github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/math/big/natconv.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements nat-to-string conversion functions. 6 7 package big 8 9 import ( 10 "errors" 11 "fmt" 12 "io" 13 "math" 14 "math/bits" 15 "sync" 16 ) 17 18 const digits = "0123456789abcdefghijklmnopqrstuvwxyz" 19 20 // Note: MaxBase = len(digits), but it must remain a rune constant 21 // for API compatibility. 22 23 // MaxBase is the largest number base accepted for string conversions. 24 const MaxBase = 'z' - 'a' + 10 + 1 25 26 // maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M. 27 // For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word. 28 // In other words, at most n digits in base b fit into a Word. 29 // TODO(gri) replace this with a table, generated at build time. 30 func maxPow(b Word) (p Word, n int) { 31 p, n = b, 1 // assuming b <= _M 32 for max := _M / b; p <= max; { 33 // p == b**n && p <= max 34 p *= b 35 n++ 36 } 37 // p == b**n && p <= _M 38 return 39 } 40 41 // pow returns x**n for n > 0, and 1 otherwise. 42 func pow(x Word, n int) (p Word) { 43 // n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1 44 // thus x**n == product of x**(2**i) for all i where bi == 1 45 // (Russian Peasant Method for exponentiation) 46 p = 1 47 for n > 0 { 48 if n&1 != 0 { 49 p *= x 50 } 51 x *= x 52 n >>= 1 53 } 54 return 55 } 56 57 // scan scans the number corresponding to the longest possible prefix 58 // from r representing an unsigned number in a given conversion base. 59 // It returns the corresponding natural number res, the actual base b, 60 // a digit count, and a read or syntax error err, if any. 61 // 62 // number = [ prefix ] mantissa . 63 // prefix = "0" [ "x" | "X" | "b" | "B" ] . 64 // mantissa = digits | digits "." [ digits ] | "." digits . 65 // digits = digit { digit } . 66 // digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . 67 // 68 // Unless fracOk is set, the base argument must be 0 or a value between 69 // 2 and MaxBase. If fracOk is set, the base argument must be one of 70 // 0, 2, 10, or 16. Providing an invalid base argument leads to a run- 71 // time panic. 72 // 73 // For base 0, the number prefix determines the actual base: A prefix of 74 // ``0x'' or ``0X'' selects base 16; if fracOk is not set, the ``0'' prefix 75 // selects base 8, and a ``0b'' or ``0B'' prefix selects base 2. Otherwise 76 // the selected base is 10 and no prefix is accepted. 77 // 78 // If fracOk is set, an octal prefix is ignored (a leading ``0'' simply 79 // stands for a zero digit), and a period followed by a fractional part 80 // is permitted. The result value is computed as if there were no period 81 // present; and the count value is used to determine the fractional part. 82 // 83 // A result digit count > 0 corresponds to the number of (non-prefix) digits 84 // parsed. A digit count <= 0 indicates the presence of a period (if fracOk 85 // is set, only), and -count is the number of fractional digits found. 86 // In this case, the actual value of the scanned number is res * b**count. 87 // 88 func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) { 89 // reject illegal bases 90 baseOk := base == 0 || 91 !fracOk && 2 <= base && base <= MaxBase || 92 fracOk && (base == 2 || base == 10 || base == 16) 93 if !baseOk { 94 panic(fmt.Sprintf("illegal number base %d", base)) 95 } 96 97 // one char look-ahead 98 ch, err := r.ReadByte() 99 if err != nil { 100 return 101 } 102 103 // determine actual base 104 b = base 105 if base == 0 { 106 // actual base is 10 unless there's a base prefix 107 b = 10 108 if ch == '0' { 109 count = 1 110 switch ch, err = r.ReadByte(); err { 111 case nil: 112 // possibly one of 0x, 0X, 0b, 0B 113 if !fracOk { 114 b = 8 115 } 116 switch ch { 117 case 'x', 'X': 118 b = 16 119 case 'b', 'B': 120 b = 2 121 } 122 switch b { 123 case 16, 2: 124 count = 0 // prefix is not counted 125 if ch, err = r.ReadByte(); err != nil { 126 // io.EOF is also an error in this case 127 return 128 } 129 case 8: 130 count = 0 // prefix is not counted 131 } 132 case io.EOF: 133 // input is "0" 134 res = z[:0] 135 err = nil 136 return 137 default: 138 // read error 139 return 140 } 141 } 142 } 143 144 // convert string 145 // Algorithm: Collect digits in groups of at most n digits in di 146 // and then use mulAddWW for every such group to add them to the 147 // result. 148 z = z[:0] 149 b1 := Word(b) 150 bn, n := maxPow(b1) // at most n digits in base b1 fit into Word 151 di := Word(0) // 0 <= di < b1**i < bn 152 i := 0 // 0 <= i < n 153 dp := -1 // position of decimal point 154 for { 155 if fracOk && ch == '.' { 156 fracOk = false 157 dp = count 158 // advance 159 if ch, err = r.ReadByte(); err != nil { 160 if err == io.EOF { 161 err = nil 162 break 163 } 164 return 165 } 166 } 167 168 // convert rune into digit value d1 169 var d1 Word 170 switch { 171 case '0' <= ch && ch <= '9': 172 d1 = Word(ch - '0') 173 case 'a' <= ch && ch <= 'z': 174 d1 = Word(ch - 'a' + 10) 175 case 'A' <= ch && ch <= 'Z': 176 d1 = Word(ch - 'A' + 10) 177 default: 178 d1 = MaxBase + 1 179 } 180 if d1 >= b1 { 181 r.UnreadByte() // ch does not belong to number anymore 182 break 183 } 184 count++ 185 186 // collect d1 in di 187 di = di*b1 + d1 188 i++ 189 190 // if di is "full", add it to the result 191 if i == n { 192 z = z.mulAddWW(z, bn, di) 193 di = 0 194 i = 0 195 } 196 197 // advance 198 if ch, err = r.ReadByte(); err != nil { 199 if err == io.EOF { 200 err = nil 201 break 202 } 203 return 204 } 205 } 206 207 if count == 0 { 208 // no digits found 209 switch { 210 case base == 0 && b == 8: 211 // there was only the octal prefix 0 (possibly followed by digits > 7); 212 // count as one digit and return base 10, not 8 213 count = 1 214 b = 10 215 case base != 0 || b != 8: 216 // there was neither a mantissa digit nor the octal prefix 0 217 err = errors.New("syntax error scanning number") 218 } 219 return 220 } 221 // count > 0 222 223 // add remaining digits to result 224 if i > 0 { 225 z = z.mulAddWW(z, pow(b1, i), di) 226 } 227 res = z.norm() 228 229 // adjust for fraction, if any 230 if dp >= 0 { 231 // 0 <= dp <= count > 0 232 count = dp - count 233 } 234 235 return 236 } 237 238 // utoa converts x to an ASCII representation in the given base; 239 // base must be between 2 and MaxBase, inclusive. 240 func (x nat) utoa(base int) []byte { 241 return x.itoa(false, base) 242 } 243 244 // itoa is like utoa but it prepends a '-' if neg && x != 0. 245 func (x nat) itoa(neg bool, base int) []byte { 246 if base < 2 || base > MaxBase { 247 panic("invalid base") 248 } 249 250 // x == 0 251 if len(x) == 0 { 252 return []byte("0") 253 } 254 // len(x) > 0 255 256 // allocate buffer for conversion 257 i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most 258 if neg { 259 i++ 260 } 261 s := make([]byte, i) 262 263 // convert power of two and non power of two bases separately 264 if b := Word(base); b == b&-b { 265 // shift is base b digit size in bits 266 shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2 267 mask := Word(1<<shift - 1) 268 w := x[0] // current word 269 nbits := uint(_W) // number of unprocessed bits in w 270 271 // convert less-significant words (include leading zeros) 272 for k := 1; k < len(x); k++ { 273 // convert full digits 274 for nbits >= shift { 275 i-- 276 s[i] = digits[w&mask] 277 w >>= shift 278 nbits -= shift 279 } 280 281 // convert any partial leading digit and advance to next word 282 if nbits == 0 { 283 // no partial digit remaining, just advance 284 w = x[k] 285 nbits = _W 286 } else { 287 // partial digit in current word w (== x[k-1]) and next word x[k] 288 w |= x[k] << nbits 289 i-- 290 s[i] = digits[w&mask] 291 292 // advance 293 w = x[k] >> (shift - nbits) 294 nbits = _W - (shift - nbits) 295 } 296 } 297 298 // convert digits of most-significant word w (omit leading zeros) 299 for w != 0 { 300 i-- 301 s[i] = digits[w&mask] 302 w >>= shift 303 } 304 305 } else { 306 bb, ndigits := maxPow(b) 307 308 // construct table of successive squares of bb*leafSize to use in subdivisions 309 // result (table != nil) <=> (len(x) > leafSize > 0) 310 table := divisors(len(x), b, ndigits, bb) 311 312 // preserve x, create local copy for use by convertWords 313 q := nat(nil).set(x) 314 315 // convert q to string s in base b 316 q.convertWords(s, b, ndigits, bb, table) 317 318 // strip leading zeros 319 // (x != 0; thus s must contain at least one non-zero digit 320 // and the loop will terminate) 321 i = 0 322 for s[i] == '0' { 323 i++ 324 } 325 } 326 327 if neg { 328 i-- 329 s[i] = '-' 330 } 331 332 return s[i:] 333 } 334 335 // Convert words of q to base b digits in s. If q is large, it is recursively "split in half" 336 // by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using 337 // repeated nat/Word division. 338 // 339 // The iterative method processes n Words by n divW() calls, each of which visits every Word in the 340 // incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s. 341 // Recursive conversion divides q by its approximate square root, yielding two parts, each half 342 // the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s 343 // plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and 344 // is made better by splitting the subblocks recursively. Best is to split blocks until one more 345 // split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the 346 // iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the 347 // range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and 348 // ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for 349 // specific hardware. 350 // 351 func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) { 352 // split larger blocks recursively 353 if table != nil { 354 // len(q) > leafSize > 0 355 var r nat 356 index := len(table) - 1 357 for len(q) > leafSize { 358 // find divisor close to sqrt(q) if possible, but in any case < q 359 maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length 360 minLength := maxLength >> 1 // ~= log2 sqrt(q) 361 for index > 0 && table[index-1].nbits > minLength { 362 index-- // desired 363 } 364 if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 { 365 index-- 366 if index < 0 { 367 panic("internal inconsistency") 368 } 369 } 370 371 // split q into the two digit number (q'*bbb + r) to form independent subblocks 372 q, r = q.div(r, q, table[index].bbb) 373 374 // convert subblocks and collect results in s[:h] and s[h:] 375 h := len(s) - table[index].ndigits 376 r.convertWords(s[h:], b, ndigits, bb, table[0:index]) 377 s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1]) 378 } 379 } 380 381 // having split any large blocks now process the remaining (small) block iteratively 382 i := len(s) 383 var r Word 384 if b == 10 { 385 // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants) 386 for len(q) > 0 { 387 // extract least significant, base bb "digit" 388 q, r = q.divW(q, bb) 389 for j := 0; j < ndigits && i > 0; j++ { 390 i-- 391 // avoid % computation since r%10 == r - int(r/10)*10; 392 // this appears to be faster for BenchmarkString10000Base10 393 // and smaller strings (but a bit slower for larger ones) 394 t := r / 10 395 s[i] = '0' + byte(r-t*10) 396 r = t 397 } 398 } 399 } else { 400 for len(q) > 0 { 401 // extract least significant, base bb "digit" 402 q, r = q.divW(q, bb) 403 for j := 0; j < ndigits && i > 0; j++ { 404 i-- 405 s[i] = digits[r%b] 406 r /= b 407 } 408 } 409 } 410 411 // prepend high-order zeros 412 for i > 0 { // while need more leading zeros 413 i-- 414 s[i] = '0' 415 } 416 } 417 418 // Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion) 419 // Benchmark and configure leafSize using: go test -bench="Leaf" 420 // 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines) 421 // 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU 422 var leafSize int = 8 // number of Word-size binary values treat as a monolithic block 423 424 type divisor struct { 425 bbb nat // divisor 426 nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb) 427 ndigits int // digit length of divisor in terms of output base digits 428 } 429 430 var cacheBase10 struct { 431 sync.Mutex 432 table [64]divisor // cached divisors for base 10 433 } 434 435 // expWW computes x**y 436 func (z nat) expWW(x, y Word) nat { 437 return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil) 438 } 439 440 // construct table of powers of bb*leafSize to use in subdivisions 441 func divisors(m int, b Word, ndigits int, bb Word) []divisor { 442 // only compute table when recursive conversion is enabled and x is large 443 if leafSize == 0 || m <= leafSize { 444 return nil 445 } 446 447 // determine k where (bb**leafSize)**(2**k) >= sqrt(x) 448 k := 1 449 for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 { 450 k++ 451 } 452 453 // reuse and extend existing table of divisors or create new table as appropriate 454 var table []divisor // for b == 10, table overlaps with cacheBase10.table 455 if b == 10 { 456 cacheBase10.Lock() 457 table = cacheBase10.table[0:k] // reuse old table for this conversion 458 } else { 459 table = make([]divisor, k) // create new table for this conversion 460 } 461 462 // extend table 463 if table[k-1].ndigits == 0 { 464 // add new entries as needed 465 var larger nat 466 for i := 0; i < k; i++ { 467 if table[i].ndigits == 0 { 468 if i == 0 { 469 table[0].bbb = nat(nil).expWW(bb, Word(leafSize)) 470 table[0].ndigits = ndigits * leafSize 471 } else { 472 table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb) 473 table[i].ndigits = 2 * table[i-1].ndigits 474 } 475 476 // optimization: exploit aggregated extra bits in macro blocks 477 larger = nat(nil).set(table[i].bbb) 478 for mulAddVWW(larger, larger, b, 0) == 0 { 479 table[i].bbb = table[i].bbb.set(larger) 480 table[i].ndigits++ 481 } 482 483 table[i].nbits = table[i].bbb.bitLen() 484 } 485 } 486 } 487 488 if b == 10 { 489 cacheBase10.Unlock() 490 } 491 492 return table 493 }