github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/index/suffixarray/qsufsort.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This algorithm is based on "Faster Suffix Sorting"
     6  //   by N. Jesper Larsson and Kunihiko Sadakane
     7  // paper: http://www.larsson.dogma.net/ssrev-tr.pdf
     8  // code:  http://www.larsson.dogma.net/qsufsort.c
     9  
    10  // This algorithm computes the suffix array sa by computing its inverse.
    11  // Consecutive groups of suffixes in sa are labeled as sorted groups or
    12  // unsorted groups. For a given pass of the sorter, all suffixes are ordered
    13  // up to their first h characters, and sa is h-ordered. Suffixes in their
    14  // final positions and unambiguously sorted in h-order are in a sorted group.
    15  // Consecutive groups of suffixes with identical first h characters are an
    16  // unsorted group. In each pass of the algorithm, unsorted groups are sorted
    17  // according to the group number of their following suffix.
    18  
    19  // In the implementation, if sa[i] is negative, it indicates that i is
    20  // the first element of a sorted group of length -sa[i], and can be skipped.
    21  // An unsorted group sa[i:k] is given the group number of the index of its
    22  // last element, k-1. The group numbers are stored in the inverse slice (inv),
    23  // and when all groups are sorted, this slice is the inverse suffix array.
    24  
    25  package suffixarray
    26  
    27  import "sort"
    28  
    29  func qsufsort(data []byte) []int {
    30  	// initial sorting by first byte of suffix
    31  	sa := sortedByFirstByte(data)
    32  	if len(sa) < 2 {
    33  		return sa
    34  	}
    35  	// initialize the group lookup table
    36  	// this becomes the inverse of the suffix array when all groups are sorted
    37  	inv := initGroups(sa, data)
    38  
    39  	// the index starts 1-ordered
    40  	sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1}
    41  
    42  	for sa[0] > -len(sa) { // until all suffixes are one big sorted group
    43  		// The suffixes are h-ordered, make them 2*h-ordered
    44  		pi := 0 // pi is first position of first group
    45  		sl := 0 // sl is negated length of sorted groups
    46  		for pi < len(sa) {
    47  			if s := sa[pi]; s < 0 { // if pi starts sorted group
    48  				pi -= s // skip over sorted group
    49  				sl += s // add negated length to sl
    50  			} else { // if pi starts unsorted group
    51  				if sl != 0 {
    52  					sa[pi+sl] = sl // combine sorted groups before pi
    53  					sl = 0
    54  				}
    55  				pk := inv[s] + 1 // pk-1 is last position of unsorted group
    56  				sufSortable.sa = sa[pi:pk]
    57  				sort.Sort(sufSortable)
    58  				sufSortable.updateGroups(pi)
    59  				pi = pk // next group
    60  			}
    61  		}
    62  		if sl != 0 { // if the array ends with a sorted group
    63  			sa[pi+sl] = sl // combine sorted groups at end of sa
    64  		}
    65  
    66  		sufSortable.h *= 2 // double sorted depth
    67  	}
    68  
    69  	for i := range sa { // reconstruct suffix array from inverse
    70  		sa[inv[i]] = i
    71  	}
    72  	return sa
    73  }
    74  
    75  func sortedByFirstByte(data []byte) []int {
    76  	// total byte counts
    77  	var count [256]int
    78  	for _, b := range data {
    79  		count[b]++
    80  	}
    81  	// make count[b] equal index of first occurrence of b in sorted array
    82  	sum := 0
    83  	for b := range count {
    84  		count[b], sum = sum, count[b]+sum
    85  	}
    86  	// iterate through bytes, placing index into the correct spot in sa
    87  	sa := make([]int, len(data))
    88  	for i, b := range data {
    89  		sa[count[b]] = i
    90  		count[b]++
    91  	}
    92  	return sa
    93  }
    94  
    95  func initGroups(sa []int, data []byte) []int {
    96  	// label contiguous same-letter groups with the same group number
    97  	inv := make([]int, len(data))
    98  	prevGroup := len(sa) - 1
    99  	groupByte := data[sa[prevGroup]]
   100  	for i := len(sa) - 1; i >= 0; i-- {
   101  		if b := data[sa[i]]; b < groupByte {
   102  			if prevGroup == i+1 {
   103  				sa[i+1] = -1
   104  			}
   105  			groupByte = b
   106  			prevGroup = i
   107  		}
   108  		inv[sa[i]] = prevGroup
   109  		if prevGroup == 0 {
   110  			sa[0] = -1
   111  		}
   112  	}
   113  	// Separate out the final suffix to the start of its group.
   114  	// This is necessary to ensure the suffix "a" is before "aba"
   115  	// when using a potentially unstable sort.
   116  	lastByte := data[len(data)-1]
   117  	s := -1
   118  	for i := range sa {
   119  		if sa[i] >= 0 {
   120  			if data[sa[i]] == lastByte && s == -1 {
   121  				s = i
   122  			}
   123  			if sa[i] == len(sa)-1 {
   124  				sa[i], sa[s] = sa[s], sa[i]
   125  				inv[sa[s]] = s
   126  				sa[s] = -1 // mark it as an isolated sorted group
   127  				break
   128  			}
   129  		}
   130  	}
   131  	return inv
   132  }
   133  
   134  type suffixSortable struct {
   135  	sa  []int
   136  	inv []int
   137  	h   int
   138  	buf []int // common scratch space
   139  }
   140  
   141  func (x *suffixSortable) Len() int           { return len(x.sa) }
   142  func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] }
   143  func (x *suffixSortable) Swap(i, j int)      { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] }
   144  
   145  func (x *suffixSortable) updateGroups(offset int) {
   146  	bounds := x.buf[0:0]
   147  	group := x.inv[x.sa[0]+x.h]
   148  	for i := 1; i < len(x.sa); i++ {
   149  		if g := x.inv[x.sa[i]+x.h]; g > group {
   150  			bounds = append(bounds, i)
   151  			group = g
   152  		}
   153  	}
   154  	bounds = append(bounds, len(x.sa))
   155  	x.buf = bounds
   156  
   157  	// update the group numberings after all new groups are determined
   158  	prev := 0
   159  	for _, b := range bounds {
   160  		for i := prev; i < b; i++ {
   161  			x.inv[x.sa[i]] = offset + b - 1
   162  		}
   163  		if b-prev == 1 {
   164  			x.sa[prev] = -1
   165  		}
   166  		prev = b
   167  	}
   168  }