool 3750 b4 bool = x == y // b4 has type bool 3751 b5 MyBool = x == y // b5 has type MyBool 3752 ) 3753 </pre> 3754 3755 <h3 id="Logical_operators">Logical operators</h3> 3756 3757 <p> 3758 Logical operators apply to <a href="#Boolean_types">boolean</a> values 3759 and yield a result of the same type as the operands. 3760 The right operand is evaluated conditionally. 3761 </p> 3762 3763 <pre class="grammar"> 3764 && conditional AND p && q is "if p then q else false" 3765 || conditional OR p || q is "if p then true else q" 3766 ! NOT !p is "not p" 3767 </pre> 3768 3769 3770 <h3 id="Address_operators">Address operators</h3> 3771 3772 <p> 3773 For an operand <code>x</code> of type <code>T</code>, the address operation 3774 <code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. 3775 The operand must be <i>addressable</i>, 3776 that is, either a variable, pointer indirection, or slice indexing 3777 operation; or a field selector of an addressable struct operand; 3778 or an array indexing operation of an addressable array. 3779 As an exception to the addressability requirement, <code>x</code> may also be a 3780 (possibly parenthesized) 3781 <a href="#Composite_literals">composite literal</a>. 3782 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>, 3783 then the evaluation of <code>&x</code> does too. 3784 </p> 3785 3786 <p> 3787 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer 3788 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed 3789 to by <code>x</code>. 3790 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code> 3791 will cause a <a href="#Run_time_panics">run-time panic</a>. 3792 </p> 3793 3794 <pre> 3795 &x 3796 &a[f(2)] 3797 &Point{2, 3} 3798 *p 3799 *pf(x) 3800 3801 var x *int = nil 3802 *x // causes a run-time panic 3803 &*x // causes a run-time panic 3804 </pre> 3805 3806 3807 <h3 id="Receive_operator">Receive operator</h3> 3808 3809 <p> 3810 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, 3811 the value of the receive operation <code><-ch</code> is the value received 3812 from the channel <code>ch</code>. The channel direction must permit receive operations, 3813 and the type of the receive operation is the element type of the channel. 3814 The expression blocks until a value is available. 3815 Receiving from a <code>nil</code> channel blocks forever. 3816 A receive operation on a <a href="#Close">closed</a> channel can always proceed 3817 immediately, yielding the element type's <a href="#The_zero_value">zero value</a> 3818 after any previously sent values have been received. 3819 </p> 3820 3821 <pre> 3822 v1 := <-ch 3823 v2 = <-ch 3824 f(<-ch) 3825 <-strobe // wait until clock pulse and discard received value 3826 </pre> 3827 3828 <p> 3829 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form 3830 </p> 3831 3832 <pre> 3833 x, ok = <-ch 3834 x, ok := <-ch 3835 var x, ok = <-ch 3836 var x, ok T = <-ch 3837 </pre> 3838 3839 <p> 3840 yields an additional untyped boolean result reporting whether the 3841 communication succeeded. The value of <code>ok</code> is <code>true</code> 3842 if the value received was delivered by a successful send operation to the 3843 channel, or <code>false</code> if it is a zero value generated because the 3844 channel is closed and empty. 3845 </p> 3846 3847 3848 <h3 id="Conversions">Conversions</h3> 3849 3850 <p> 3851 Conversions are expressions of the form <code>T(x)</code> 3852 where <code>T</code> is a type and <code>x</code> is an expression 3853 that can be converted to type <code>T</code>. 3854 </p> 3855 3856 <pre class="ebnf"> 3857 Conversion = Type "(" Expression [ "," ] ")" . 3858 </pre> 3859 3860 <p> 3861 If the type starts with the operator <code>*</code> or <code><-</code>, 3862 or if the type starts with the keyword <code>func</code> 3863 and has no result list, it must be parenthesized when 3864 necessary to avoid ambiguity: 3865 </p> 3866 3867 <pre> 3868 *Point(p) // same as *(Point(p)) 3869 (*Point)(p) // p is converted to *Point 3870 <-chan int(c) // same as <-(chan int(c)) 3871 (<-chan int)(c) // c is converted to <-chan int 3872 func()(x) // function signature func() x 3873 (func())(x) // x is converted to func() 3874 (func() int)(x) // x is converted to func() int 3875 func() int(x) // x is converted to func() int (unambiguous) 3876 </pre> 3877 3878 <p> 3879 A <a href="#Constants">constant</a> value <code>x</code> can be converted to 3880 type <code>T</code> in any of these cases: 3881 </p> 3882 3883 <ul> 3884 <li> 3885 <code>x</code> is representable by a value of type <code>T</code>. 3886 </li> 3887 <li> 3888 <code>x</code> is a floating-point constant, 3889 <code>T</code> is a floating-point type, 3890 and <code>x</code> is representable by a value 3891 of type <code>T</code> after rounding using 3892 IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code> 3893 further rounded to an unsigned <code>0.0</code>. 3894 The constant <code>T(x)</code> is the rounded value. 3895 </li> 3896 <li> 3897 <code>x</code> is an integer constant and <code>T</code> is a 3898 <a href="#String_types">string type</a>. 3899 The <a href="#Conversions_to_and_from_a_string_type">same rule</a> 3900 as for non-constant <code>x</code> applies in this case. 3901 </li> 3902 </ul> 3903 3904 <p> 3905 Converting a constant yields a typed constant as result. 3906 </p> 3907 3908 <pre> 3909 uint(iota) // iota value of type uint 3910 float32(2.718281828) // 2.718281828 of type float32 3911 complex128(1) // 1.0 + 0.0i of type complex128 3912 float32(0.49999999) // 0.5 of type float32 3913 float64(-1e-1000) // 0.0 of type float64 3914 string('x') // "x" of type string 3915 string(0x266c) // "♬" of type string 3916 MyString("foo" + "bar") // "foobar" of type MyString 3917 string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant 3918 (*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type 3919 int(1.2) // illegal: 1.2 cannot be represented as an int 3920 string(65.0) // illegal: 65.0 is not an integer constant 3921 </pre> 3922 3923 <p> 3924 A non-constant value <code>x</code> can be converted to type <code>T</code> 3925 in any of these cases: 3926 </p> 3927 3928 <ul> 3929 <li> 3930 <code>x</code> is <a href="#Assignability">assignable</a> 3931 to <code>T</code>. 3932 </li> 3933 <li> 3934 ignoring struct tags (see below), 3935 <code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a> 3936 <a href="#Types">underlying types</a>. 3937 </li> 3938 <li> 3939 ignoring struct tags (see below), 3940 <code>x</code>'s type and <code>T</code> are pointer types 3941 that are not <a href="#Type_definitions">defined types</a>, 3942 and their pointer base types have identical underlying types. 3943 </li> 3944 <li> 3945 <code>x</code>'s type and <code>T</code> are both integer or floating 3946 point types. 3947 </li> 3948 <li> 3949 <code>x</code>'s type and <code>T</code> are both complex types. 3950 </li> 3951 <li> 3952 <code>x</code> is an integer or a slice of bytes or runes 3953 and <code>T</code> is a string type. 3954 </li> 3955 <li> 3956 <code>x</code> is a string and <code>T</code> is a slice of bytes or runes. 3957 </li> 3958 </ul> 3959 3960 <p> 3961 <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types 3962 for identity for the purpose of conversion: 3963 </p> 3964 3965 <pre> 3966 type Person struct { 3967 Name string 3968 Address *struct { 3969 Street string 3970 City string 3971 } 3972 } 3973 3974 var data *struct { 3975 Name string `json:"name"` 3976 Address *struct { 3977 Street string `json:"street"` 3978 City string `json:"city"` 3979 } `json:"address"` 3980 } 3981 3982 var person = (*Person)(data) // ignoring tags, the underlying types are identical 3983 </pre> 3984 3985 <p> 3986 Specific rules apply to (non-constant) conversions between numeric types or 3987 to and from a string type. 3988 These conversions may change the representation of <code>x</code> 3989 and incur a run-time cost. 3990 All other conversions only change the type but not the representation 3991 of <code>x</code>. 3992 </p> 3993 3994 <p> 3995 There is no linguistic mechanism to convert between pointers and integers. 3996 The package <a href="#Package_unsafe"><code>unsafe</code></a> 3997 implements this functionality under 3998 restricted circumstances. 3999 </p> 4000 4001 <h4>Conversions between numeric types</h4> 4002 4003 <p> 4004 For the conversion of non-constant numeric values, the following rules apply: 4005 </p> 4006 4007 <ol> 4008 <li> 4009 When converting between integer types, if the value is a signed integer, it is 4010 sign extended to implicit infinite precision; otherwise it is zero extended. 4011 It is then truncated to fit in the result type's size. 4012 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. 4013 The conversion always yields a valid value; there is no indication of overflow. 4014 </li> 4015 <li> 4016 When converting a floating-point number to an integer, the fraction is discarded 4017 (truncation towards zero). 4018 </li> 4019 <li> 4020 When converting an integer or floating-point number to a floating-point type, 4021 or a complex number to another complex type, the result value is rounded 4022 to the precision specified by the destination type. 4023 For instance, the value of a variable <code>x</code> of type <code>float32</code> 4024 may be stored using additional precision beyond that of an IEEE-754 32-bit number, 4025 but float32(x) represents the result of rounding <code>x</code>'s value to 4026 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits 4027 of precision, but <code>float32(x + 0.1)</code> does not. 4028 </li> 4029 </ol> 4030 4031 <p> 4032 In all non-constant conversions involving floating-point or complex values, 4033 if the result type cannot represent the value the conversion 4034 succeeds but the result value is implementation-dependent. 4035 </p> 4036 4037 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> 4038 4039 <ol> 4040 <li> 4041 Converting a signed or unsigned integer value to a string type yields a 4042 string containing the UTF-8 representation of the integer. Values outside 4043 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. 4044 4045 <pre> 4046 string('a') // "a" 4047 string(-1) // "\ufffd" == "\xef\xbf\xbd" 4048 string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" 4049 type MyString string 4050 MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" 4051 </pre> 4052 </li> 4053 4054 <li> 4055 Converting a slice of bytes to a string type yields 4056 a string whose successive bytes are the elements of the slice. 4057 4058 <pre> 4059 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4060 string([]byte{}) // "" 4061 string([]byte(nil)) // "" 4062 4063 type MyBytes []byte 4064 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4065 </pre> 4066 </li> 4067 4068 <li> 4069 Converting a slice of runes to a string type yields 4070 a string that is the concatenation of the individual rune values 4071 converted to strings. 4072 4073 <pre> 4074 string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4075 string([]rune{}) // "" 4076 string([]rune(nil)) // "" 4077 4078 type MyRunes []rune 4079 string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4080 </pre> 4081 </li> 4082 4083 <li> 4084 Converting a value of a string type to a slice of bytes type 4085 yields a slice whose successive elements are the bytes of the string. 4086 4087 <pre> 4088 []byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4089 []byte("") // []byte{} 4090 4091 MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4092 </pre> 4093 </li> 4094 4095 <li> 4096 Converting a value of a string type to a slice of runes type 4097 yields a slice containing the individual Unicode code points of the string. 4098 4099 <pre> 4100 []rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4} 4101 []rune("") // []rune{} 4102 4103 MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4} 4104 </pre> 4105 </li> 4106 </ol> 4107 4108 4109 <h3 id="Constant_expressions">Constant expressions</h3> 4110 4111 <p> 4112 Constant expressions may contain only <a href="#Constants">constant</a> 4113 operands and are evaluated at compile time. 4114 </p> 4115 4116 <p> 4117 Untyped boolean, numeric, and string constants may be used as operands 4118 wherever it is legal to use an operand of boolean, numeric, or string type, 4119 respectively. 4120 Except for shift operations, if the operands of a binary operation are 4121 different kinds of untyped constants, the operation and, for non-boolean operations, the result use 4122 the kind that appears later in this list: integer, rune, floating-point, complex. 4123 For example, an untyped integer constant divided by an 4124 untyped complex constant yields an untyped complex constant. 4125 </p> 4126 4127 <p> 4128 A constant <a href="#Comparison_operators">comparison</a> always yields 4129 an untyped boolean constant. If the left operand of a constant 4130 <a href="#Operators">shift expression</a> is an untyped constant, the 4131 result is an integer constant; otherwise it is a constant of the same 4132 type as the left operand, which must be of 4133 <a href="#Numeric_types">integer type</a>. 4134 Applying all other operators to untyped constants results in an untyped 4135 constant of the same kind (that is, a boolean, integer, floating-point, 4136 complex, or string constant). 4137 </p> 4138 4139 <pre> 4140 const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) 4141 const b = 15 / 4 // b == 3 (untyped integer constant) 4142 const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) 4143 const Θ float64 = 3/2 // Θ == 1.0 (type float64, 3/2 is integer division) 4144 const Π float64 = 3/2. // Π == 1.5 (type float64, 3/2. is float division) 4145 const d = 1 << 3.0 // d == 8 (untyped integer constant) 4146 const e = 1.0 << 3 // e == 8 (untyped integer constant) 4147 const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32) 4148 const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) 4149 const h = "foo" > "bar" // h == true (untyped boolean constant) 4150 const j = true // j == true (untyped boolean constant) 4151 const k = 'w' + 1 // k == 'x' (untyped rune constant) 4152 const l = "hi" // l == "hi" (untyped string constant) 4153 const m = string(k) // m == "x" (type string) 4154 const Σ = 1 - 0.707i // (untyped complex constant) 4155 const Δ = Σ + 2.0e-4 // (untyped complex constant) 4156 const Φ = iota*1i - 1/1i // (untyped complex constant) 4157 </pre> 4158 4159 <p> 4160 Applying the built-in function <code>complex</code> to untyped 4161 integer, rune, or floating-point constants yields 4162 an untyped complex constant. 4163 </p> 4164 4165 <pre> 4166 const ic = complex(0, c) // ic == 3.75i (untyped complex constant) 4167 const iΘ = complex(0, Θ) // iΘ == 1i (type complex128) 4168 </pre> 4169 4170 <p> 4171 Constant expressions are always evaluated exactly; intermediate values and the 4172 constants themselves may require precision significantly larger than supported 4173 by any predeclared type in the language. The following are legal declarations: 4174 </p> 4175 4176 <pre> 4177 const Huge = 1 << 100 // Huge == 1267650600228229401496703205376 (untyped integer constant) 4178 const Four int8 = Huge >> 98 // Four == 4 (type int8) 4179 </pre> 4180 4181 <p> 4182 The divisor of a constant division or remainder operation must not be zero: 4183 </p> 4184 4185 <pre> 4186 3.14 / 0.0 // illegal: division by zero 4187 </pre> 4188 4189 <p> 4190 The values of <i>typed</i> constants must always be accurately representable as values 4191 of the constant type. The following constant expressions are illegal: 4192 </p> 4193 4194 <pre> 4195 uint(-1) // -1 cannot be represented as a uint 4196 int(3.14) // 3.14 cannot be represented as an int 4197 int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64 4198 Four * 300 // operand 300 cannot be represented as an int8 (type of Four) 4199 Four * 100 // product 400 cannot be represented as an int8 (type of Four) 4200 </pre> 4201 4202 <p> 4203 The mask used by the unary bitwise complement operator <code>^</code> matches 4204 the rule for non-constants: the mask is all 1s for unsigned constants 4205 and -1 for signed and untyped constants. 4206 </p> 4207 4208 <pre> 4209 ^1 // untyped integer constant, equal to -2 4210 uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8 4211 ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) 4212 int8(^1) // same as int8(-2) 4213 ^int8(1) // same as -1 ^ int8(1) = -2 4214 </pre> 4215 4216 <p> 4217 Implementation restriction: A compiler may use rounding while 4218 computing untyped floating-point or complex constant expressions; see 4219 the implementation restriction in the section 4220 on <a href="#Constants">constants</a>. This rounding may cause a 4221 floating-point constant expression to be invalid in an integer 4222 context, even if it would be integral when calculated using infinite 4223 precision, and vice versa. 4224 </p> 4225 4226 4227 <h3 id="Order_of_evaluation">Order of evaluation</h3> 4228 4229 <p> 4230 At package level, <a href="#Package_initialization">initialization dependencies</a> 4231 determine the evaluation order of individual initialization expressions in 4232 <a href="#Variable_declarations">variable declarations</a>. 4233 Otherwise, when evaluating the <a href="#Operands">operands</a> of an 4234 expression, assignment, or 4235 <a href="#Return_statements">return statement</a>, 4236 all function calls, method calls, and 4237 communication operations are evaluated in lexical left-to-right 4238 order. 4239 </p> 4240 4241 <p> 4242 For example, in the (function-local) assignment 4243 </p> 4244 <pre> 4245 y[f()], ok = g(h(), i()+x[j()], <-c), k() 4246 </pre> 4247 <p> 4248 the function calls and communication happen in the order 4249 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, 4250 <code><-c</code>, <code>g()</code>, and <code>k()</code>. 4251 However, the order of those events compared to the evaluation 4252 and indexing of <code>x</code> and the evaluation 4253 of <code>y</code> is not specified. 4254 </p> 4255 4256 <pre> 4257 a := 1 4258 f := func() int { a++; return a } 4259 x := []int{a, f()} // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified 4260 m := map[int]int{a: 1, a: 2} // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified 4261 n := map[int]int{a: f()} // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified 4262 </pre> 4263 4264 <p> 4265 At package level, initialization dependencies override the left-to-right rule 4266 for individual initialization expressions, but not for operands within each 4267 expression: 4268 </p> 4269 4270 <pre> 4271 var a, b, c = f() + v(), g(), sqr(u()) + v() 4272 4273 func f() int { return c } 4274 func g() int { return a } 4275 func sqr(x int) int { return x*x } 4276 4277 // functions u and v are independent of all other variables and functions 4278 </pre> 4279 4280 <p> 4281 The function calls happen in the order 4282 <code>u()</code>, <code>sqr()</code>, <code>v()</code>, 4283 <code>f()</code>, <code>v()</code>, and <code>g()</code>. 4284 </p> 4285 4286 <p> 4287 Floating-point operations within a single expression are evaluated according to 4288 the associativity of the operators. Explicit parentheses affect the evaluation 4289 by overriding the default associativity. 4290 In the expression <code>x + (y + z)</code> the addition <code>y + z</code> 4291 is performed before adding <code>x</code>. 4292 </p> 4293 4294 <h2 id="Statements">Statements</h2> 4295 4296 <p> 4297 Statements control execution. 4298 </p> 4299 4300 <pre class="ebnf"> 4301 Statement = 4302 Declaration | LabeledStmt | SimpleStmt | 4303 GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | 4304 FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | 4305 DeferStmt . 4306 4307 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . 4308 </pre> 4309 4310 <h3 id="Terminating_statements">Terminating statements</h3> 4311 4312 <p> 4313 A terminating statement is one of the following: 4314 </p> 4315 4316 <ol> 4317 <li> 4318 A <a href="#Return_statements">"return"</a> or 4319 <a href="#Goto_statements">"goto"</a> statement. 4320 <!-- ul below only for regular layout --> 4321 <ul> </ul> 4322 </li> 4323 4324 <li> 4325 A call to the built-in function 4326 <a href="#Handling_panics"><code>panic</code></a>. 4327 <!-- ul below only for regular layout --> 4328 <ul> </ul> 4329 </li> 4330 4331 <li> 4332 A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement. 4333 <!-- ul below only for regular layout --> 4334 <ul> </ul> 4335 </li> 4336 4337 <li> 4338 An <a href="#If_statements">"if" statement</a> in which: 4339 <ul> 4340 <li>the "else" branch is present, and</li> 4341 <li>both branches are terminating statements.</li> 4342 </ul> 4343 </li> 4344 4345 <li> 4346 A <a href="#For_statements">"for" statement</a> in which: 4347 <ul> 4348 <li>there are no "break" statements referring to the "for" statement, and</li> 4349 <li>the loop condition is absent.</li> 4350 </ul> 4351 </li> 4352 4353 <li> 4354 A <a href="#Switch_statements">"switch" statement</a> in which: 4355 <ul> 4356 <li>there are no "break" statements referring to the "switch" statement,</li> 4357 <li>there is a default case, and</li> 4358 <li>the statement lists in each case, including the default, end in a terminating 4359 statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough" 4360 statement</a>.</li> 4361 </ul> 4362 </li> 4363 4364 <li> 4365 A <a href="#Select_statements">"select" statement</a> in which: 4366 <ul> 4367 <li>there are no "break" statements referring to the "select" statement, and</li> 4368 <li>the statement lists in each case, including the default if present, 4369 end in a terminating statement.</li> 4370 </ul> 4371 </li> 4372 4373 <li> 4374 A <a href="#Labeled_statements">labeled statement</a> labeling 4375 a terminating statement. 4376 </li> 4377 </ol> 4378 4379 <p> 4380 All other statements are not terminating. 4381 </p> 4382 4383 <p> 4384 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list 4385 is not empty and its final non-empty statement is terminating. 4386 </p> 4387 4388 4389 <h3 id="Empty_statements">Empty statements</h3> 4390 4391 <p> 4392 The empty statement does nothing. 4393 </p> 4394 4395 <pre class="ebnf"> 4396 EmptyStmt = . 4397 </pre> 4398 4399 4400 <h3 id="Labeled_statements">Labeled statements</h3> 4401 4402 <p> 4403 A labeled statement may be the target of a <code>goto</code>, 4404 <code>break</code> or <code>continue</code> statement. 4405 </p> 4406 4407 <pre class="ebnf"> 4408 LabeledStmt = Label ":" Statement . 4409 Label = identifier . 4410 </pre> 4411 4412 <pre> 4413 Error: log.Panic("error encountered") 4414 </pre> 4415 4416 4417 <h3 id="Expression_statements">Expression statements</h3> 4418 4419 <p> 4420 With the exception of specific built-in functions, 4421 function and method <a href="#Calls">calls</a> and 4422 <a href="#Receive_operator">receive operations</a> 4423 can appear in statement context. Such statements may be parenthesized. 4424 </p> 4425 4426 <pre class="ebnf"> 4427 ExpressionStmt = Expression . 4428 </pre> 4429 4430 <p> 4431 The following built-in functions are not permitted in statement context: 4432 </p> 4433 4434 <pre> 4435 append cap complex imag len make new real 4436 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof 4437 </pre> 4438 4439 <pre> 4440 h(x+y) 4441 f.Close() 4442 <-ch 4443 (<-ch) 4444 len("foo") // illegal if len is the built-in function 4445 </pre> 4446 4447 4448 <h3 id="Send_statements">Send statements</h3> 4449 4450 <p> 4451 A send statement sends a value on a channel. 4452 The channel expression must be of <a href="#Channel_types">channel type</a>, 4453 the channel direction must permit send operations, 4454 and the type of the value to be sent must be <a href="#Assignability">assignable</a> 4455 to the channel's element type. 4456 </p> 4457 4458 <pre class="ebnf"> 4459 SendStmt = Channel "<-" Expression . 4460 Channel = Expression . 4461 </pre> 4462 4463 <p> 4464 Both the channel and the value expression are evaluated before communication 4465 begins. Communication blocks until the send can proceed. 4466 A send on an unbuffered channel can proceed if a receiver is ready. 4467 A send on a buffered channel can proceed if there is room in the buffer. 4468 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>. 4469 A send on a <code>nil</code> channel blocks forever. 4470 </p> 4471 4472 <pre> 4473 ch <- 3 // send value 3 to channel ch 4474 </pre> 4475 4476 4477 <h3 id="IncDec_statements">IncDec statements</h3> 4478 4479 <p> 4480 The "++" and "--" statements increment or decrement their operands 4481 by the untyped <a href="#Constants">constant</a> <code>1</code>. 4482 As with an assignment, the operand must be <a href="#Address_operators">addressable</a> 4483 or a map index expression. 4484 </p> 4485 4486 <pre class="ebnf"> 4487 IncDecStmt = Expression ( "++" | "--" ) . 4488 </pre> 4489 4490 <p> 4491 The following <a href="#Assignments">assignment statements</a> are semantically 4492 equivalent: 4493 </p> 4494 4495 <pre class="grammar"> 4496 IncDec statement Assignment 4497 x++ x += 1 4498 x-- x -= 1 4499 </pre> 4500 4501 4502 <h3 id="Assignments">Assignments</h3> 4503 4504 <pre class="ebnf"> 4505 Assignment = ExpressionList assign_op ExpressionList . 4506 4507 assign_op = [ add_op | mul_op ] "=" . 4508 </pre> 4509 4510 <p> 4511 Each left-hand side operand must be <a href="#Address_operators">addressable</a>, 4512 a map index expression, or (for <code>=</code> assignments only) the 4513 <a href="#Blank_identifier">blank identifier</a>. 4514 Operands may be parenthesized. 4515 </p> 4516 4517 <pre> 4518 x = 1 4519 *p = f() 4520 a[i] = 23 4521 (k) = <-ch // same as: k = <-ch 4522 </pre> 4523 4524 <p> 4525 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> 4526 <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a> 4527 is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i> 4528 <code>(y)</code> but evaluates <code>x</code> 4529 only once. The <i>op</i><code>=</code> construct is a single token. 4530 In assignment operations, both the left- and right-hand expression lists 4531 must contain exactly one single-valued expression, and the left-hand 4532 expression must not be the blank identifier. 4533 </p> 4534 4535 <pre> 4536 a[i] <<= 2 4537 i &^= 1<<n 4538 </pre> 4539 4540 <p> 4541 A tuple assignment assigns the individual elements of a multi-valued 4542 operation to a list of variables. There are two forms. In the 4543 first, the right hand operand is a single multi-valued expression 4544 such as a function call, a <a href="#Channel_types">channel</a> or 4545 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>. 4546 The number of operands on the left 4547 hand side must match the number of values. For instance, if 4548 <code>f</code> is a function returning two values, 4549 </p> 4550 4551 <pre> 4552 x, y = f() 4553 </pre> 4554 4555 <p> 4556 assigns the first value to <code>x</code> and the second to <code>y</code>. 4557 In the second form, the number of operands on the left must equal the number 4558 of expressions on the right, each of which must be single-valued, and the 4559 <i>n</i>th expression on the right is assigned to the <i>n</i>th 4560 operand on the left: 4561 </p> 4562 4563 <pre> 4564 one, two, three = '一', '二', '三' 4565 </pre> 4566 4567 <p> 4568 The <a href="#Blank_identifier">blank identifier</a> provides a way to 4569 ignore right-hand side values in an assignment: 4570 </p> 4571 4572 <pre> 4573 _ = x // evaluate x but ignore it 4574 x, _ = f() // evaluate f() but ignore second result value 4575 </pre> 4576 4577 <p> 4578 The assignment proceeds in two phases. 4579 First, the operands of <a href="#Index_expressions">index expressions</a> 4580 and <a href="#Address_operators">pointer indirections</a> 4581 (including implicit pointer indirections in <a href="#Selectors">selectors</a>) 4582 on the left and the expressions on the right are all 4583 <a href="#Order_of_evaluation">evaluated in the usual order</a>. 4584 Second, the assignments are carried out in left-to-right order. 4585 </p> 4586 4587 <pre> 4588 a, b = b, a // exchange a and b 4589 4590 x := []int{1, 2, 3} 4591 i := 0 4592 i, x[i] = 1, 2 // set i = 1, x[0] = 2 4593 4594 i = 0 4595 x[i], i = 2, 1 // set x[0] = 2, i = 1 4596 4597 x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) 4598 4599 x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. 4600 4601 type Point struct { x, y int } 4602 var p *Point 4603 x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 4604 4605 i = 2 4606 x = []int{3, 5, 7} 4607 for i, x[i] = range x { // set i, x[2] = 0, x[0] 4608 break 4609 } 4610 // after this loop, i == 0 and x == []int{3, 5, 3} 4611 </pre> 4612 4613 <p> 4614 In assignments, each value must be <a href="#Assignability">assignable</a> 4615 to the type of the operand to which it is assigned, with the following special cases: 4616 </p> 4617 4618 <ol> 4619 <li> 4620 Any typed value may be assigned to the blank identifier. 4621 </li> 4622 4623 <li> 4624 If an untyped constant 4625 is assigned to a variable of interface type or the blank identifier, 4626 the constant is first <a href="#Conversions">converted</a> to its 4627 <a href="#Constants">default type</a>. 4628 </li> 4629 4630 <li> 4631 If an untyped boolean value is assigned to a variable of interface type or 4632 the blank identifier, it is first converted to type <code>bool</code>. 4633 </li> 4634 </ol> 4635 4636 <h3 id="If_statements">If statements</h3> 4637 4638 <p> 4639 "If" statements specify the conditional execution of two branches 4640 according to the value of a boolean expression. If the expression 4641 evaluates to true, the "if" branch is executed, otherwise, if 4642 present, the "else" branch is executed. 4643 </p> 4644 4645 <pre class="ebnf"> 4646 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . 4647 </pre> 4648 4649 <pre> 4650 if x > max { 4651 x = max 4652 } 4653 </pre> 4654 4655 <p> 4656 The expression may be preceded by a simple statement, which 4657 executes before the expression is evaluated. 4658 </p> 4659 4660 <pre> 4661 if x := f(); x < y { 4662 return x 4663 } else if x > z { 4664 return z 4665 } else { 4666 return y 4667 } 4668 </pre> 4669 4670 4671 <h3 id="Switch_statements">Switch statements</h3> 4672 4673 <p> 4674 "Switch" statements provide multi-way execution. 4675 An expression or type specifier is compared to the "cases" 4676 inside the "switch" to determine which branch 4677 to execute. 4678 </p> 4679 4680 <pre class="ebnf"> 4681 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . 4682 </pre> 4683 4684 <p> 4685 There are two forms: expression switches and type switches. 4686 In an expression switch, the cases contain expressions that are compared 4687 against the value of the switch expression. 4688 In a type switch, the cases contain types that are compared against the 4689 type of a specially annotated switch expression. 4690 The switch expression is evaluated exactly once in a switch statement. 4691 </p> 4692 4693 <h4 id="Expression_switches">Expression switches</h4> 4694 4695 <p> 4696 In an expression switch, 4697 the switch expression is evaluated and 4698 the case expressions, which need not be constants, 4699 are evaluated left-to-right and top-to-bottom; the first one that equals the 4700 switch expression 4701 triggers execution of the statements of the associated case; 4702 the other cases are skipped. 4703 If no case matches and there is a "default" case, 4704 its statements are executed. 4705 There can be at most one default case and it may appear anywhere in the 4706 "switch" statement. 4707 A missing switch expression is equivalent to the boolean value 4708 <code>true</code>. 4709 </p> 4710 4711 <pre class="ebnf"> 4712 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . 4713 ExprCaseClause = ExprSwitchCase ":" StatementList . 4714 ExprSwitchCase = "case" ExpressionList | "default" . 4715 </pre> 4716 4717 <p> 4718 If the switch expression evaluates to an untyped constant, it is first 4719 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 4720 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 4721 The predeclared untyped value <code>nil</code> cannot be used as a switch expression. 4722 </p> 4723 4724 <p> 4725 If a case expression is untyped, it is first <a href="#Conversions">converted</a> 4726 to the type of the switch expression. 4727 For each (possibly converted) case expression <code>x</code> and the value <code>t</code> 4728 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>. 4729 </p> 4730 4731 <p> 4732 In other words, the switch expression is treated as if it were used to declare and 4733 initialize a temporary variable <code>t</code> without explicit type; it is that 4734 value of <code>t</code> against which each case expression <code>x</code> is tested 4735 for equality. 4736 </p> 4737 4738 <p> 4739 In a case or default clause, the last non-empty statement 4740 may be a (possibly <a href="#Labeled_statements">labeled</a>) 4741 <a href="#Fallthrough_statements">"fallthrough" statement</a> to 4742 indicate that control should flow from the end of this clause to 4743 the first statement of the next clause. 4744 Otherwise control flows to the end of the "switch" statement. 4745 A "fallthrough" statement may appear as the last statement of all 4746 but the last clause of an expression switch. 4747 </p> 4748 4749 <p> 4750 The switch expression may be preceded by a simple statement, which 4751 executes before the expression is evaluated. 4752 </p> 4753 4754 <pre> 4755 switch tag { 4756 default: s3() 4757 case 0, 1, 2, 3: s1() 4758 case 4, 5, 6, 7: s2() 4759 } 4760 4761 switch x := f(); { // missing switch expression means "true" 4762 case x < 0: return -x 4763 default: return x 4764 } 4765 4766 switch { 4767 case x < y: f1() 4768 case x < z: f2() 4769 case x == 4: f3() 4770 } 4771 </pre> 4772 4773 <p> 4774 Implementation restriction: A compiler may disallow multiple case 4775 expressions evaluating to the same constant. 4776 For instance, the current compilers disallow duplicate integer, 4777 floating point, or string constants in case expressions. 4778 </p> 4779 4780 <h4 id="Type_switches">Type switches</h4> 4781 4782 <p> 4783 A type switch compares types rather than values. It is otherwise similar 4784 to an expression switch. It is marked by a special switch expression that 4785 has the form of a <a href="#Type_assertions">type assertion</a> 4786 using the reserved word <code>type</code> rather than an actual type: 4787 </p> 4788 4789 <pre> 4790 switch x.(type) { 4791 // cases 4792 } 4793 </pre> 4794 4795 <p> 4796 Cases then match actual types <code>T</code> against the dynamic type of the 4797 expression <code>x</code>. As with type assertions, <code>x</code> must be of 4798 <a href="#Interface_types">interface type</a>, and each non-interface type 4799 <code>T</code> listed in a case must implement the type of <code>x</code>. 4800 The types listed in the cases of a type switch must all be 4801 <a href="#Type_identity">different</a>. 4802 </p> 4803 4804 <pre class="ebnf"> 4805 TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . 4806 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . 4807 TypeCaseClause = TypeSwitchCase ":" StatementList . 4808 TypeSwitchCase = "case" TypeList | "default" . 4809 TypeList = Type { "," Type } . 4810 </pre> 4811 4812 <p> 4813 The TypeSwitchGuard may include a 4814 <a href="#Short_variable_declarations">short variable declaration</a>. 4815 When that form is used, the variable is declared at the end of the 4816 TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause. 4817 In clauses with a case listing exactly one type, the variable 4818 has that type; otherwise, the variable has the type of the expression 4819 in the TypeSwitchGuard. 4820 </p> 4821 4822 <p> 4823 The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>; 4824 that case is used when the expression in the TypeSwitchGuard 4825 is a <code>nil</code> interface value. 4826 There may be at most one <code>nil</code> case. 4827 </p> 4828 4829 <p> 4830 Given an expression <code>x</code> of type <code>interface{}</code>, 4831 the following type switch: 4832 </p> 4833 4834 <pre> 4835 switch i := x.(type) { 4836 case nil: 4837 printString("x is nil") // type of i is type of x (interface{}) 4838 case int: 4839 printInt(i) // type of i is int 4840 case float64: 4841 printFloat64(i) // type of i is float64 4842 case func(int) float64: 4843 printFunction(i) // type of i is func(int) float64 4844 case bool, string: 4845 printString("type is bool or string") // type of i is type of x (interface{}) 4846 default: 4847 printString("don't know the type") // type of i is type of x (interface{}) 4848 } 4849 </pre> 4850 4851 <p> 4852 could be rewritten: 4853 </p> 4854 4855 <pre> 4856 v := x // x is evaluated exactly once 4857 if v == nil { 4858 i := v // type of i is type of x (interface{}) 4859 printString("x is nil") 4860 } else if i, isInt := v.(int); isInt { 4861 printInt(i) // type of i is int 4862 } else if i, isFloat64 := v.(float64); isFloat64 { 4863 printFloat64(i) // type of i is float64 4864 } else if i, isFunc := v.(func(int) float64); isFunc { 4865 printFunction(i) // type of i is func(int) float64 4866 } else { 4867 _, isBool := v.(bool) 4868 _, isString := v.(string) 4869 if isBool || isString { 4870 i := v // type of i is type of x (interface{}) 4871 printString("type is bool or string") 4872 } else { 4873 i := v // type of i is type of x (interface{}) 4874 printString("don't know the type") 4875 } 4876 } 4877 </pre> 4878 4879 <p> 4880 The type switch guard may be preceded by a simple statement, which 4881 executes before the guard is evaluated. 4882 </p> 4883 4884 <p> 4885 The "fallthrough" statement is not permitted in a type switch. 4886 </p> 4887 4888 <h3 id="For_statements">For statements</h3> 4889 4890 <p> 4891 A "for" statement specifies repeated execution of a block. There are three forms: 4892 The iteration may be controlled by a single condition, a "for" clause, or a "range" clause. 4893 </p> 4894 4895 <pre class="ebnf"> 4896 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . 4897 Condition = Expression . 4898 </pre> 4899 4900 <h4 id="For_condition">For statements with single condition</h4> 4901 4902 <p> 4903 In its simplest form, a "for" statement specifies the repeated execution of 4904 a block as long as a boolean condition evaluates to true. 4905 The condition is evaluated before each iteration. 4906 If the condition is absent, it is equivalent to the boolean value 4907 <code>true</code>. 4908 </p> 4909 4910 <pre> 4911 for a < b { 4912 a *= 2 4913 } 4914 </pre> 4915 4916 <h4 id="For_clause">For statements with <code>for</code> clause</h4> 4917 4918 <p> 4919 A "for" statement with a ForClause is also controlled by its condition, but 4920 additionally it may specify an <i>init</i> 4921 and a <i>post</i> statement, such as an assignment, 4922 an increment or decrement statement. The init statement may be a 4923 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. 4924 Variables declared by the init statement are re-used in each iteration. 4925 </p> 4926 4927 <pre class="ebnf"> 4928 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . 4929 InitStmt = SimpleStmt . 4930 PostStmt = SimpleStmt . 4931 </pre> 4932 4933 <pre> 4934 for i := 0; i < 10; i++ { 4935 f(i) 4936 } 4937 </pre> 4938 4939 <p> 4940 If non-empty, the init statement is executed once before evaluating the 4941 condition for the first iteration; 4942 the post statement is executed after each execution of the block (and 4943 only if the block was executed). 4944 Any element of the ForClause may be empty but the 4945 <a href="#Semicolons">semicolons</a> are 4946 required unless there is only a condition. 4947 If the condition is absent, it is equivalent to the boolean value 4948 <code>true</code>. 4949 </p> 4950 4951 <pre> 4952 for cond { S() } is the same as for ; cond ; { S() } 4953 for { S() } is the same as for true { S() } 4954 </pre> 4955 4956 <h4 id="For_range">For statements with <code>range</code> clause</h4> 4957 4958 <p> 4959 A "for" statement with a "range" clause 4960 iterates through all entries of an array, slice, string or map, 4961 or values received on a channel. For each entry it assigns <i>iteration values</i> 4962 to corresponding <i>iteration variables</i> if present and then executes the block. 4963 </p> 4964 4965 <pre class="ebnf"> 4966 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression . 4967 </pre> 4968 4969 <p> 4970 The expression on the right in the "range" clause is called the <i>range expression</i>, 4971 which may be an array, pointer to an array, slice, string, map, or channel permitting 4972 <a href="#Receive_operator">receive operations</a>. 4973 As with an assignment, if present the operands on the left must be 4974 <a href="#Address_operators">addressable</a> or map index expressions; they 4975 denote the iteration variables. If the range expression is a channel, at most 4976 one iteration variable is permitted, otherwise there may be up to two. 4977 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>, 4978 the range clause is equivalent to the same clause without that identifier. 4979 </p> 4980 4981 <p> 4982 The range expression is evaluated once before beginning the loop, 4983 with one exception: if the range expression is an array or a pointer to an array 4984 and at most one iteration variable is present, only the range expression's 4985 length is evaluated; if that length is constant, 4986 <a href="#Length_and_capacity">by definition</a> 4987 the range expression itself will not be evaluated. 4988 </p> 4989 4990 <p> 4991 Function calls on the left are evaluated once per iteration. 4992 For each iteration, iteration values are produced as follows 4993 if the respective iteration variables are present: 4994 </p> 4995 4996 <pre class="grammar"> 4997 Range expression 1st value 2nd value 4998 4999 array or slice a [n]E, *[n]E, or []E index i int a[i] E 5000 string s string type index i int see below rune 5001 map m map[K]V key k K m[k] V 5002 channel c chan E, <-chan E element e E 5003 </pre> 5004 5005 <ol> 5006 <li> 5007 For an array, pointer to array, or slice value <code>a</code>, the index iteration 5008 values are produced in increasing order, starting at element index 0. 5009 If at most one iteration variable is present, the range loop produces 5010 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array 5011 or slice itself. For a <code>nil</code> slice, the number of iterations is 0. 5012 </li> 5013 5014 <li> 5015 For a string value, the "range" clause iterates over the Unicode code points 5016 in the string starting at byte index 0. On successive iterations, the index value will be the 5017 index of the first byte of successive UTF-8-encoded code points in the string, 5018 and the second value, of type <code>rune</code>, will be the value of 5019 the corresponding code point. If the iteration encounters an invalid 5020 UTF-8 sequence, the second value will be <code>0xFFFD</code>, 5021 the Unicode replacement character, and the next iteration will advance 5022 a single byte in the string. 5023 </li> 5024 5025 <li> 5026 The iteration order over maps is not specified 5027 and is not guaranteed to be the same from one iteration to the next. 5028 If a map entry that has not yet been reached is removed during iteration, 5029 the corresponding iteration value will not be produced. If a map entry is 5030 created during iteration, that entry may be produced during the iteration or 5031 may be skipped. The choice may vary for each entry created and from one 5032 iteration to the next. 5033 If the map is <code>nil</code>, the number of iterations is 0. 5034 </li> 5035 5036 <li> 5037 For channels, the iteration values produced are the successive values sent on 5038 the channel until the channel is <a href="#Close">closed</a>. If the channel 5039 is <code>nil</code>, the range expression blocks forever. 5040 </li> 5041 </ol> 5042 5043 <p> 5044 The iteration values are assigned to the respective 5045 iteration variables as in an <a href="#Assignments">assignment statement</a>. 5046 </p> 5047 5048 <p> 5049 The iteration variables may be declared by the "range" clause using a form of 5050 <a href="#Short_variable_declarations">short variable declaration</a> 5051 (<code>:=</code>). 5052 In this case their types are set to the types of the respective iteration values 5053 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for" 5054 statement; they are re-used in each iteration. 5055 If the iteration variables are declared outside the "for" statement, 5056 after execution their values will be those of the last iteration. 5057 </p> 5058 5059 <pre> 5060 var testdata *struct { 5061 a *[7]int 5062 } 5063 for i, _ := range testdata.a { 5064 // testdata.a is never evaluated; len(testdata.a) is constant 5065 // i ranges from 0 to 6 5066 f(i) 5067 } 5068 5069 var a [10]string 5070 for i, s := range a { 5071 // type of i is int 5072 // type of s is string 5073 // s == a[i] 5074 g(i, s) 5075 } 5076 5077 var key string 5078 var val interface {} // value type of m is assignable to val 5079 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} 5080 for key, val = range m { 5081 h(key, val) 5082 } 5083 // key == last map key encountered in iteration 5084 // val == map[key] 5085 5086 var ch chan Work = producer() 5087 for w := range ch { 5088 doWork(w) 5089 } 5090 5091 // empty a channel 5092 for range ch {} 5093 </pre> 5094 5095 5096 <h3 id="Go_statements">Go statements</h3> 5097 5098 <p> 5099 A "go" statement starts the execution of a function call 5100 as an independent concurrent thread of control, or <i>goroutine</i>, 5101 within the same address space. 5102 </p> 5103 5104 <pre class="ebnf"> 5105 GoStmt = "go" Expression . 5106 </pre> 5107 5108 <p> 5109 The expression must be a function or method call; it cannot be parenthesized. 5110 Calls of built-in functions are restricted as for 5111 <a href="#Expression_statements">expression statements</a>. 5112 </p> 5113 5114 <p> 5115 The function value and parameters are 5116 <a href="#Calls">evaluated as usual</a> 5117 in the calling goroutine, but 5118 unlike with a regular call, program execution does not wait 5119 for the invoked function to complete. 5120 Instead, the function begins executing independently 5121 in a new goroutine. 5122 When the function terminates, its goroutine also terminates. 5123 If the function has any return values, they are discarded when the 5124 function completes. 5125 </p> 5126 5127 <pre> 5128 go Server() 5129 go func(ch chan<- bool) { for { sleep(10); ch <- true }} (c) 5130 </pre> 5131 5132 5133 <h3 id="Select_statements">Select statements</h3> 5134 5135 <p> 5136 A "select" statement chooses which of a set of possible 5137 <a href="#Send_statements">send</a> or 5138 <a href="#Receive_operator">receive</a> 5139 operations will proceed. 5140 It looks similar to a 5141 <a href="#Switch_statements">"switch"</a> statement but with the 5142 cases all referring to communication operations. 5143 </p> 5144 5145 <pre class="ebnf"> 5146 SelectStmt = "select" "{" { CommClause } "}" . 5147 CommClause = CommCase ":" StatementList . 5148 CommCase = "case" ( SendStmt | RecvStmt ) | "default" . 5149 RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . 5150 RecvExpr = Expression . 5151 </pre> 5152 5153 <p> 5154 A case with a RecvStmt may assign the result of a RecvExpr to one or 5155 two variables, which may be declared using a 5156 <a href="#Short_variable_declarations">short variable declaration</a>. 5157 The RecvExpr must be a (possibly parenthesized) receive operation. 5158 There can be at most one default case and it may appear anywhere 5159 in the list of cases. 5160 </p> 5161 5162 <p> 5163 Execution of a "select" statement proceeds in several steps: 5164 </p> 5165 5166 <ol> 5167 <li> 5168 For all the cases in the statement, the channel operands of receive operations 5169 and the channel and right-hand-side expressions of send statements are 5170 evaluated exactly once, in source order, upon entering the "select" statement. 5171 The result is a set of channels to receive from or send to, 5172 and the corresponding values to send. 5173 Any side effects in that evaluation will occur irrespective of which (if any) 5174 communication operation is selected to proceed. 5175 Expressions on the left-hand side of a RecvStmt with a short variable declaration 5176 or assignment are not yet evaluated. 5177 </li> 5178 5179 <li> 5180 If one or more of the communications can proceed, 5181 a single one that can proceed is chosen via a uniform pseudo-random selection. 5182 Otherwise, if there is a default case, that case is chosen. 5183 If there is no default case, the "select" statement blocks until 5184 at least one of the communications can proceed. 5185 </li> 5186 5187 <li> 5188 Unless the selected case is the default case, the respective communication 5189 operation is executed. 5190 </li> 5191 5192 <li> 5193 If the selected case is a RecvStmt with a short variable declaration or 5194 an assignment, the left-hand side expressions are evaluated and the 5195 received value (or values) are assigned. 5196 </li> 5197 5198 <li> 5199 The statement list of the selected case is executed. 5200 </li> 5201 </ol> 5202 5203 <p> 5204 Since communication on <code>nil</code> channels can never proceed, 5205 a select with only <code>nil</code> channels and no default case blocks forever. 5206 </p> 5207 5208 <pre> 5209 var a []int 5210 var c, c1, c2, c3, c4 chan int 5211 var i1, i2 int 5212 select { 5213 case i1 = <-c1: 5214 print("received ", i1, " from c1\n") 5215 case c2 <- i2: 5216 print("sent ", i2, " to c2\n") 5217 case i3, ok := (<-c3): // same as: i3, ok := <-c3 5218 if ok { 5219 print("received ", i3, " from c3\n") 5220 } else { 5221 print("c3 is closed\n") 5222 } 5223 case a[f()] = <-c4: 5224 // same as: 5225 // case t := <-c4 5226 // a[f()] = t 5227 default: 5228 print("no communication\n") 5229 } 5230 5231 for { // send random sequence of bits to c 5232 select { 5233 case c <- 0: // note: no statement, no fallthrough, no folding of cases 5234 case c <- 1: 5235 } 5236 } 5237 5238 select {} // block forever 5239 </pre> 5240 5241 5242 <h3 id="Return_statements">Return statements</h3> 5243 5244 <p> 5245 A "return" statement in a function <code>F</code> terminates the execution 5246 of <code>F</code>, and optionally provides one or more result values. 5247 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5248 are executed before <code>F</code> returns to its caller. 5249 </p> 5250 5251 <pre class="ebnf"> 5252 ReturnStmt = "return" [ ExpressionList ] . 5253 </pre> 5254 5255 <p> 5256 In a function without a result type, a "return" statement must not 5257 specify any result values. 5258 </p> 5259 <pre> 5260 func noResult() { 5261 return 5262 } 5263 </pre> 5264 5265 <p> 5266 There are three ways to return values from a function with a result 5267 type: 5268 </p> 5269 5270 <ol> 5271 <li>The return value or values may be explicitly listed 5272 in the "return" statement. Each expression must be single-valued 5273 and <a href="#Assignability">assignable</a> 5274 to the corresponding element of the function's result type. 5275 <pre> 5276 func simpleF() int { 5277 return 2 5278 } 5279 5280 func complexF1() (re float64, im float64) { 5281 return -7.0, -4.0 5282 } 5283 </pre> 5284 </li> 5285 <li>The expression list in the "return" statement may be a single 5286 call to a multi-valued function. The effect is as if each value 5287 returned from that function were assigned to a temporary 5288 variable with the type of the respective value, followed by a 5289 "return" statement listing these variables, at which point the 5290 rules of the previous case apply. 5291 <pre> 5292 func complexF2() (re float64, im float64) { 5293 return complexF1() 5294 } 5295 </pre> 5296 </li> 5297 <li>The expression list may be empty if the function's result 5298 type specifies names for its <a href="#Function_types">result parameters</a>. 5299 The result parameters act as ordinary local variables 5300 and the function may assign values to them as necessary. 5301 The "return" statement returns the values of these variables. 5302 <pre> 5303 func complexF3() (re float64, im float64) { 5304 re = 7.0 5305 im = 4.0 5306 return 5307 } 5308 5309 func (devnull) Write(p []byte) (n int, _ error) { 5310 n = len(p) 5311 return 5312 } 5313 </pre> 5314 </li> 5315 </ol> 5316 5317 <p> 5318 Regardless of how they are declared, all the result values are initialized to 5319 the <a href="#The_zero_value">zero values</a> for their type upon entry to the 5320 function. A "return" statement that specifies results sets the result parameters before 5321 any deferred functions are executed. 5322 </p> 5323 5324 <p> 5325 Implementation restriction: A compiler may disallow an empty expression list 5326 in a "return" statement if a different entity (constant, type, or variable) 5327 with the same name as a result parameter is in 5328 <a href="#Declarations_and_scope">scope</a> at the place of the return. 5329 </p> 5330 5331 <pre> 5332 func f(n int) (res int, err error) { 5333 if _, err := f(n-1); err != nil { 5334 return // invalid return statement: err is shadowed 5335 } 5336 return 5337 } 5338 </pre> 5339 5340 <h3 id="Break_statements">Break statements</h3> 5341 5342 <p> 5343 A "break" statement terminates execution of the innermost 5344 <a href="#For_statements">"for"</a>, 5345 <a href="#Switch_statements">"switch"</a>, or 5346 <a href="#Select_statements">"select"</a> statement 5347 within the same function. 5348 </p> 5349 5350 <pre class="ebnf"> 5351 BreakStmt = "break" [ Label ] . 5352 </pre> 5353 5354 <p> 5355 If there is a label, it must be that of an enclosing 5356 "for", "switch", or "select" statement, 5357 and that is the one whose execution terminates. 5358 </p> 5359 5360 <pre> 5361 OuterLoop: 5362 for i = 0; i < n; i++ { 5363 for j = 0; j < m; j++ { 5364 switch a[i][j] { 5365 case nil: 5366 state = Error 5367 break OuterLoop 5368 case item: 5369 state = Found 5370 break OuterLoop 5371 } 5372 } 5373 } 5374 </pre> 5375 5376 <h3 id="Continue_statements">Continue statements</h3> 5377 5378 <p> 5379 A "continue" statement begins the next iteration of the 5380 innermost <a href="#For_statements">"for" loop</a> at its post statement. 5381 The "for" loop must be within the same function. 5382 </p> 5383 5384 <pre class="ebnf"> 5385 ContinueStmt = "continue" [ Label ] . 5386 </pre> 5387 5388 <p> 5389 If there is a label, it must be that of an enclosing 5390 "for" statement, and that is the one whose execution 5391 advances. 5392 </p> 5393 5394 <pre> 5395 RowLoop: 5396 for y, row := range rows { 5397 for x, data := range row { 5398 if data == endOfRow { 5399 continue RowLoop 5400 } 5401 row[x] = data + bias(x, y) 5402 } 5403 } 5404 </pre> 5405 5406 <h3 id="Goto_statements">Goto statements</h3> 5407 5408 <p> 5409 A "goto" statement transfers control to the statement with the corresponding label 5410 within the same function. 5411 </p> 5412 5413 <pre class="ebnf"> 5414 GotoStmt = "goto" Label . 5415 </pre> 5416 5417 <pre> 5418 goto Error 5419 </pre> 5420 5421 <p> 5422 Executing the "goto" statement must not cause any variables to come into 5423 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. 5424 For instance, this example: 5425 </p> 5426 5427 <pre> 5428 goto L // BAD 5429 v := 3 5430 L: 5431 </pre> 5432 5433 <p> 5434 is erroneous because the jump to label <code>L</code> skips 5435 the creation of <code>v</code>. 5436 </p> 5437 5438 <p> 5439 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. 5440 For instance, this example: 5441 </p> 5442 5443 <pre> 5444 if n%2 == 1 { 5445 goto L1 5446 } 5447 for n > 0 { 5448 f() 5449 n-- 5450 L1: 5451 f() 5452 n-- 5453 } 5454 </pre> 5455 5456 <p> 5457 is erroneous because the label <code>L1</code> is inside 5458 the "for" statement's block but the <code>goto</code> is not. 5459 </p> 5460 5461 <h3 id="Fallthrough_statements">Fallthrough statements</h3> 5462 5463 <p> 5464 A "fallthrough" statement transfers control to the first statement of the 5465 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>. 5466 It may be used only as the final non-empty statement in such a clause. 5467 </p> 5468 5469 <pre class="ebnf"> 5470 FallthroughStmt = "fallthrough" . 5471 </pre> 5472 5473 5474 <h3 id="Defer_statements">Defer statements</h3> 5475 5476 <p> 5477 A "defer" statement invokes a function whose execution is deferred 5478 to the moment the surrounding function returns, either because the 5479 surrounding function executed a <a href="#Return_statements">return statement</a>, 5480 reached the end of its <a href="#Function_declarations">function body</a>, 5481 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>. 5482 </p> 5483 5484 <pre class="ebnf"> 5485 DeferStmt = "defer" Expression . 5486 </pre> 5487 5488 <p> 5489 The expression must be a function or method call; it cannot be parenthesized. 5490 Calls of built-in functions are restricted as for 5491 <a href="#Expression_statements">expression statements</a>. 5492 </p> 5493 5494 <p> 5495 Each time a "defer" statement 5496 executes, the function value and parameters to the call are 5497 <a href="#Calls">evaluated as usual</a> 5498 and saved anew but the actual function is not invoked. 5499 Instead, deferred functions are invoked immediately before 5500 the surrounding function returns, in the reverse order 5501 they were deferred. 5502 If a deferred function value evaluates 5503 to <code>nil</code>, execution <a href="#Handling_panics">panics</a> 5504 when the function is invoked, not when the "defer" statement is executed. 5505 </p> 5506 5507 <p> 5508 For instance, if the deferred function is 5509 a <a href="#Function_literals">function literal</a> and the surrounding 5510 function has <a href="#Function_types">named result parameters</a> that 5511 are in scope within the literal, the deferred function may access and modify 5512 the result parameters before they are returned. 5513 If the deferred function has any return values, they are discarded when 5514 the function completes. 5515 (See also the section on <a href="#Handling_panics">handling panics</a>.) 5516 </p> 5517 5518 <pre> 5519 lock(l) 5520 defer unlock(l) // unlocking happens before surrounding function returns 5521 5522 // prints 3 2 1 0 before surrounding function returns 5523 for i := 0; i <= 3; i++ { 5524 defer fmt.Print(i) 5525 } 5526 5527 // f returns 1 5528 func f() (result int) { 5529 defer func() { 5530 result++ 5531 }() 5532 return 0 5533 } 5534 </pre> 5535 5536 <h2 id="Built-in_functions">Built-in functions</h2> 5537 5538 <p> 5539 Built-in functions are 5540 <a href="#Predeclared_identifiers">predeclared</a>. 5541 They are called like any other function but some of them 5542 accept a type instead of an expression as the first argument. 5543 </p> 5544 5545 <p> 5546 The built-in functions do not have standard Go types, 5547 so they can only appear in <a href="#Calls">call expressions</a>; 5548 they cannot be used as function values. 5549 </p> 5550 5551 <h3 id="Close">Close</h3> 5552 5553 <p> 5554 For a channel <code>c</code>, the built-in function <code>close(c)</code> 5555 records that no more values will be sent on the channel. 5556 It is an error if <code>c</code> is a receive-only channel. 5557 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. 5558 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>. 5559 After calling <code>close</code>, and after any previously 5560 sent values have been received, receive operations will return 5561 the zero value for the channel's type without blocking. 5562 The multi-valued <a href="#Receive_operator">receive operation</a> 5563 returns a received value along with an indication of whether the channel is closed. 5564 </p> 5565 5566 5567 <h3 id="Length_and_capacity">Length and capacity</h3> 5568 5569 <p> 5570 The built-in functions <code>len</code> and <code>cap</code> take arguments 5571 of various types and return a result of type <code>int</code>. 5572 The implementation guarantees that the result always fits into an <code>int</code>. 5573 </p> 5574 5575 <pre class="grammar"> 5576 Call Argument type Result 5577 5578 len(s) string type string length in bytes 5579 [n]T, *[n]T array length (== n) 5580 []T slice length 5581 map[K]T map length (number of defined keys) 5582 chan T number of elements queued in channel buffer 5583 5584 cap(s) [n]T, *[n]T array length (== n) 5585 []T slice capacity 5586 chan T channel buffer capacity 5587 </pre> 5588 5589 <p> 5590 The capacity of a slice is the number of elements for which there is 5591 space allocated in the underlying array. 5592 At any time the following relationship holds: 5593 </p> 5594 5595 <pre> 5596 0 <= len(s) <= cap(s) 5597 </pre> 5598 5599 <p> 5600 The length of a <code>nil</code> slice, map or channel is 0. 5601 The capacity of a <code>nil</code> slice or channel is 0. 5602 </p> 5603 5604 <p> 5605 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if 5606 <code>s</code> is a string constant. The expressions <code>len(s)</code> and 5607 <code>cap(s)</code> are constants if the type of <code>s</code> is an array 5608 or pointer to an array and the expression <code>s</code> does not contain 5609 <a href="#Receive_operator">channel receives</a> or (non-constant) 5610 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. 5611 Otherwise, invocations of <code>len</code> and <code>cap</code> are not 5612 constant and <code>s</code> is evaluated. 5613 </p> 5614 5615 <pre> 5616 const ( 5617 c1 = imag(2i) // imag(2i) = 2.0 is a constant 5618 c2 = len([10]float64{2}) // [10]float64{2} contains no function calls 5619 c3 = len([10]float64{c1}) // [10]float64{c1} contains no function calls 5620 c4 = len([10]float64{imag(2i)}) // imag(2i) is a constant and no function call is issued 5621 c5 = len([10]float64{imag(z)}) // invalid: imag(z) is a (non-constant) function call 5622 ) 5623 var z complex128 5624 </pre> 5625 5626 <h3 id="Allocation">Allocation</h3> 5627 5628 <p> 5629 The built-in function <code>new</code> takes a type <code>T</code>, 5630 allocates storage for a <a href="#Variables">variable</a> of that type 5631 at run time, and returns a value of type <code>*T</code> 5632 <a href="#Pointer_types">pointing</a> to it. 5633 The variable is initialized as described in the section on 5634 <a href="#The_zero_value">initial values</a>. 5635 </p> 5636 5637 <pre class="grammar"> 5638 new(T) 5639 </pre> 5640 5641 <p> 5642 For instance 5643 </p> 5644 5645 <pre> 5646 type S struct { a int; b float64 } 5647 new(S) 5648 </pre> 5649 5650 <p> 5651 allocates storage for a variable of type <code>S</code>, 5652 initializes it (<code>a=0</code>, <code>b=0.0</code>), 5653 and returns a value of type <code>*S</code> containing the address 5654 of the location. 5655 </p> 5656 5657 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> 5658 5659 <p> 5660 The built-in function <code>make</code> takes a type <code>T</code>, 5661 which must be a slice, map or channel type, 5662 optionally followed by a type-specific list of expressions. 5663 It returns a value of type <code>T</code> (not <code>*T</code>). 5664 The memory is initialized as described in the section on 5665 <a href="#The_zero_value">initial values</a>. 5666 </p> 5667 5668 <pre class="grammar"> 5669 Call Type T Result 5670 5671 make(T, n) slice slice of type T with length n and capacity n 5672 make(T, n, m) slice slice of type T with length n and capacity m 5673 5674 make(T) map map of type T 5675 make(T, n) map map of type T with initial space for approximately n elements 5676 5677 make(T) channel unbuffered channel of type T 5678 make(T, n) channel buffered channel of type T, buffer size n 5679 </pre> 5680 5681 5682 <p> 5683 The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped. 5684 A <a href="#Constants">constant</a> size argument must be non-negative and 5685 representable by a value of type <code>int</code>. 5686 If both <code>n</code> and <code>m</code> are provided and are constant, then 5687 <code>n</code> must be no larger than <code>m</code>. 5688 If <code>n</code> is negative or larger than <code>m</code> at run time, 5689 a <a href="#Run_time_panics">run-time panic</a> occurs. 5690 </p> 5691 5692 <pre> 5693 s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 5694 s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000 5695 s := make([]int, 1<<63) // illegal: len(s) is not representable by a value of type int 5696 s := make([]int, 10, 0) // illegal: len(s) > cap(s) 5697 c := make(chan int, 10) // channel with a buffer size of 10 5698 m := make(map[string]int, 100) // map with initial space for approximately 100 elements 5699 </pre> 5700 5701 <p> 5702 Calling <code>make</code> with a map type and size hint <code>n</code> will 5703 create a map with initial space to hold <code>n</code> map elements. 5704 The precise behavior is implementation-dependent. 5705 </p> 5706 5707 5708 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> 5709 5710 <p> 5711 The built-in functions <code>append</code> and <code>copy</code> assist in 5712 common slice operations. 5713 For both functions, the result is independent of whether the memory referenced 5714 by the arguments overlaps. 5715 </p> 5716 5717 <p> 5718 The <a href="#Function_types">variadic</a> function <code>append</code> 5719 appends zero or more values <code>x</code> 5720 to <code>s</code> of type <code>S</code>, which must be a slice type, and 5721 returns the resulting slice, also of type <code>S</code>. 5722 The values <code>x</code> are passed to a parameter of type <code>...T</code> 5723 where <code>T</code> is the <a href="#Slice_types">element type</a> of 5724 <code>S</code> and the respective 5725 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. 5726 As a special case, <code>append</code> also accepts a first argument 5727 assignable to type <code>[]byte</code> with a second argument of 5728 string type followed by <code>...</code>. This form appends the 5729 bytes of the string. 5730 </p> 5731 5732 <pre class="grammar"> 5733 append(s S, x ...T) S // T is the element type of S 5734 </pre> 5735 5736 <p> 5737 If the capacity of <code>s</code> is not large enough to fit the additional 5738 values, <code>append</code> allocates a new, sufficiently large underlying 5739 array that fits both the existing slice elements and the additional values. 5740 Otherwise, <code>append</code> re-uses the underlying array. 5741 </p> 5742 5743 <pre> 5744 s0 := []int{0, 0} 5745 s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} 5746 s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} 5747 s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} 5748 s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0} 5749 5750 var t []interface{} 5751 t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"} 5752 5753 var b []byte 5754 b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' } 5755 </pre> 5756 5757 <p> 5758 The function <code>copy</code> copies slice elements from 5759 a source <code>src</code> to a destination <code>dst</code> and returns the 5760 number of elements copied. 5761 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be 5762 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. 5763 The number of elements copied is the minimum of 5764 <code>len(src)</code> and <code>len(dst)</code>. 5765 As a special case, <code>copy</code> also accepts a destination argument assignable 5766 to type <code>[]byte</code> with a source argument of a string type. 5767 This form copies the bytes from the string into the byte slice. 5768 </p> 5769 5770 <pre class="grammar"> 5771 copy(dst, src []T) int 5772 copy(dst []byte, src string) int 5773 </pre> 5774 5775 <p> 5776 Examples: 5777 </p> 5778 5779 <pre> 5780 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} 5781 var s = make([]int, 6) 5782 var b = make([]byte, 5) 5783 n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} 5784 n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} 5785 n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") 5786 </pre> 5787 5788 5789 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3> 5790 5791 <p> 5792 The built-in function <code>delete</code> removes the element with key 5793 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The 5794 type of <code>k</code> must be <a href="#Assignability">assignable</a> 5795 to the key type of <code>m</code>. 5796 </p> 5797 5798 <pre class="grammar"> 5799 delete(m, k) // remove element m[k] from map m 5800 </pre> 5801 5802 <p> 5803 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code> 5804 does not exist, <code>delete</code> is a no-op. 5805 </p> 5806 5807 5808 <h3 id="Complex_numbers">Manipulating complex numbers</h3> 5809 5810 <p> 5811 Three functions assemble and disassemble complex numbers. 5812 The built-in function <code>complex</code> constructs a complex 5813 value from a floating-point real and imaginary part, while 5814 <code>real</code> and <code>imag</code> 5815 extract the real and imaginary parts of a complex value. 5816 </p> 5817 5818 <pre class="grammar"> 5819 complex(realPart, imaginaryPart floatT) complexT 5820 real(complexT) floatT 5821 imag(complexT) floatT 5822 </pre> 5823 5824 <p> 5825 The type of the arguments and return value correspond. 5826 For <code>complex</code>, the two arguments must be of the same 5827 floating-point type and the return type is the complex type 5828 with the corresponding floating-point constituents: 5829 <code>complex64</code> for <code>float32</code> arguments, and 5830 <code>complex128</code> for <code>float64</code> arguments. 5831 If one of the arguments evaluates to an untyped constant, it is first 5832 <a href="#Conversions">converted</a> to the type of the other argument. 5833 If both arguments evaluate to untyped constants, they must be non-complex 5834 numbers or their imaginary parts must be zero, and the return value of 5835 the function is an untyped complex constant. 5836 </p> 5837 5838 <p> 5839 For <code>real</code> and <code>imag</code>, the argument must be 5840 of complex type, and the return type is the corresponding floating-point 5841 type: <code>float32</code> for a <code>complex64</code> argument, and 5842 <code>float64</code> for a <code>complex128</code> argument. 5843 If the argument evaluates to an untyped constant, it must be a number, 5844 and the return value of the function is an untyped floating-point constant. 5845 </p> 5846 5847 <p> 5848 The <code>real</code> and <code>imag</code> functions together form the inverse of 5849 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>, 5850 <code>z == Z(complex(real(z), imag(z)))</code>. 5851 </p> 5852 5853 <p> 5854 If the operands of these functions are all constants, the return 5855 value is a constant. 5856 </p> 5857 5858 <pre> 5859 var a = complex(2, -2) // complex128 5860 const b = complex(1.0, -1.4) // untyped complex constant 1 - 1.4i 5861 x := float32(math.Cos(math.Pi/2)) // float32 5862 var c64 = complex(5, -x) // complex64 5863 var s uint = complex(1, 0) // untyped complex constant 1 + 0i can be converted to uint 5864 _ = complex(1, 2<<s) // illegal: 2 assumes floating-point type, cannot shift 5865 var rl = real(c64) // float32 5866 var im = imag(a) // float64 5867 const c = imag(b) // untyped constant -1.4 5868 _ = imag(3 << s) // illegal: 3 assumes complex type, cannot shift 5869 </pre> 5870 5871 <h3 id="Handling_panics">Handling panics</h3> 5872 5873 <p> Two built-in functions, <code>panic</code> and <code>recover</code>, 5874 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> 5875 and program-defined error conditions. 5876 </p> 5877 5878 <pre class="grammar"> 5879 func panic(interface{}) 5880 func recover() interface{} 5881 </pre> 5882 5883 <p> 5884 While executing a function <code>F</code>, 5885 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a> 5886 terminates the execution of <code>F</code>. 5887 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5888 are then executed as usual. 5889 Next, any deferred functions run by <code>F's</code> caller are run, 5890 and so on up to any deferred by the top-level function in the executing goroutine. 5891 At that point, the program is terminated and the error 5892 condition is reported, including the value of the argument to <code>panic</code>. 5893 This termination sequence is called <i>panicking</i>. 5894 </p> 5895 5896 <pre> 5897 panic(42) 5898 panic("unreachable") 5899 panic(Error("cannot parse")) 5900 </pre> 5901 5902 <p> 5903 The <code>recover</code> function allows a program to manage behavior 5904 of a panicking goroutine. 5905 Suppose a function <code>G</code> defers a function <code>D</code> that calls 5906 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code> 5907 is executing. 5908 When the running of deferred functions reaches <code>D</code>, 5909 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>. 5910 If <code>D</code> returns normally, without starting a new 5911 <code>panic</code>, the panicking sequence stops. In that case, 5912 the state of functions called between <code>G</code> and the call to <code>panic</code> 5913 is discarded, and normal execution resumes. 5914 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s 5915 execution terminates by returning to its caller. 5916 </p> 5917 5918 <p> 5919 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds: 5920 </p> 5921 <ul> 5922 <li> 5923 <code>panic</code>'s argument was <code>nil</code>; 5924 </li> 5925 <li> 5926 the goroutine is not panicking; 5927 </li> 5928 <li> 5929 <code>recover</code> was not called directly by a deferred function. 5930 </li> 5931 </ul> 5932 5933 <p> 5934 The <code>protect</code> function in the example below invokes 5935 the function argument <code>g</code> and protects callers from 5936 run-time panics raised by <code>g</code>. 5937 </p> 5938 5939 <pre> 5940 func protect(g func()) { 5941 defer func() { 5942 log.Println("done") // Println executes normally even if there is a panic 5943 if x := recover(); x != nil { 5944 log.Printf("run time panic: %v", x) 5945 } 5946 }() 5947 log.Println("start") 5948 g() 5949 } 5950 </pre> 5951 5952 5953 <h3 id="Bootstrapping">Bootstrapping</h3> 5954 5955 <p> 5956 Current implementations provide several built-in functions useful during 5957 bootstrapping. These functions are documented for completeness but are not 5958 guaranteed to stay in the language. They do not return a result. 5959 </p> 5960 5961 <pre class="grammar"> 5962 Function Behavior 5963 5964 print prints all arguments; formatting of arguments is implementation-specific 5965 println like print but prints spaces between arguments and a newline at the end 5966 </pre> 5967 5968 <p> 5969 Implementation restriction: <code>print</code> and <code>println</code> need not 5970 accept arbitrary argument types, but printing of boolean, numeric, and string 5971 <a href="#Types">types</a> must be supported. 5972 </p> 5973 5974 <h2 id="Packages">Packages</h2> 5975 5976 <p> 5977 Go programs are constructed by linking together <i>packages</i>. 5978 A package in turn is constructed from one or more source files 5979 that together declare constants, types, variables and functions 5980 belonging to the package and which are accessible in all files 5981 of the same package. Those elements may be 5982 <a href="#Exported_identifiers">exported</a> and used in another package. 5983 </p> 5984 5985 <h3 id="Source_file_organization">Source file organization</h3> 5986 5987 <p> 5988 Each source file consists of a package clause defining the package 5989 to which it belongs, followed by a possibly empty set of import 5990 declarations that declare packages whose contents it wishes to use, 5991 followed by a possibly empty set of declarations of functions, 5992 types, variables, and constants. 5993 </p> 5994 5995 <pre class="ebnf"> 5996 SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . 5997 </pre> 5998 5999 <h3 id="Package_clause">Package clause</h3> 6000 6001 <p> 6002 A package clause begins each source file and defines the package 6003 to which the file belongs. 6004 </p> 6005 6006 <pre class="ebnf"> 6007 PackageClause = "package" PackageName . 6008 PackageName = identifier . 6009 </pre> 6010 6011 <p> 6012 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. 6013 </p> 6014 6015 <pre> 6016 package math 6017 </pre> 6018 6019 <p> 6020 A set of files sharing the same PackageName form the implementation of a package. 6021 An implementation may require that all source files for a package inhabit the same directory. 6022 </p> 6023 6024 <h3 id="Import_declarations">Import declarations</h3> 6025 6026 <p> 6027 An import declaration states that the source file containing the declaration 6028 depends on functionality of the <i>imported</i> package 6029 (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>) 6030 and enables access to <a href="#Exported_identifiers">exported</a> identifiers 6031 of that package. 6032 The import names an identifier (PackageName) to be used for access and an ImportPath 6033 that specifies the package to be imported. 6034 </p> 6035 6036 <pre class="ebnf"> 6037 ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . 6038 ImportSpec = [ "." | PackageName ] ImportPath . 6039 ImportPath = string_lit . 6040 </pre> 6041 6042 <p> 6043 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> 6044 to access exported identifiers of the package within the importing source file. 6045 It is declared in the <a href="#Blocks">file block</a>. 6046 If the PackageName is omitted, it defaults to the identifier specified in the 6047 <a href="#Package_clause">package clause</a> of the imported package. 6048 If an explicit period (<code>.</code>) appears instead of a name, all the 6049 package's exported identifiers declared in that package's 6050 <a href="#Blocks">package block</a> will be declared in the importing source 6051 file's file block and must be accessed without a qualifier. 6052 </p> 6053 6054 <p> 6055 The interpretation of the ImportPath is implementation-dependent but 6056 it is typically a substring of the full file name of the compiled 6057 package and may be relative to a repository of installed packages. 6058 </p> 6059 6060 <p> 6061 Implementation restriction: A compiler may restrict ImportPaths to 6062 non-empty strings using only characters belonging to 6063 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a> 6064 L, M, N, P, and S general categories (the Graphic characters without 6065 spaces) and may also exclude the characters 6066 <code>!"#$%&'()*,:;<=>?[\]^`{|}</code> 6067 and the Unicode replacement character U+FFFD. 6068 </p> 6069 6070 <p> 6071 Assume we have compiled a package containing the package clause 6072 <code>package math</code>, which exports function <code>Sin</code>, and 6073 installed the compiled package in the file identified by 6074 <code>"lib/math"</code>. 6075 This table illustrates how <code>Sin</code> is accessed in files 6076 that import the package after the 6077 various types of import declaration. 6078 </p> 6079 6080 <pre class="grammar"> 6081 Import declaration Local name of Sin 6082 6083 import "lib/math" math.Sin 6084 import m "lib/math" m.Sin 6085 import . "lib/math" Sin 6086 </pre> 6087 6088 <p> 6089 An import declaration declares a dependency relation between 6090 the importing and imported package. 6091 It is illegal for a package to import itself, directly or indirectly, 6092 or to directly import a package without 6093 referring to any of its exported identifiers. To import a package solely for 6094 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> 6095 identifier as explicit package name: 6096 </p> 6097 6098 <pre> 6099 import _ "lib/math" 6100 </pre> 6101 6102 6103 <h3 id="An_example_package">An example package</h3> 6104 6105 <p> 6106 Here is a complete Go package that implements a concurrent prime sieve. 6107 </p> 6108 6109 <pre> 6110 package main 6111 6112 import "fmt" 6113 6114 // Send the sequence 2, 3, 4, … to channel 'ch'. 6115 func generate(ch chan<- int) { 6116 for i := 2; ; i++ { 6117 ch <- i // Send 'i' to channel 'ch'. 6118 } 6119 } 6120 6121 // Copy the values from channel 'src' to channel 'dst', 6122 // removing those divisible by 'prime'. 6123 func filter(src <-chan int, dst chan<- int, prime int) { 6124 for i := range src { // Loop over values received from 'src'. 6125 if i%prime != 0 { 6126 dst <- i // Send 'i' to channel 'dst'. 6127 } 6128 } 6129 } 6130 6131 // The prime sieve: Daisy-chain filter processes together. 6132 func sieve() { 6133 ch := make(chan int) // Create a new channel. 6134 go generate(ch) // Start generate() as a subprocess. 6135 for { 6136 prime := <-ch 6137 fmt.Print(prime, "\n") 6138 ch1 := make(chan int) 6139 go filter(ch, ch1, prime) 6140 ch = ch1 6141 } 6142 } 6143 6144 func main() { 6145 sieve() 6146 } 6147 </pre> 6148 6149 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2> 6150 6151 <h3 id="The_zero_value">The zero value</h3> 6152 <p> 6153 When storage is allocated for a <a href="#Variables">variable</a>, 6154 either through a declaration or a call of <code>new</code>, or when 6155 a new value is created, either through a composite literal or a call 6156 of <code>make</code>, 6157 and no explicit initialization is provided, the variable or value is 6158 given a default value. Each element of such a variable or value is 6159 set to the <i>zero value</i> for its type: <code>false</code> for booleans, 6160 <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code> 6161 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. 6162 This initialization is done recursively, so for instance each element of an 6163 array of structs will have its fields zeroed if no value is specified. 6164 </p> 6165 <p> 6166 These two simple declarations are equivalent: 6167 </p> 6168 6169 <pre> 6170 var i int 6171 var i int = 0 6172 </pre> 6173 6174 <p> 6175 After 6176 </p> 6177 6178 <pre> 6179 type T struct { i int; f float64; next *T } 6180 t := new(T) 6181 </pre> 6182 6183 <p> 6184 the following holds: 6185 </p> 6186 6187 <pre> 6188 t.i == 0 6189 t.f == 0.0 6190 t.next == nil 6191 </pre> 6192 6193 <p> 6194 The same would also be true after 6195 </p> 6196 6197 <pre> 6198 var t T 6199 </pre> 6200 6201 <h3 id="Package_initialization">Package initialization</h3> 6202 6203 <p> 6204 Within a package, package-level variables are initialized in 6205 <i>declaration order</i> but after any of the variables 6206 they <i>depend</i> on. 6207 </p> 6208 6209 <p> 6210 More precisely, a package-level variable is considered <i>ready for 6211 initialization</i> if it is not yet initialized and either has 6212 no <a href="#Variable_declarations">initialization expression</a> or 6213 its initialization expression has no dependencies on uninitialized variables. 6214 Initialization proceeds by repeatedly initializing the next package-level 6215 variable that is earliest in declaration order and ready for initialization, 6216 until there are no variables ready for initialization. 6217 </p> 6218 6219 <p> 6220 If any variables are still uninitialized when this 6221 process ends, those variables are part of one or more initialization cycles, 6222 and the program is not valid. 6223 </p> 6224 6225 <p> 6226 The declaration order of variables declared in multiple files is determined 6227 by the order in which the files are presented to the compiler: Variables 6228 declared in the first file are declared before any of the variables declared 6229 in the second file, and so on. 6230 </p> 6231 6232 <p> 6233 Dependency analysis does not rely on the actual values of the 6234 variables, only on lexical <i>references</i> to them in the source, 6235 analyzed transitively. For instance, if a variable <code>x</code>'s 6236 initialization expression refers to a function whose body refers to 6237 variable <code>y</code> then <code>x</code> depends on <code>y</code>. 6238 Specifically: 6239 </p> 6240 6241 <ul> 6242 <li> 6243 A reference to a variable or function is an identifier denoting that 6244 variable or function. 6245 </li> 6246 6247 <li> 6248 A reference to a method <code>m</code> is a 6249 <a href="#Method_values">method value</a> or 6250 <a href="#Method_expressions">method expression</a> of the form 6251 <code>t.m</code>, where the (static) type of <code>t</code> is 6252 not an interface type, and the method <code>m</code> is in the 6253 <a href="#Method_sets">method set</a> of <code>t</code>. 6254 It is immaterial whether the resulting function value 6255 <code>t.m</code> is invoked. 6256 </li> 6257 6258 <li> 6259 A variable, function, or method <code>x</code> depends on a variable 6260 <code>y</code> if <code>x</code>'s initialization expression or body 6261 (for functions and methods) contains a reference to <code>y</code> 6262 or to a function or method that depends on <code>y</code>. 6263 </li> 6264 </ul> 6265 6266 <p> 6267 Dependency analysis is performed per package; only references referring 6268 to variables, functions, and methods declared in the current package 6269 are considered. 6270 </p> 6271 6272 <p> 6273 For example, given the declarations 6274 </p> 6275 6276 <pre> 6277 var ( 6278 a = c + b 6279 b = f() 6280 c = f() 6281 d = 3 6282 ) 6283 6284 func f() int { 6285 d++ 6286 return d 6287 } 6288 </pre> 6289 6290 <p> 6291 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>. 6292 </p> 6293 6294 <p> 6295 Variables may also be initialized using functions named <code>init</code> 6296 declared in the package block, with no arguments and no result parameters. 6297 </p> 6298 6299 <pre> 6300 func init() { … } 6301 </pre> 6302 6303 <p> 6304 Multiple such functions may be defined per package, even within a single 6305 source file. In the package block, the <code>init</code> identifier can 6306 be used only to declare <code>init</code> functions, yet the identifier 6307 itself is not <a href="#Declarations_and_scope">declared</a>. Thus 6308 <code>init</code> functions cannot be referred to from anywhere 6309 in a program. 6310 </p> 6311 6312 <p> 6313 A package with no imports is initialized by assigning initial values 6314 to all its package-level variables followed by calling all <code>init</code> 6315 functions in the order they appear in the source, possibly in multiple files, 6316 as presented to the compiler. 6317 If a package has imports, the imported packages are initialized 6318 before initializing the package itself. If multiple packages import 6319 a package, the imported package will be initialized only once. 6320 The importing of packages, by construction, guarantees that there 6321 can be no cyclic initialization dependencies. 6322 </p> 6323 6324 <p> 6325 Package initialization—variable initialization and the invocation of 6326 <code>init</code> functions—happens in a single goroutine, 6327 sequentially, one package at a time. 6328 An <code>init</code> function may launch other goroutines, which can run 6329 concurrently with the initialization code. However, initialization 6330 always sequences 6331 the <code>init</code> functions: it will not invoke the next one 6332 until the previous one has returned. 6333 </p> 6334 6335 <p> 6336 To ensure reproducible initialization behavior, build systems are encouraged 6337 to present multiple files belonging to the same package in lexical file name 6338 order to a compiler. 6339 </p> 6340 6341 6342 <h3 id="Program_execution">Program execution</h3> 6343 <p> 6344 A complete program is created by linking a single, unimported package 6345 called the <i>main package</i> with all the packages it imports, transitively. 6346 The main package must 6347 have package name <code>main</code> and 6348 declare a function <code>main</code> that takes no 6349 arguments and returns no value. 6350 </p> 6351 6352 <pre> 6353 func main() { … } 6354 </pre> 6355 6356 <p> 6357 Program execution begins by initializing the main package and then 6358 invoking the function <code>main</code>. 6359 When that function invocation returns, the program exits. 6360 It does not wait for other (non-<code>main</code>) goroutines to complete. 6361 </p> 6362 6363 <h2 id="Errors">Errors</h2> 6364 6365 <p> 6366 The predeclared type <code>error</code> is defined as 6367 </p> 6368 6369 <pre> 6370 type error interface { 6371 Error() string 6372 } 6373 </pre> 6374 6375 <p> 6376 It is the conventional interface for representing an error condition, 6377 with the nil value representing no error. 6378 For instance, a function to read data from a file might be defined: 6379 </p> 6380 6381 <pre> 6382 func Read(f *File, b []byte) (n int, err error) 6383 </pre> 6384 6385 <h2 id="Run_time_panics">Run-time panics</h2> 6386 6387 <p> 6388 Execution errors such as attempting to index an array out 6389 of bounds trigger a <i>run-time panic</i> equivalent to a call of 6390 the built-in function <a href="#Handling_panics"><code>panic</code></a> 6391 with a value of the implementation-defined interface type <code>runtime.Error</code>. 6392 That type satisfies the predeclared interface type 6393 <a href="#Errors"><code>error</code></a>. 6394 The exact error values that 6395 represent distinct run-time error conditions are unspecified. 6396 </p> 6397 6398 <pre> 6399 package runtime 6400 6401 type Error interface { 6402 error 6403 // and perhaps other methods 6404 } 6405 </pre> 6406 6407 <h2 id="System_considerations">System considerations</h2> 6408 6409 <h3 id="Package_unsafe">Package <code>unsafe</code></h3> 6410 6411 <p> 6412 The built-in package <code>unsafe</code>, known to the compiler, 6413 provides facilities for low-level programming including operations 6414 that violate the type system. A package using <code>unsafe</code> 6415 must be vetted manually for type safety and may not be portable. 6416 The package provides the following interface: 6417 </p> 6418 6419 <pre class="grammar"> 6420 package unsafe 6421 6422 type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type 6423 type Pointer *ArbitraryType 6424 6425 func Alignof(variable ArbitraryType) uintptr 6426 func Offsetof(selector ArbitraryType) uintptr 6427 func Sizeof(variable ArbitraryType) uintptr 6428 </pre> 6429 6430 <p> 6431 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code> 6432 value may not be <a href="#Address_operators">dereferenced</a>. 6433 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to 6434 a type of underlying type <code>Pointer</code> and vice versa. 6435 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined. 6436 </p> 6437 6438 <pre> 6439 var f float64 6440 bits = *(*uint64)(unsafe.Pointer(&f)) 6441 6442 type ptr unsafe.Pointer 6443 bits = *(*uint64)(ptr(&f)) 6444 6445 var p ptr = nil 6446 </pre> 6447 6448 <p> 6449 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code> 6450 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code> 6451 as if <code>v</code> was declared via <code>var v = x</code>. 6452 </p> 6453 <p> 6454 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a> 6455 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code> 6456 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address. 6457 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable 6458 without pointer indirections through fields of the struct. 6459 For a struct <code>s</code> with field <code>f</code>: 6460 </p> 6461 6462 <pre> 6463 uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) 6464 </pre> 6465 6466 <p> 6467 Computer architectures may require memory addresses to be <i>aligned</i>; 6468 that is, for addresses of a variable to be a multiple of a factor, 6469 the variable's type's <i>alignment</i>. The function <code>Alignof</code> 6470 takes an expression denoting a variable of any type and returns the 6471 alignment of the (type of the) variable in bytes. For a variable 6472 <code>x</code>: 6473 </p> 6474 6475 <pre> 6476 uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 6477 </pre> 6478 6479 <p> 6480 Calls to <code>Alignof</code>, <code>Offsetof</code>, and 6481 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. 6482 </p> 6483 6484 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> 6485 6486 <p> 6487 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed: 6488 </p> 6489 6490 <pre class="grammar"> 6491 type size in bytes 6492 6493 byte, uint8, int8 1 6494 uint16, int16 2 6495 uint32, int32, float32 4 6496 uint64, int64, float64, complex64 8 6497 complex128 16 6498 </pre> 6499 6500 <p> 6501 The following minimal alignment properties are guaranteed: 6502 </p> 6503 <ol> 6504 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. 6505 </li> 6506 6507 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of 6508 all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. 6509 </li> 6510 6511 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as 6512 the alignment of a variable of the array's element type. 6513 </li> 6514 </ol> 6515 6516 <p> 6517 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory. 6518 </p>