github.com/MaynardMiner/ethereumprogpow@v1.8.23/swarm/bmt/bmt_test.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bmt
    18  
    19  import (
    20  	"bytes"
    21  	"encoding/binary"
    22  	"fmt"
    23  	"math/rand"
    24  	"sync"
    25  	"sync/atomic"
    26  	"testing"
    27  	"time"
    28  
    29  	"github.com/ethereumprogpow/ethereumprogpow/swarm/testutil"
    30  	"golang.org/x/crypto/sha3"
    31  )
    32  
    33  // the actual data length generated (could be longer than max datalength of the BMT)
    34  const BufferSize = 4128
    35  
    36  const (
    37  	// segmentCount is the maximum number of segments of the underlying chunk
    38  	// Should be equal to max-chunk-data-size / hash-size
    39  	// Currently set to 128 == 4096 (default chunk size) / 32 (sha3.keccak256 size)
    40  	segmentCount = 128
    41  )
    42  
    43  var counts = []int{1, 2, 3, 4, 5, 8, 9, 15, 16, 17, 32, 37, 42, 53, 63, 64, 65, 111, 127, 128}
    44  
    45  // calculates the Keccak256 SHA3 hash of the data
    46  func sha3hash(data ...[]byte) []byte {
    47  	h := sha3.NewLegacyKeccak256()
    48  	return doSum(h, nil, data...)
    49  }
    50  
    51  // TestRefHasher tests that the RefHasher computes the expected BMT hash for
    52  // some small data lengths
    53  func TestRefHasher(t *testing.T) {
    54  	// the test struct is used to specify the expected BMT hash for
    55  	// segment counts between from and to and lengths from 1 to datalength
    56  	type test struct {
    57  		from     int
    58  		to       int
    59  		expected func([]byte) []byte
    60  	}
    61  
    62  	var tests []*test
    63  	// all lengths in [0,64] should be:
    64  	//
    65  	//   sha3hash(data)
    66  	//
    67  	tests = append(tests, &test{
    68  		from: 1,
    69  		to:   2,
    70  		expected: func(d []byte) []byte {
    71  			data := make([]byte, 64)
    72  			copy(data, d)
    73  			return sha3hash(data)
    74  		},
    75  	})
    76  
    77  	// all lengths in [3,4] should be:
    78  	//
    79  	//   sha3hash(
    80  	//     sha3hash(data[:64])
    81  	//     sha3hash(data[64:])
    82  	//   )
    83  	//
    84  	tests = append(tests, &test{
    85  		from: 3,
    86  		to:   4,
    87  		expected: func(d []byte) []byte {
    88  			data := make([]byte, 128)
    89  			copy(data, d)
    90  			return sha3hash(sha3hash(data[:64]), sha3hash(data[64:]))
    91  		},
    92  	})
    93  
    94  	// all segmentCounts in [5,8] should be:
    95  	//
    96  	//   sha3hash(
    97  	//     sha3hash(
    98  	//       sha3hash(data[:64])
    99  	//       sha3hash(data[64:128])
   100  	//     )
   101  	//     sha3hash(
   102  	//       sha3hash(data[128:192])
   103  	//       sha3hash(data[192:])
   104  	//     )
   105  	//   )
   106  	//
   107  	tests = append(tests, &test{
   108  		from: 5,
   109  		to:   8,
   110  		expected: func(d []byte) []byte {
   111  			data := make([]byte, 256)
   112  			copy(data, d)
   113  			return sha3hash(sha3hash(sha3hash(data[:64]), sha3hash(data[64:128])), sha3hash(sha3hash(data[128:192]), sha3hash(data[192:])))
   114  		},
   115  	})
   116  
   117  	// run the tests
   118  	for i, x := range tests {
   119  		for segmentCount := x.from; segmentCount <= x.to; segmentCount++ {
   120  			for length := 1; length <= segmentCount*32; length++ {
   121  				t.Run(fmt.Sprintf("%d_segments_%d_bytes", segmentCount, length), func(t *testing.T) {
   122  					data := testutil.RandomBytes(i, length)
   123  					expected := x.expected(data)
   124  					actual := NewRefHasher(sha3.NewLegacyKeccak256, segmentCount).Hash(data)
   125  					if !bytes.Equal(actual, expected) {
   126  						t.Fatalf("expected %x, got %x", expected, actual)
   127  					}
   128  				})
   129  			}
   130  		}
   131  	}
   132  }
   133  
   134  // tests if hasher responds with correct hash comparing the reference implementation return value
   135  func TestHasherEmptyData(t *testing.T) {
   136  	hasher := sha3.NewLegacyKeccak256
   137  	var data []byte
   138  	for _, count := range counts {
   139  		t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
   140  			pool := NewTreePool(hasher, count, PoolSize)
   141  			defer pool.Drain(0)
   142  			bmt := New(pool)
   143  			rbmt := NewRefHasher(hasher, count)
   144  			refHash := rbmt.Hash(data)
   145  			expHash := syncHash(bmt, nil, data)
   146  			if !bytes.Equal(expHash, refHash) {
   147  				t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
   148  			}
   149  		})
   150  	}
   151  }
   152  
   153  // tests sequential write with entire max size written in one go
   154  func TestSyncHasherCorrectness(t *testing.T) {
   155  	data := testutil.RandomBytes(1, BufferSize)
   156  	hasher := sha3.NewLegacyKeccak256
   157  	size := hasher().Size()
   158  
   159  	var err error
   160  	for _, count := range counts {
   161  		t.Run(fmt.Sprintf("segments_%v", count), func(t *testing.T) {
   162  			max := count * size
   163  			var incr int
   164  			capacity := 1
   165  			pool := NewTreePool(hasher, count, capacity)
   166  			defer pool.Drain(0)
   167  			for n := 0; n <= max; n += incr {
   168  				incr = 1 + rand.Intn(5)
   169  				bmt := New(pool)
   170  				err = testHasherCorrectness(bmt, hasher, data, n, count)
   171  				if err != nil {
   172  					t.Fatal(err)
   173  				}
   174  			}
   175  		})
   176  	}
   177  }
   178  
   179  // tests order-neutral concurrent writes with entire max size written in one go
   180  func TestAsyncCorrectness(t *testing.T) {
   181  	data := testutil.RandomBytes(1, BufferSize)
   182  	hasher := sha3.NewLegacyKeccak256
   183  	size := hasher().Size()
   184  	whs := []whenHash{first, last, random}
   185  
   186  	for _, double := range []bool{false, true} {
   187  		for _, wh := range whs {
   188  			for _, count := range counts {
   189  				t.Run(fmt.Sprintf("double_%v_hash_when_%v_segments_%v", double, wh, count), func(t *testing.T) {
   190  					max := count * size
   191  					var incr int
   192  					capacity := 1
   193  					pool := NewTreePool(hasher, count, capacity)
   194  					defer pool.Drain(0)
   195  					for n := 1; n <= max; n += incr {
   196  						incr = 1 + rand.Intn(5)
   197  						bmt := New(pool)
   198  						d := data[:n]
   199  						rbmt := NewRefHasher(hasher, count)
   200  						exp := rbmt.Hash(d)
   201  						got := syncHash(bmt, nil, d)
   202  						if !bytes.Equal(got, exp) {
   203  							t.Fatalf("wrong sync hash for datalength %v: expected %x (ref), got %x", n, exp, got)
   204  						}
   205  						sw := bmt.NewAsyncWriter(double)
   206  						got = asyncHashRandom(sw, nil, d, wh)
   207  						if !bytes.Equal(got, exp) {
   208  							t.Fatalf("wrong async hash for datalength %v: expected %x, got %x", n, exp, got)
   209  						}
   210  					}
   211  				})
   212  			}
   213  		}
   214  	}
   215  }
   216  
   217  // Tests that the BMT hasher can be synchronously reused with poolsizes 1 and PoolSize
   218  func TestHasherReuse(t *testing.T) {
   219  	t.Run(fmt.Sprintf("poolsize_%d", 1), func(t *testing.T) {
   220  		testHasherReuse(1, t)
   221  	})
   222  	t.Run(fmt.Sprintf("poolsize_%d", PoolSize), func(t *testing.T) {
   223  		testHasherReuse(PoolSize, t)
   224  	})
   225  }
   226  
   227  // tests if bmt reuse is not corrupting result
   228  func testHasherReuse(poolsize int, t *testing.T) {
   229  	hasher := sha3.NewLegacyKeccak256
   230  	pool := NewTreePool(hasher, segmentCount, poolsize)
   231  	defer pool.Drain(0)
   232  	bmt := New(pool)
   233  
   234  	for i := 0; i < 100; i++ {
   235  		data := testutil.RandomBytes(1, BufferSize)
   236  		n := rand.Intn(bmt.Size())
   237  		err := testHasherCorrectness(bmt, hasher, data, n, segmentCount)
   238  		if err != nil {
   239  			t.Fatal(err)
   240  		}
   241  	}
   242  }
   243  
   244  // Tests if pool can be cleanly reused even in concurrent use by several hasher
   245  func TestBMTConcurrentUse(t *testing.T) {
   246  	hasher := sha3.NewLegacyKeccak256
   247  	pool := NewTreePool(hasher, segmentCount, PoolSize)
   248  	defer pool.Drain(0)
   249  	cycles := 100
   250  	errc := make(chan error)
   251  
   252  	for i := 0; i < cycles; i++ {
   253  		go func() {
   254  			bmt := New(pool)
   255  			data := testutil.RandomBytes(1, BufferSize)
   256  			n := rand.Intn(bmt.Size())
   257  			errc <- testHasherCorrectness(bmt, hasher, data, n, 128)
   258  		}()
   259  	}
   260  LOOP:
   261  	for {
   262  		select {
   263  		case <-time.NewTimer(5 * time.Second).C:
   264  			t.Fatal("timed out")
   265  		case err := <-errc:
   266  			if err != nil {
   267  				t.Fatal(err)
   268  			}
   269  			cycles--
   270  			if cycles == 0 {
   271  				break LOOP
   272  			}
   273  		}
   274  	}
   275  }
   276  
   277  // Tests BMT Hasher io.Writer interface is working correctly
   278  // even multiple short random write buffers
   279  func TestBMTWriterBuffers(t *testing.T) {
   280  	hasher := sha3.NewLegacyKeccak256
   281  
   282  	for _, count := range counts {
   283  		t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
   284  			errc := make(chan error)
   285  			pool := NewTreePool(hasher, count, PoolSize)
   286  			defer pool.Drain(0)
   287  			n := count * 32
   288  			bmt := New(pool)
   289  			data := testutil.RandomBytes(1, n)
   290  			rbmt := NewRefHasher(hasher, count)
   291  			refHash := rbmt.Hash(data)
   292  			expHash := syncHash(bmt, nil, data)
   293  			if !bytes.Equal(expHash, refHash) {
   294  				t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
   295  			}
   296  			attempts := 10
   297  			f := func() error {
   298  				bmt := New(pool)
   299  				bmt.Reset()
   300  				var buflen int
   301  				for offset := 0; offset < n; offset += buflen {
   302  					buflen = rand.Intn(n-offset) + 1
   303  					read, err := bmt.Write(data[offset : offset+buflen])
   304  					if err != nil {
   305  						return err
   306  					}
   307  					if read != buflen {
   308  						return fmt.Errorf("incorrect read. expected %v bytes, got %v", buflen, read)
   309  					}
   310  				}
   311  				hash := bmt.Sum(nil)
   312  				if !bytes.Equal(hash, expHash) {
   313  					return fmt.Errorf("hash mismatch. expected %x, got %x", hash, expHash)
   314  				}
   315  				return nil
   316  			}
   317  
   318  			for j := 0; j < attempts; j++ {
   319  				go func() {
   320  					errc <- f()
   321  				}()
   322  			}
   323  			timeout := time.NewTimer(2 * time.Second)
   324  			for {
   325  				select {
   326  				case err := <-errc:
   327  					if err != nil {
   328  						t.Fatal(err)
   329  					}
   330  					attempts--
   331  					if attempts == 0 {
   332  						return
   333  					}
   334  				case <-timeout.C:
   335  					t.Fatalf("timeout")
   336  				}
   337  			}
   338  		})
   339  	}
   340  }
   341  
   342  // helper function that compares reference and optimised implementations on
   343  // correctness
   344  func testHasherCorrectness(bmt *Hasher, hasher BaseHasherFunc, d []byte, n, count int) (err error) {
   345  	span := make([]byte, 8)
   346  	if len(d) < n {
   347  		n = len(d)
   348  	}
   349  	binary.BigEndian.PutUint64(span, uint64(n))
   350  	data := d[:n]
   351  	rbmt := NewRefHasher(hasher, count)
   352  	exp := sha3hash(span, rbmt.Hash(data))
   353  	got := syncHash(bmt, span, data)
   354  	if !bytes.Equal(got, exp) {
   355  		return fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
   356  	}
   357  	return err
   358  }
   359  
   360  //
   361  func BenchmarkBMT(t *testing.B) {
   362  	for size := 4096; size >= 128; size /= 2 {
   363  		t.Run(fmt.Sprintf("%v_size_%v", "SHA3", size), func(t *testing.B) {
   364  			benchmarkSHA3(t, size)
   365  		})
   366  		t.Run(fmt.Sprintf("%v_size_%v", "Baseline", size), func(t *testing.B) {
   367  			benchmarkBMTBaseline(t, size)
   368  		})
   369  		t.Run(fmt.Sprintf("%v_size_%v", "REF", size), func(t *testing.B) {
   370  			benchmarkRefHasher(t, size)
   371  		})
   372  		t.Run(fmt.Sprintf("%v_size_%v", "BMT", size), func(t *testing.B) {
   373  			benchmarkBMT(t, size)
   374  		})
   375  	}
   376  }
   377  
   378  type whenHash = int
   379  
   380  const (
   381  	first whenHash = iota
   382  	last
   383  	random
   384  )
   385  
   386  func BenchmarkBMTAsync(t *testing.B) {
   387  	whs := []whenHash{first, last, random}
   388  	for size := 4096; size >= 128; size /= 2 {
   389  		for _, wh := range whs {
   390  			for _, double := range []bool{false, true} {
   391  				t.Run(fmt.Sprintf("double_%v_hash_when_%v_size_%v", double, wh, size), func(t *testing.B) {
   392  					benchmarkBMTAsync(t, size, wh, double)
   393  				})
   394  			}
   395  		}
   396  	}
   397  }
   398  
   399  func BenchmarkPool(t *testing.B) {
   400  	caps := []int{1, PoolSize}
   401  	for size := 4096; size >= 128; size /= 2 {
   402  		for _, c := range caps {
   403  			t.Run(fmt.Sprintf("poolsize_%v_size_%v", c, size), func(t *testing.B) {
   404  				benchmarkPool(t, c, size)
   405  			})
   406  		}
   407  	}
   408  }
   409  
   410  // benchmarks simple sha3 hash on chunks
   411  func benchmarkSHA3(t *testing.B, n int) {
   412  	data := testutil.RandomBytes(1, n)
   413  	hasher := sha3.NewLegacyKeccak256
   414  	h := hasher()
   415  
   416  	t.ReportAllocs()
   417  	t.ResetTimer()
   418  	for i := 0; i < t.N; i++ {
   419  		doSum(h, nil, data)
   420  	}
   421  }
   422  
   423  // benchmarks the minimum hashing time for a balanced (for simplicity) BMT
   424  // by doing count/segmentsize parallel hashings of 2*segmentsize bytes
   425  // doing it on n PoolSize each reusing the base hasher
   426  // the premise is that this is the minimum computation needed for a BMT
   427  // therefore this serves as a theoretical optimum for concurrent implementations
   428  func benchmarkBMTBaseline(t *testing.B, n int) {
   429  	hasher := sha3.NewLegacyKeccak256
   430  	hashSize := hasher().Size()
   431  	data := testutil.RandomBytes(1, hashSize)
   432  
   433  	t.ReportAllocs()
   434  	t.ResetTimer()
   435  	for i := 0; i < t.N; i++ {
   436  		count := int32((n-1)/hashSize + 1)
   437  		wg := sync.WaitGroup{}
   438  		wg.Add(PoolSize)
   439  		var i int32
   440  		for j := 0; j < PoolSize; j++ {
   441  			go func() {
   442  				defer wg.Done()
   443  				h := hasher()
   444  				for atomic.AddInt32(&i, 1) < count {
   445  					doSum(h, nil, data)
   446  				}
   447  			}()
   448  		}
   449  		wg.Wait()
   450  	}
   451  }
   452  
   453  // benchmarks BMT Hasher
   454  func benchmarkBMT(t *testing.B, n int) {
   455  	data := testutil.RandomBytes(1, n)
   456  	hasher := sha3.NewLegacyKeccak256
   457  	pool := NewTreePool(hasher, segmentCount, PoolSize)
   458  	bmt := New(pool)
   459  
   460  	t.ReportAllocs()
   461  	t.ResetTimer()
   462  	for i := 0; i < t.N; i++ {
   463  		syncHash(bmt, nil, data)
   464  	}
   465  }
   466  
   467  // benchmarks BMT hasher with asynchronous concurrent segment/section writes
   468  func benchmarkBMTAsync(t *testing.B, n int, wh whenHash, double bool) {
   469  	data := testutil.RandomBytes(1, n)
   470  	hasher := sha3.NewLegacyKeccak256
   471  	pool := NewTreePool(hasher, segmentCount, PoolSize)
   472  	bmt := New(pool).NewAsyncWriter(double)
   473  	idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
   474  	rand.Shuffle(len(idxs), func(i int, j int) {
   475  		idxs[i], idxs[j] = idxs[j], idxs[i]
   476  	})
   477  
   478  	t.ReportAllocs()
   479  	t.ResetTimer()
   480  	for i := 0; i < t.N; i++ {
   481  		asyncHash(bmt, nil, n, wh, idxs, segments)
   482  	}
   483  }
   484  
   485  // benchmarks 100 concurrent bmt hashes with pool capacity
   486  func benchmarkPool(t *testing.B, poolsize, n int) {
   487  	data := testutil.RandomBytes(1, n)
   488  	hasher := sha3.NewLegacyKeccak256
   489  	pool := NewTreePool(hasher, segmentCount, poolsize)
   490  	cycles := 100
   491  
   492  	t.ReportAllocs()
   493  	t.ResetTimer()
   494  	wg := sync.WaitGroup{}
   495  	for i := 0; i < t.N; i++ {
   496  		wg.Add(cycles)
   497  		for j := 0; j < cycles; j++ {
   498  			go func() {
   499  				defer wg.Done()
   500  				bmt := New(pool)
   501  				syncHash(bmt, nil, data)
   502  			}()
   503  		}
   504  		wg.Wait()
   505  	}
   506  }
   507  
   508  // benchmarks the reference hasher
   509  func benchmarkRefHasher(t *testing.B, n int) {
   510  	data := testutil.RandomBytes(1, n)
   511  	hasher := sha3.NewLegacyKeccak256
   512  	rbmt := NewRefHasher(hasher, 128)
   513  
   514  	t.ReportAllocs()
   515  	t.ResetTimer()
   516  	for i := 0; i < t.N; i++ {
   517  		rbmt.Hash(data)
   518  	}
   519  }
   520  
   521  // Hash hashes the data and the span using the bmt hasher
   522  func syncHash(h *Hasher, span, data []byte) []byte {
   523  	h.ResetWithLength(span)
   524  	h.Write(data)
   525  	return h.Sum(nil)
   526  }
   527  
   528  func splitAndShuffle(secsize int, data []byte) (idxs []int, segments [][]byte) {
   529  	l := len(data)
   530  	n := l / secsize
   531  	if l%secsize > 0 {
   532  		n++
   533  	}
   534  	for i := 0; i < n; i++ {
   535  		idxs = append(idxs, i)
   536  		end := (i + 1) * secsize
   537  		if end > l {
   538  			end = l
   539  		}
   540  		section := data[i*secsize : end]
   541  		segments = append(segments, section)
   542  	}
   543  	rand.Shuffle(n, func(i int, j int) {
   544  		idxs[i], idxs[j] = idxs[j], idxs[i]
   545  	})
   546  	return idxs, segments
   547  }
   548  
   549  // splits the input data performs a random shuffle to mock async section writes
   550  func asyncHashRandom(bmt SectionWriter, span []byte, data []byte, wh whenHash) (s []byte) {
   551  	idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
   552  	return asyncHash(bmt, span, len(data), wh, idxs, segments)
   553  }
   554  
   555  // mock for async section writes for BMT SectionWriter
   556  // requires a permutation (a random shuffle) of list of all indexes of segments
   557  // and writes them in order to the appropriate section
   558  // the Sum function is called according to the wh parameter (first, last, random [relative to segment writes])
   559  func asyncHash(bmt SectionWriter, span []byte, l int, wh whenHash, idxs []int, segments [][]byte) (s []byte) {
   560  	bmt.Reset()
   561  	if l == 0 {
   562  		return bmt.Sum(nil, l, span)
   563  	}
   564  	c := make(chan []byte, 1)
   565  	hashf := func() {
   566  		c <- bmt.Sum(nil, l, span)
   567  	}
   568  	maxsize := len(idxs)
   569  	var r int
   570  	if wh == random {
   571  		r = rand.Intn(maxsize)
   572  	}
   573  	for i, idx := range idxs {
   574  		bmt.Write(idx, segments[idx])
   575  		if (wh == first || wh == random) && i == r {
   576  			go hashf()
   577  		}
   578  	}
   579  	if wh == last {
   580  		return bmt.Sum(nil, l, span)
   581  	}
   582  	return <-c
   583  }