github.com/MerlinKodo/gvisor@v0.0.0-20231110090155-957f62ecf90e/pkg/sentry/arch/syscalls_arm64.go (about) 1 // Copyright 2020 The gVisor Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 //go:build arm64 16 // +build arm64 17 18 package arch 19 20 const restartSyscallNr = uintptr(128) 21 22 // SyscallSaveOrig save the value of the register R0 which is clobbered in 23 // syscall handler(doSyscall()). 24 // 25 // In linux, at the entry of the syscall handler(el0_svc_common()), value of R0 26 // is saved to the pt_regs.orig_x0 in kernel code. But currently, the orig_x0 27 // was not accessible to the userspace application, so we have to do the same 28 // operation in the sentry code to save the R0 value into the App context. 29 func (c *Context64) SyscallSaveOrig() { 30 c.OrigR0 = c.Regs.Regs[0] 31 } 32 33 // SyscallNo returns the syscall number according to the 64-bit convention. 34 func (c *Context64) SyscallNo() uintptr { 35 return uintptr(c.Regs.Regs[8]) 36 } 37 38 // SyscallArgs provides syscall arguments according to the 64-bit convention. 39 // 40 // Due to the way addresses are mapped for the sentry this binary *must* be 41 // built in 64-bit mode. So we can just assume the syscall numbers that come 42 // back match the expected host system call numbers. 43 // General purpose registers usage on Arm64: 44 // R0...R7: parameter/result registers. 45 // R8: indirect result location register. 46 // R9...R15: temporary registers. 47 // R16: the first intra-procedure-call scratch register. 48 // R17: the second intra-procedure-call scratch register. 49 // R18: the platform register. 50 // R19...R28: callee-saved registers. 51 // R29: the frame pointer. 52 // R30: the link register. 53 func (c *Context64) SyscallArgs() SyscallArguments { 54 return SyscallArguments{ 55 SyscallArgument{Value: uintptr(c.OrigR0)}, 56 SyscallArgument{Value: uintptr(c.Regs.Regs[1])}, 57 SyscallArgument{Value: uintptr(c.Regs.Regs[2])}, 58 SyscallArgument{Value: uintptr(c.Regs.Regs[3])}, 59 SyscallArgument{Value: uintptr(c.Regs.Regs[4])}, 60 SyscallArgument{Value: uintptr(c.Regs.Regs[5])}, 61 } 62 } 63 64 // RestartSyscall implements Context.RestartSyscall. 65 // Prepare for system call restart, OrigR0 will be restored to R0. 66 // Please see the linux code as reference: 67 // arch/arm64/kernel/signal.c:do_signal() 68 func (c *Context64) RestartSyscall() { 69 c.Regs.Pc -= SyscallWidth 70 // R0 will be backed up into OrigR0 when entering doSyscall(). 71 // Please see the linux code as reference: 72 // arch/arm64/kernel/syscall.c:el0_svc_common(). 73 // Here we restore it back. 74 c.Regs.Regs[0] = uint64(c.OrigR0) 75 } 76 77 // RestartSyscallWithRestartBlock implements Context.RestartSyscallWithRestartBlock. 78 func (c *Context64) RestartSyscallWithRestartBlock() { 79 c.Regs.Pc -= SyscallWidth 80 c.Regs.Regs[0] = uint64(c.OrigR0) 81 c.Regs.Regs[8] = uint64(restartSyscallNr) 82 }