github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/compress/flate/huffman_code.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "math" 9 "math/bits" 10 "sort" 11 ) 12 13 // hcode is a huffman code with a bit code and bit length. 14 type hcode struct { 15 code, len uint16 16 } 17 18 type huffmanEncoder struct { 19 codes []hcode 20 freqcache []literalNode 21 bitCount [17]int32 22 lns byLiteral // stored to avoid repeated allocation in generate 23 lfs byFreq // stored to avoid repeated allocation in generate 24 } 25 26 type literalNode struct { 27 literal uint16 28 freq int32 29 } 30 31 // A levelInfo describes the state of the constructed tree for a given depth. 32 type levelInfo struct { 33 // Our level. for better printing 34 level int32 35 36 // The frequency of the last node at this level 37 lastFreq int32 38 39 // The frequency of the next character to add to this level 40 nextCharFreq int32 41 42 // The frequency of the next pair (from level below) to add to this level. 43 // Only valid if the "needed" value of the next lower level is 0. 44 nextPairFreq int32 45 46 // The number of chains remaining to generate for this level before moving 47 // up to the next level 48 needed int32 49 } 50 51 // set sets the code and length of an hcode. 52 func (h *hcode) set(code uint16, length uint16) { 53 h.len = length 54 h.code = code 55 } 56 57 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } 58 59 func newHuffmanEncoder(size int) *huffmanEncoder { 60 return &huffmanEncoder{codes: make([]hcode, size)} 61 } 62 63 // Generates a HuffmanCode corresponding to the fixed literal table 64 func generateFixedLiteralEncoding() *huffmanEncoder { 65 h := newHuffmanEncoder(maxNumLit) 66 codes := h.codes 67 var ch uint16 68 for ch = 0; ch < maxNumLit; ch++ { 69 var bits uint16 70 var size uint16 71 switch { 72 case ch < 144: 73 // size 8, 000110000 .. 10111111 74 bits = ch + 48 75 size = 8 76 break 77 case ch < 256: 78 // size 9, 110010000 .. 111111111 79 bits = ch + 400 - 144 80 size = 9 81 break 82 case ch < 280: 83 // size 7, 0000000 .. 0010111 84 bits = ch - 256 85 size = 7 86 break 87 default: 88 // size 8, 11000000 .. 11000111 89 bits = ch + 192 - 280 90 size = 8 91 } 92 codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size} 93 } 94 return h 95 } 96 97 func generateFixedOffsetEncoding() *huffmanEncoder { 98 h := newHuffmanEncoder(30) 99 codes := h.codes 100 for ch := range codes { 101 codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5} 102 } 103 return h 104 } 105 106 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() 107 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() 108 109 func (h *huffmanEncoder) bitLength(freq []int32) int { 110 var total int 111 for i, f := range freq { 112 if f != 0 { 113 total += int(f) * int(h.codes[i].len) 114 } 115 } 116 return total 117 } 118 119 const maxBitsLimit = 16 120 121 // Return the number of literals assigned to each bit size in the Huffman encoding 122 // 123 // This method is only called when list.length >= 3 124 // The cases of 0, 1, and 2 literals are handled by special case code. 125 // 126 // list An array of the literals with non-zero frequencies 127 // and their associated frequencies. The array is in order of increasing 128 // frequency, and has as its last element a special element with frequency 129 // MaxInt32 130 // maxBits The maximum number of bits that should be used to encode any literal. 131 // Must be less than 16. 132 // return An integer array in which array[i] indicates the number of literals 133 // that should be encoded in i bits. 134 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { 135 if maxBits >= maxBitsLimit { 136 panic("flate: maxBits too large") 137 } 138 n := int32(len(list)) 139 list = list[0 : n+1] 140 list[n] = maxNode() 141 142 // The tree can't have greater depth than n - 1, no matter what. This 143 // saves a little bit of work in some small cases 144 if maxBits > n-1 { 145 maxBits = n - 1 146 } 147 148 // Create information about each of the levels. 149 // A bogus "Level 0" whose sole purpose is so that 150 // level1.prev.needed==0. This makes level1.nextPairFreq 151 // be a legitimate value that never gets chosen. 152 var levels [maxBitsLimit]levelInfo 153 // leafCounts[i] counts the number of literals at the left 154 // of ancestors of the rightmost node at level i. 155 // leafCounts[i][j] is the number of literals at the left 156 // of the level j ancestor. 157 var leafCounts [maxBitsLimit][maxBitsLimit]int32 158 159 for level := int32(1); level <= maxBits; level++ { 160 // For every level, the first two items are the first two characters. 161 // We initialize the levels as if we had already figured this out. 162 levels[level] = levelInfo{ 163 level: level, 164 lastFreq: list[1].freq, 165 nextCharFreq: list[2].freq, 166 nextPairFreq: list[0].freq + list[1].freq, 167 } 168 leafCounts[level][level] = 2 169 if level == 1 { 170 levels[level].nextPairFreq = math.MaxInt32 171 } 172 } 173 174 // We need a total of 2*n - 2 items at top level and have already generated 2. 175 levels[maxBits].needed = 2*n - 4 176 177 level := maxBits 178 for { 179 l := &levels[level] 180 if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { 181 // We've run out of both leafs and pairs. 182 // End all calculations for this level. 183 // To make sure we never come back to this level or any lower level, 184 // set nextPairFreq impossibly large. 185 l.needed = 0 186 levels[level+1].nextPairFreq = math.MaxInt32 187 level++ 188 continue 189 } 190 191 prevFreq := l.lastFreq 192 if l.nextCharFreq < l.nextPairFreq { 193 // The next item on this row is a leaf node. 194 n := leafCounts[level][level] + 1 195 l.lastFreq = l.nextCharFreq 196 // Lower leafCounts are the same of the previous node. 197 leafCounts[level][level] = n 198 l.nextCharFreq = list[n].freq 199 } else { 200 // The next item on this row is a pair from the previous row. 201 // nextPairFreq isn't valid until we generate two 202 // more values in the level below 203 l.lastFreq = l.nextPairFreq 204 // Take leaf counts from the lower level, except counts[level] remains the same. 205 copy(leafCounts[level][:level], leafCounts[level-1][:level]) 206 levels[l.level-1].needed = 2 207 } 208 209 if l.needed--; l.needed == 0 { 210 // We've done everything we need to do for this level. 211 // Continue calculating one level up. Fill in nextPairFreq 212 // of that level with the sum of the two nodes we've just calculated on 213 // this level. 214 if l.level == maxBits { 215 // All done! 216 break 217 } 218 levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq 219 level++ 220 } else { 221 // If we stole from below, move down temporarily to replenish it. 222 for levels[level-1].needed > 0 { 223 level-- 224 } 225 } 226 } 227 228 // Somethings is wrong if at the end, the top level is null or hasn't used 229 // all of the leaves. 230 if leafCounts[maxBits][maxBits] != n { 231 panic("leafCounts[maxBits][maxBits] != n") 232 } 233 234 bitCount := h.bitCount[:maxBits+1] 235 bits := 1 236 counts := &leafCounts[maxBits] 237 for level := maxBits; level > 0; level-- { 238 // chain.leafCount gives the number of literals requiring at least "bits" 239 // bits to encode. 240 bitCount[bits] = counts[level] - counts[level-1] 241 bits++ 242 } 243 return bitCount 244 } 245 246 // Look at the leaves and assign them a bit count and an encoding as specified 247 // in RFC 1951 3.2.2 248 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { 249 code := uint16(0) 250 for n, bits := range bitCount { 251 code <<= 1 252 if n == 0 || bits == 0 { 253 continue 254 } 255 // The literals list[len(list)-bits] .. list[len(list)-bits] 256 // are encoded using "bits" bits, and get the values 257 // code, code + 1, .... The code values are 258 // assigned in literal order (not frequency order). 259 chunk := list[len(list)-int(bits):] 260 261 h.lns.sort(chunk) 262 for _, node := range chunk { 263 h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)} 264 code++ 265 } 266 list = list[0 : len(list)-int(bits)] 267 } 268 } 269 270 // Update this Huffman Code object to be the minimum code for the specified frequency count. 271 // 272 // freq An array of frequencies, in which frequency[i] gives the frequency of literal i. 273 // maxBits The maximum number of bits to use for any literal. 274 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { 275 if h.freqcache == nil { 276 // Allocate a reusable buffer with the longest possible frequency table. 277 // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit. 278 // The largest of these is maxNumLit, so we allocate for that case. 279 h.freqcache = make([]literalNode, maxNumLit+1) 280 } 281 list := h.freqcache[:len(freq)+1] 282 // Number of non-zero literals 283 count := 0 284 // Set list to be the set of all non-zero literals and their frequencies 285 for i, f := range freq { 286 if f != 0 { 287 list[count] = literalNode{uint16(i), f} 288 count++ 289 } else { 290 list[count] = literalNode{} 291 h.codes[i].len = 0 292 } 293 } 294 list[len(freq)] = literalNode{} 295 296 list = list[:count] 297 if count <= 2 { 298 // Handle the small cases here, because they are awkward for the general case code. With 299 // two or fewer literals, everything has bit length 1. 300 for i, node := range list { 301 // "list" is in order of increasing literal value. 302 h.codes[node.literal].set(uint16(i), 1) 303 } 304 return 305 } 306 h.lfs.sort(list) 307 308 // Get the number of literals for each bit count 309 bitCount := h.bitCounts(list, maxBits) 310 // And do the assignment 311 h.assignEncodingAndSize(bitCount, list) 312 } 313 314 type byLiteral []literalNode 315 316 func (s *byLiteral) sort(a []literalNode) { 317 *s = byLiteral(a) 318 sort.Sort(s) 319 } 320 321 func (s byLiteral) Len() int { return len(s) } 322 323 func (s byLiteral) Less(i, j int) bool { 324 return s[i].literal < s[j].literal 325 } 326 327 func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 328 329 type byFreq []literalNode 330 331 func (s *byFreq) sort(a []literalNode) { 332 *s = byFreq(a) 333 sort.Sort(s) 334 } 335 336 func (s byFreq) Len() int { return len(s) } 337 338 func (s byFreq) Less(i, j int) bool { 339 if s[i].freq == s[j].freq { 340 return s[i].literal < s[j].literal 341 } 342 return s[i].freq < s[j].freq 343 } 344 345 func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 346 347 func reverseBits(number uint16, bitLength byte) uint16 { 348 return bits.Reverse16(number << (16 - bitLength)) 349 }