github.com/MangoDowner/go-gm@v0.0.0-20180818020936-8baa2bd4408c/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"unicode"
    12  	"unicode/utf8"
    13  )
    14  
    15  // explode splits s into a slice of UTF-8 strings,
    16  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    17  // Invalid UTF-8 sequences become correct encodings of U+FFFD.
    18  func explode(s string, n int) []string {
    19  	l := utf8.RuneCountInString(s)
    20  	if n < 0 || n > l {
    21  		n = l
    22  	}
    23  	a := make([]string, n)
    24  	for i := 0; i < n-1; i++ {
    25  		ch, size := utf8.DecodeRuneInString(s)
    26  		a[i] = s[:size]
    27  		s = s[size:]
    28  		if ch == utf8.RuneError {
    29  			a[i] = string(utf8.RuneError)
    30  		}
    31  	}
    32  	if n > 0 {
    33  		a[n-1] = s
    34  	}
    35  	return a
    36  }
    37  
    38  // primeRK is the prime base used in Rabin-Karp algorithm.
    39  const primeRK = 16777619
    40  
    41  // hashStr returns the hash and the appropriate multiplicative
    42  // factor for use in Rabin-Karp algorithm.
    43  func hashStr(sep string) (uint32, uint32) {
    44  	hash := uint32(0)
    45  	for i := 0; i < len(sep); i++ {
    46  		hash = hash*primeRK + uint32(sep[i])
    47  	}
    48  	var pow, sq uint32 = 1, primeRK
    49  	for i := len(sep); i > 0; i >>= 1 {
    50  		if i&1 != 0 {
    51  			pow *= sq
    52  		}
    53  		sq *= sq
    54  	}
    55  	return hash, pow
    56  }
    57  
    58  // hashStrRev returns the hash of the reverse of sep and the
    59  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    60  func hashStrRev(sep string) (uint32, uint32) {
    61  	hash := uint32(0)
    62  	for i := len(sep) - 1; i >= 0; i-- {
    63  		hash = hash*primeRK + uint32(sep[i])
    64  	}
    65  	var pow, sq uint32 = 1, primeRK
    66  	for i := len(sep); i > 0; i >>= 1 {
    67  		if i&1 != 0 {
    68  			pow *= sq
    69  		}
    70  		sq *= sq
    71  	}
    72  	return hash, pow
    73  }
    74  
    75  // countGeneric implements Count.
    76  func countGeneric(s, substr string) int {
    77  	// special case
    78  	if len(substr) == 0 {
    79  		return utf8.RuneCountInString(s) + 1
    80  	}
    81  	n := 0
    82  	for {
    83  		i := Index(s, substr)
    84  		if i == -1 {
    85  			return n
    86  		}
    87  		n++
    88  		s = s[i+len(substr):]
    89  	}
    90  }
    91  
    92  // Contains reports whether substr is within s.
    93  func Contains(s, substr string) bool {
    94  	return Index(s, substr) >= 0
    95  }
    96  
    97  // ContainsAny reports whether any Unicode code points in chars are within s.
    98  func ContainsAny(s, chars string) bool {
    99  	return IndexAny(s, chars) >= 0
   100  }
   101  
   102  // ContainsRune reports whether the Unicode code point r is within s.
   103  func ContainsRune(s string, r rune) bool {
   104  	return IndexRune(s, r) >= 0
   105  }
   106  
   107  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
   108  func LastIndex(s, substr string) int {
   109  	n := len(substr)
   110  	switch {
   111  	case n == 0:
   112  		return len(s)
   113  	case n == 1:
   114  		return LastIndexByte(s, substr[0])
   115  	case n == len(s):
   116  		if substr == s {
   117  			return 0
   118  		}
   119  		return -1
   120  	case n > len(s):
   121  		return -1
   122  	}
   123  	// Rabin-Karp search from the end of the string
   124  	hashss, pow := hashStrRev(substr)
   125  	last := len(s) - n
   126  	var h uint32
   127  	for i := len(s) - 1; i >= last; i-- {
   128  		h = h*primeRK + uint32(s[i])
   129  	}
   130  	if h == hashss && s[last:] == substr {
   131  		return last
   132  	}
   133  	for i := last - 1; i >= 0; i-- {
   134  		h *= primeRK
   135  		h += uint32(s[i])
   136  		h -= pow * uint32(s[i+n])
   137  		if h == hashss && s[i:i+n] == substr {
   138  			return i
   139  		}
   140  	}
   141  	return -1
   142  }
   143  
   144  // IndexRune returns the index of the first instance of the Unicode code point
   145  // r, or -1 if rune is not present in s.
   146  // If r is utf8.RuneError, it returns the first instance of any
   147  // invalid UTF-8 byte sequence.
   148  func IndexRune(s string, r rune) int {
   149  	switch {
   150  	case 0 <= r && r < utf8.RuneSelf:
   151  		return IndexByte(s, byte(r))
   152  	case r == utf8.RuneError:
   153  		for i, r := range s {
   154  			if r == utf8.RuneError {
   155  				return i
   156  			}
   157  		}
   158  		return -1
   159  	case !utf8.ValidRune(r):
   160  		return -1
   161  	default:
   162  		return Index(s, string(r))
   163  	}
   164  }
   165  
   166  // IndexAny returns the index of the first instance of any Unicode code point
   167  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   168  func IndexAny(s, chars string) int {
   169  	if len(chars) > 0 {
   170  		if len(s) > 8 {
   171  			if as, isASCII := makeASCIISet(chars); isASCII {
   172  				for i := 0; i < len(s); i++ {
   173  					if as.contains(s[i]) {
   174  						return i
   175  					}
   176  				}
   177  				return -1
   178  			}
   179  		}
   180  		for i, c := range s {
   181  			for _, m := range chars {
   182  				if c == m {
   183  					return i
   184  				}
   185  			}
   186  		}
   187  	}
   188  	return -1
   189  }
   190  
   191  // LastIndexAny returns the index of the last instance of any Unicode code
   192  // point from chars in s, or -1 if no Unicode code point from chars is
   193  // present in s.
   194  func LastIndexAny(s, chars string) int {
   195  	if len(chars) > 0 {
   196  		if len(s) > 8 {
   197  			if as, isASCII := makeASCIISet(chars); isASCII {
   198  				for i := len(s) - 1; i >= 0; i-- {
   199  					if as.contains(s[i]) {
   200  						return i
   201  					}
   202  				}
   203  				return -1
   204  			}
   205  		}
   206  		for i := len(s); i > 0; {
   207  			r, size := utf8.DecodeLastRuneInString(s[:i])
   208  			i -= size
   209  			for _, c := range chars {
   210  				if r == c {
   211  					return i
   212  				}
   213  			}
   214  		}
   215  	}
   216  	return -1
   217  }
   218  
   219  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   220  func LastIndexByte(s string, c byte) int {
   221  	for i := len(s) - 1; i >= 0; i-- {
   222  		if s[i] == c {
   223  			return i
   224  		}
   225  	}
   226  	return -1
   227  }
   228  
   229  // Generic split: splits after each instance of sep,
   230  // including sepSave bytes of sep in the subarrays.
   231  func genSplit(s, sep string, sepSave, n int) []string {
   232  	if n == 0 {
   233  		return nil
   234  	}
   235  	if sep == "" {
   236  		return explode(s, n)
   237  	}
   238  	if n < 0 {
   239  		n = Count(s, sep) + 1
   240  	}
   241  
   242  	a := make([]string, n)
   243  	n--
   244  	i := 0
   245  	for i < n {
   246  		m := Index(s, sep)
   247  		if m < 0 {
   248  			break
   249  		}
   250  		a[i] = s[:m+sepSave]
   251  		s = s[m+len(sep):]
   252  		i++
   253  	}
   254  	a[i] = s
   255  	return a[:i+1]
   256  }
   257  
   258  // SplitN slices s into substrings separated by sep and returns a slice of
   259  // the substrings between those separators.
   260  //
   261  // The count determines the number of substrings to return:
   262  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   263  //   n == 0: the result is nil (zero substrings)
   264  //   n < 0: all substrings
   265  //
   266  // Edge cases for s and sep (for example, empty strings) are handled
   267  // as described in the documentation for Split.
   268  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   269  
   270  // SplitAfterN slices s into substrings after each instance of sep and
   271  // returns a slice of those substrings.
   272  //
   273  // The count determines the number of substrings to return:
   274  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   275  //   n == 0: the result is nil (zero substrings)
   276  //   n < 0: all substrings
   277  //
   278  // Edge cases for s and sep (for example, empty strings) are handled
   279  // as described in the documentation for SplitAfter.
   280  func SplitAfterN(s, sep string, n int) []string {
   281  	return genSplit(s, sep, len(sep), n)
   282  }
   283  
   284  // Split slices s into all substrings separated by sep and returns a slice of
   285  // the substrings between those separators.
   286  //
   287  // If s does not contain sep and sep is not empty, Split returns a
   288  // slice of length 1 whose only element is s.
   289  //
   290  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   291  // and sep are empty, Split returns an empty slice.
   292  //
   293  // It is equivalent to SplitN with a count of -1.
   294  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   295  
   296  // SplitAfter slices s into all substrings after each instance of sep and
   297  // returns a slice of those substrings.
   298  //
   299  // If s does not contain sep and sep is not empty, SplitAfter returns
   300  // a slice of length 1 whose only element is s.
   301  //
   302  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   303  // both s and sep are empty, SplitAfter returns an empty slice.
   304  //
   305  // It is equivalent to SplitAfterN with a count of -1.
   306  func SplitAfter(s, sep string) []string {
   307  	return genSplit(s, sep, len(sep), -1)
   308  }
   309  
   310  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   311  
   312  // Fields splits the string s around each instance of one or more consecutive white space
   313  // characters, as defined by unicode.IsSpace, returning an array of substrings of s or an
   314  // empty list if s contains only white space.
   315  func Fields(s string) []string {
   316  	// First count the fields.
   317  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   318  	n := 0
   319  	wasSpace := 1
   320  	// setBits is used to track which bits are set in the bytes of s.
   321  	setBits := uint8(0)
   322  	for i := 0; i < len(s); i++ {
   323  		r := s[i]
   324  		setBits |= r
   325  		isSpace := int(asciiSpace[r])
   326  		n += wasSpace & ^isSpace
   327  		wasSpace = isSpace
   328  	}
   329  
   330  	if setBits < utf8.RuneSelf { // ASCII fast path
   331  		a := make([]string, n)
   332  		na := 0
   333  		fieldStart := 0
   334  		i := 0
   335  		// Skip spaces in the front of the input.
   336  		for i < len(s) && asciiSpace[s[i]] != 0 {
   337  			i++
   338  		}
   339  		fieldStart = i
   340  		for i < len(s) {
   341  			if asciiSpace[s[i]] == 0 {
   342  				i++
   343  				continue
   344  			}
   345  			a[na] = s[fieldStart:i]
   346  			na++
   347  			i++
   348  			// Skip spaces in between fields.
   349  			for i < len(s) && asciiSpace[s[i]] != 0 {
   350  				i++
   351  			}
   352  			fieldStart = i
   353  		}
   354  		if fieldStart < len(s) { // Last field might end at EOF.
   355  			a[na] = s[fieldStart:]
   356  		}
   357  		return a
   358  	}
   359  
   360  	// Some runes in the input string are not ASCII.
   361  	// Same general approach as in the ASCII path but
   362  	// uses DecodeRuneInString and unicode.IsSpace if
   363  	// a non-ASCII rune needs to be decoded and checked
   364  	// if it corresponds to a space.
   365  	a := make([]string, 0, n)
   366  	fieldStart := 0
   367  	i := 0
   368  	// Skip spaces in the front of the input.
   369  	for i < len(s) {
   370  		if c := s[i]; c < utf8.RuneSelf {
   371  			if asciiSpace[c] == 0 {
   372  				break
   373  			}
   374  			i++
   375  		} else {
   376  			r, w := utf8.DecodeRuneInString(s[i:])
   377  			if !unicode.IsSpace(r) {
   378  				break
   379  			}
   380  			i += w
   381  		}
   382  	}
   383  	fieldStart = i
   384  	for i < len(s) {
   385  		if c := s[i]; c < utf8.RuneSelf {
   386  			if asciiSpace[c] == 0 {
   387  				i++
   388  				continue
   389  			}
   390  			a = append(a, s[fieldStart:i])
   391  			i++
   392  		} else {
   393  			r, w := utf8.DecodeRuneInString(s[i:])
   394  			if !unicode.IsSpace(r) {
   395  				i += w
   396  				continue
   397  			}
   398  			a = append(a, s[fieldStart:i])
   399  			i += w
   400  		}
   401  		// Skip spaces in between fields.
   402  		for i < len(s) {
   403  			if c := s[i]; c < utf8.RuneSelf {
   404  				if asciiSpace[c] == 0 {
   405  					break
   406  				}
   407  				i++
   408  			} else {
   409  				r, w := utf8.DecodeRuneInString(s[i:])
   410  				if !unicode.IsSpace(r) {
   411  					break
   412  				}
   413  				i += w
   414  			}
   415  		}
   416  		fieldStart = i
   417  	}
   418  	if fieldStart < len(s) { // Last field might end at EOF.
   419  		a = append(a, s[fieldStart:])
   420  	}
   421  	return a
   422  }
   423  
   424  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   425  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   426  // string is empty, an empty slice is returned.
   427  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   428  // If f does not return consistent results for a given c, FieldsFunc may crash.
   429  func FieldsFunc(s string, f func(rune) bool) []string {
   430  	// First count the fields.
   431  	n := 0
   432  	inField := false
   433  	for _, rune := range s {
   434  		wasInField := inField
   435  		inField = !f(rune)
   436  		if inField && !wasInField {
   437  			n++
   438  		}
   439  	}
   440  
   441  	// Now create them.
   442  	a := make([]string, n)
   443  	na := 0
   444  	fieldStart := -1 // Set to -1 when looking for start of field.
   445  	for i, rune := range s {
   446  		if f(rune) {
   447  			if fieldStart >= 0 {
   448  				a[na] = s[fieldStart:i]
   449  				na++
   450  				fieldStart = -1
   451  			}
   452  		} else if fieldStart == -1 {
   453  			fieldStart = i
   454  		}
   455  	}
   456  	if fieldStart >= 0 { // Last field might end at EOF.
   457  		a[na] = s[fieldStart:]
   458  	}
   459  	return a
   460  }
   461  
   462  // Join concatenates the elements of a to create a single string. The separator string
   463  // sep is placed between elements in the resulting string.
   464  func Join(a []string, sep string) string {
   465  	switch len(a) {
   466  	case 0:
   467  		return ""
   468  	case 1:
   469  		return a[0]
   470  	case 2:
   471  		// Special case for common small values.
   472  		// Remove if golang.org/issue/6714 is fixed
   473  		return a[0] + sep + a[1]
   474  	case 3:
   475  		// Special case for common small values.
   476  		// Remove if golang.org/issue/6714 is fixed
   477  		return a[0] + sep + a[1] + sep + a[2]
   478  	}
   479  	n := len(sep) * (len(a) - 1)
   480  	for i := 0; i < len(a); i++ {
   481  		n += len(a[i])
   482  	}
   483  
   484  	b := make([]byte, n)
   485  	bp := copy(b, a[0])
   486  	for _, s := range a[1:] {
   487  		bp += copy(b[bp:], sep)
   488  		bp += copy(b[bp:], s)
   489  	}
   490  	return string(b)
   491  }
   492  
   493  // HasPrefix tests whether the string s begins with prefix.
   494  func HasPrefix(s, prefix string) bool {
   495  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   496  }
   497  
   498  // HasSuffix tests whether the string s ends with suffix.
   499  func HasSuffix(s, suffix string) bool {
   500  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   501  }
   502  
   503  // Map returns a copy of the string s with all its characters modified
   504  // according to the mapping function. If mapping returns a negative value, the character is
   505  // dropped from the string with no replacement.
   506  func Map(mapping func(rune) rune, s string) string {
   507  	// In the worst case, the string can grow when mapped, making
   508  	// things unpleasant. But it's so rare we barge in assuming it's
   509  	// fine. It could also shrink but that falls out naturally.
   510  
   511  	// The output buffer b is initialized on demand, the first
   512  	// time a character differs.
   513  	var b []byte
   514  	// nbytes is the number of bytes encoded in b.
   515  	var nbytes int
   516  
   517  	for i, c := range s {
   518  		r := mapping(c)
   519  		if r == c {
   520  			continue
   521  		}
   522  
   523  		b = make([]byte, len(s)+utf8.UTFMax)
   524  		nbytes = copy(b, s[:i])
   525  		if r >= 0 {
   526  			if r < utf8.RuneSelf {
   527  				b[nbytes] = byte(r)
   528  				nbytes++
   529  			} else {
   530  				nbytes += utf8.EncodeRune(b[nbytes:], r)
   531  			}
   532  		}
   533  
   534  		if c == utf8.RuneError {
   535  			// RuneError is the result of either decoding
   536  			// an invalid sequence or '\uFFFD'. Determine
   537  			// the correct number of bytes we need to advance.
   538  			_, w := utf8.DecodeRuneInString(s[i:])
   539  			i += w
   540  		} else {
   541  			i += utf8.RuneLen(c)
   542  		}
   543  
   544  		s = s[i:]
   545  		break
   546  	}
   547  
   548  	if b == nil {
   549  		return s
   550  	}
   551  
   552  	for _, c := range s {
   553  		r := mapping(c)
   554  
   555  		// common case
   556  		if (0 <= r && r < utf8.RuneSelf) && nbytes < len(b) {
   557  			b[nbytes] = byte(r)
   558  			nbytes++
   559  			continue
   560  		}
   561  
   562  		// b is not big enough or r is not a ASCII rune.
   563  		if r >= 0 {
   564  			if nbytes+utf8.UTFMax >= len(b) {
   565  				// Grow the buffer.
   566  				nb := make([]byte, 2*len(b))
   567  				copy(nb, b[:nbytes])
   568  				b = nb
   569  			}
   570  			nbytes += utf8.EncodeRune(b[nbytes:], r)
   571  		}
   572  	}
   573  
   574  	return string(b[:nbytes])
   575  }
   576  
   577  // Repeat returns a new string consisting of count copies of the string s.
   578  //
   579  // It panics if count is negative or if
   580  // the result of (len(s) * count) overflows.
   581  func Repeat(s string, count int) string {
   582  	// Since we cannot return an error on overflow,
   583  	// we should panic if the repeat will generate
   584  	// an overflow.
   585  	// See Issue golang.org/issue/16237
   586  	if count < 0 {
   587  		panic("strings: negative Repeat count")
   588  	} else if count > 0 && len(s)*count/count != len(s) {
   589  		panic("strings: Repeat count causes overflow")
   590  	}
   591  
   592  	b := make([]byte, len(s)*count)
   593  	bp := copy(b, s)
   594  	for bp < len(b) {
   595  		copy(b[bp:], b[:bp])
   596  		bp *= 2
   597  	}
   598  	return string(b)
   599  }
   600  
   601  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   602  func ToUpper(s string) string { return Map(unicode.ToUpper, s) }
   603  
   604  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   605  func ToLower(s string) string { return Map(unicode.ToLower, s) }
   606  
   607  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   608  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   609  
   610  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   611  // upper case, giving priority to the special casing rules.
   612  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   613  	return Map(func(r rune) rune { return c.ToUpper(r) }, s)
   614  }
   615  
   616  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   617  // lower case, giving priority to the special casing rules.
   618  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   619  	return Map(func(r rune) rune { return c.ToLower(r) }, s)
   620  }
   621  
   622  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   623  // title case, giving priority to the special casing rules.
   624  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   625  	return Map(func(r rune) rune { return c.ToTitle(r) }, s)
   626  }
   627  
   628  // isSeparator reports whether the rune could mark a word boundary.
   629  // TODO: update when package unicode captures more of the properties.
   630  func isSeparator(r rune) bool {
   631  	// ASCII alphanumerics and underscore are not separators
   632  	if r <= 0x7F {
   633  		switch {
   634  		case '0' <= r && r <= '9':
   635  			return false
   636  		case 'a' <= r && r <= 'z':
   637  			return false
   638  		case 'A' <= r && r <= 'Z':
   639  			return false
   640  		case r == '_':
   641  			return false
   642  		}
   643  		return true
   644  	}
   645  	// Letters and digits are not separators
   646  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   647  		return false
   648  	}
   649  	// Otherwise, all we can do for now is treat spaces as separators.
   650  	return unicode.IsSpace(r)
   651  }
   652  
   653  // Title returns a copy of the string s with all Unicode letters that begin words
   654  // mapped to their title case.
   655  //
   656  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   657  func Title(s string) string {
   658  	// Use a closure here to remember state.
   659  	// Hackish but effective. Depends on Map scanning in order and calling
   660  	// the closure once per rune.
   661  	prev := ' '
   662  	return Map(
   663  		func(r rune) rune {
   664  			if isSeparator(prev) {
   665  				prev = r
   666  				return unicode.ToTitle(r)
   667  			}
   668  			prev = r
   669  			return r
   670  		},
   671  		s)
   672  }
   673  
   674  // TrimLeftFunc returns a slice of the string s with all leading
   675  // Unicode code points c satisfying f(c) removed.
   676  func TrimLeftFunc(s string, f func(rune) bool) string {
   677  	i := indexFunc(s, f, false)
   678  	if i == -1 {
   679  		return ""
   680  	}
   681  	return s[i:]
   682  }
   683  
   684  // TrimRightFunc returns a slice of the string s with all trailing
   685  // Unicode code points c satisfying f(c) removed.
   686  func TrimRightFunc(s string, f func(rune) bool) string {
   687  	i := lastIndexFunc(s, f, false)
   688  	if i >= 0 && s[i] >= utf8.RuneSelf {
   689  		_, wid := utf8.DecodeRuneInString(s[i:])
   690  		i += wid
   691  	} else {
   692  		i++
   693  	}
   694  	return s[0:i]
   695  }
   696  
   697  // TrimFunc returns a slice of the string s with all leading
   698  // and trailing Unicode code points c satisfying f(c) removed.
   699  func TrimFunc(s string, f func(rune) bool) string {
   700  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   701  }
   702  
   703  // IndexFunc returns the index into s of the first Unicode
   704  // code point satisfying f(c), or -1 if none do.
   705  func IndexFunc(s string, f func(rune) bool) int {
   706  	return indexFunc(s, f, true)
   707  }
   708  
   709  // LastIndexFunc returns the index into s of the last
   710  // Unicode code point satisfying f(c), or -1 if none do.
   711  func LastIndexFunc(s string, f func(rune) bool) int {
   712  	return lastIndexFunc(s, f, true)
   713  }
   714  
   715  // indexFunc is the same as IndexFunc except that if
   716  // truth==false, the sense of the predicate function is
   717  // inverted.
   718  func indexFunc(s string, f func(rune) bool, truth bool) int {
   719  	for i, r := range s {
   720  		if f(r) == truth {
   721  			return i
   722  		}
   723  	}
   724  	return -1
   725  }
   726  
   727  // lastIndexFunc is the same as LastIndexFunc except that if
   728  // truth==false, the sense of the predicate function is
   729  // inverted.
   730  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   731  	for i := len(s); i > 0; {
   732  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   733  		i -= size
   734  		if f(r) == truth {
   735  			return i
   736  		}
   737  	}
   738  	return -1
   739  }
   740  
   741  // asciiSet is a 32-byte value, where each bit represents the presence of a
   742  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   743  // starting with the least-significant bit of the lowest word to the
   744  // most-significant bit of the highest word, map to the full range of all
   745  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   746  // ensuring that any non-ASCII character will be reported as not in the set.
   747  type asciiSet [8]uint32
   748  
   749  // makeASCIISet creates a set of ASCII characters and reports whether all
   750  // characters in chars are ASCII.
   751  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   752  	for i := 0; i < len(chars); i++ {
   753  		c := chars[i]
   754  		if c >= utf8.RuneSelf {
   755  			return as, false
   756  		}
   757  		as[c>>5] |= 1 << uint(c&31)
   758  	}
   759  	return as, true
   760  }
   761  
   762  // contains reports whether c is inside the set.
   763  func (as *asciiSet) contains(c byte) bool {
   764  	return (as[c>>5] & (1 << uint(c&31))) != 0
   765  }
   766  
   767  func makeCutsetFunc(cutset string) func(rune) bool {
   768  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   769  		return func(r rune) bool {
   770  			return r == rune(cutset[0])
   771  		}
   772  	}
   773  	if as, isASCII := makeASCIISet(cutset); isASCII {
   774  		return func(r rune) bool {
   775  			return r < utf8.RuneSelf && as.contains(byte(r))
   776  		}
   777  	}
   778  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   779  }
   780  
   781  // Trim returns a slice of the string s with all leading and
   782  // trailing Unicode code points contained in cutset removed.
   783  func Trim(s string, cutset string) string {
   784  	if s == "" || cutset == "" {
   785  		return s
   786  	}
   787  	return TrimFunc(s, makeCutsetFunc(cutset))
   788  }
   789  
   790  // TrimLeft returns a slice of the string s with all leading
   791  // Unicode code points contained in cutset removed.
   792  func TrimLeft(s string, cutset string) string {
   793  	if s == "" || cutset == "" {
   794  		return s
   795  	}
   796  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   797  }
   798  
   799  // TrimRight returns a slice of the string s, with all trailing
   800  // Unicode code points contained in cutset removed.
   801  func TrimRight(s string, cutset string) string {
   802  	if s == "" || cutset == "" {
   803  		return s
   804  	}
   805  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   806  }
   807  
   808  // TrimSpace returns a slice of the string s, with all leading
   809  // and trailing white space removed, as defined by Unicode.
   810  func TrimSpace(s string) string {
   811  	return TrimFunc(s, unicode.IsSpace)
   812  }
   813  
   814  // TrimPrefix returns s without the provided leading prefix string.
   815  // If s doesn't start with prefix, s is returned unchanged.
   816  func TrimPrefix(s, prefix string) string {
   817  	if HasPrefix(s, prefix) {
   818  		return s[len(prefix):]
   819  	}
   820  	return s
   821  }
   822  
   823  // TrimSuffix returns s without the provided trailing suffix string.
   824  // If s doesn't end with suffix, s is returned unchanged.
   825  func TrimSuffix(s, suffix string) string {
   826  	if HasSuffix(s, suffix) {
   827  		return s[:len(s)-len(suffix)]
   828  	}
   829  	return s
   830  }
   831  
   832  // Replace returns a copy of the string s with the first n
   833  // non-overlapping instances of old replaced by new.
   834  // If old is empty, it matches at the beginning of the string
   835  // and after each UTF-8 sequence, yielding up to k+1 replacements
   836  // for a k-rune string.
   837  // If n < 0, there is no limit on the number of replacements.
   838  func Replace(s, old, new string, n int) string {
   839  	if old == new || n == 0 {
   840  		return s // avoid allocation
   841  	}
   842  
   843  	// Compute number of replacements.
   844  	if m := Count(s, old); m == 0 {
   845  		return s // avoid allocation
   846  	} else if n < 0 || m < n {
   847  		n = m
   848  	}
   849  
   850  	// Apply replacements to buffer.
   851  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   852  	w := 0
   853  	start := 0
   854  	for i := 0; i < n; i++ {
   855  		j := start
   856  		if len(old) == 0 {
   857  			if i > 0 {
   858  				_, wid := utf8.DecodeRuneInString(s[start:])
   859  				j += wid
   860  			}
   861  		} else {
   862  			j += Index(s[start:], old)
   863  		}
   864  		w += copy(t[w:], s[start:j])
   865  		w += copy(t[w:], new)
   866  		start = j + len(old)
   867  	}
   868  	w += copy(t[w:], s[start:])
   869  	return string(t[0:w])
   870  }
   871  
   872  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   873  // are equal under Unicode case-folding.
   874  func EqualFold(s, t string) bool {
   875  	for s != "" && t != "" {
   876  		// Extract first rune from each string.
   877  		var sr, tr rune
   878  		if s[0] < utf8.RuneSelf {
   879  			sr, s = rune(s[0]), s[1:]
   880  		} else {
   881  			r, size := utf8.DecodeRuneInString(s)
   882  			sr, s = r, s[size:]
   883  		}
   884  		if t[0] < utf8.RuneSelf {
   885  			tr, t = rune(t[0]), t[1:]
   886  		} else {
   887  			r, size := utf8.DecodeRuneInString(t)
   888  			tr, t = r, t[size:]
   889  		}
   890  
   891  		// If they match, keep going; if not, return false.
   892  
   893  		// Easy case.
   894  		if tr == sr {
   895  			continue
   896  		}
   897  
   898  		// Make sr < tr to simplify what follows.
   899  		if tr < sr {
   900  			tr, sr = sr, tr
   901  		}
   902  		// Fast check for ASCII.
   903  		if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
   904  			// ASCII, and sr is upper case.  tr must be lower case.
   905  			if tr == sr+'a'-'A' {
   906  				continue
   907  			}
   908  			return false
   909  		}
   910  
   911  		// General case. SimpleFold(x) returns the next equivalent rune > x
   912  		// or wraps around to smaller values.
   913  		r := unicode.SimpleFold(sr)
   914  		for r != sr && r < tr {
   915  			r = unicode.SimpleFold(r)
   916  		}
   917  		if r == tr {
   918  			continue
   919  		}
   920  		return false
   921  	}
   922  
   923  	// One string is empty. Are both?
   924  	return s == t
   925  }