github.com/MerlinKodo/gvisor@v0.0.0-20231110090155-957f62ecf90e/pkg/state/state.go (about) 1 // Copyright 2018 The gVisor Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Package state provides functionality related to saving and loading object 16 // graphs. For most types, it provides a set of default saving / loading logic 17 // that will be invoked automatically if custom logic is not defined. 18 // 19 // Kind Support 20 // ---- ------- 21 // Bool default 22 // Int default 23 // Int8 default 24 // Int16 default 25 // Int32 default 26 // Int64 default 27 // Uint default 28 // Uint8 default 29 // Uint16 default 30 // Uint32 default 31 // Uint64 default 32 // Float32 default 33 // Float64 default 34 // Complex64 default 35 // Complex128 default 36 // Array default 37 // Chan custom 38 // Func custom 39 // Interface default 40 // Map default 41 // Ptr default 42 // Slice default 43 // String default 44 // Struct custom (*) Unless zero-sized. 45 // UnsafePointer custom 46 // 47 // See README.md for an overview of how encoding and decoding works. 48 package state 49 50 import ( 51 "context" 52 "fmt" 53 "reflect" 54 "runtime" 55 56 "github.com/MerlinKodo/gvisor/pkg/state/wire" 57 ) 58 59 // objectID is a unique identifier assigned to each object to be serialized. 60 // Each instance of an object is considered separately, i.e. if there are two 61 // objects of the same type in the object graph being serialized, they'll be 62 // assigned unique objectIDs. 63 type objectID uint32 64 65 // typeID is the identifier for a type. Types are serialized and tracked 66 // alongside objects in order to avoid the overhead of encoding field names in 67 // all objects. 68 type typeID uint32 69 70 // ErrState is returned when an error is encountered during encode/decode. 71 type ErrState struct { 72 // err is the underlying error. 73 err error 74 75 // trace is the stack trace. 76 trace string 77 } 78 79 // Error returns a sensible description of the state error. 80 func (e *ErrState) Error() string { 81 return fmt.Sprintf("%v:\n%s", e.err, e.trace) 82 } 83 84 // Unwrap implements standard unwrapping. 85 func (e *ErrState) Unwrap() error { 86 return e.err 87 } 88 89 // Save saves the given object state. 90 func Save(ctx context.Context, w wire.Writer, rootPtr any) (Stats, error) { 91 // Create the encoding state. 92 es := encodeState{ 93 ctx: ctx, 94 w: w, 95 types: makeTypeEncodeDatabase(), 96 zeroValues: make(map[reflect.Type]*objectEncodeState), 97 pending: make(map[objectID]*objectEncodeState), 98 encodedStructs: make(map[reflect.Value]*wire.Struct), 99 } 100 101 // Perform the encoding. 102 err := safely(func() { 103 es.Save(reflect.ValueOf(rootPtr).Elem()) 104 }) 105 return es.stats, err 106 } 107 108 // Load loads a checkpoint. 109 func Load(ctx context.Context, r wire.Reader, rootPtr any) (Stats, error) { 110 // Create the decoding state. 111 ds := decodeState{ 112 ctx: ctx, 113 r: r, 114 types: makeTypeDecodeDatabase(), 115 deferred: make(map[objectID]wire.Object), 116 } 117 118 // Attempt our decode. 119 err := safely(func() { 120 ds.Load(reflect.ValueOf(rootPtr).Elem()) 121 }) 122 return ds.stats, err 123 } 124 125 // Sink is used for Type.StateSave. 126 type Sink struct { 127 internal objectEncoder 128 } 129 130 // Save adds the given object to the map. 131 // 132 // You should pass always pointers to the object you are saving. For example: 133 // 134 // type X struct { 135 // A int 136 // B *int 137 // } 138 // 139 // func (x *X) StateTypeInfo(m Sink) state.TypeInfo { 140 // return state.TypeInfo{ 141 // Name: "pkg.X", 142 // Fields: []string{ 143 // "A", 144 // "B", 145 // }, 146 // } 147 // } 148 // 149 // func (x *X) StateSave(m Sink) { 150 // m.Save(0, &x.A) // Field is A. 151 // m.Save(1, &x.B) // Field is B. 152 // } 153 // 154 // func (x *X) StateLoad(m Source) { 155 // m.Load(0, &x.A) // Field is A. 156 // m.Load(1, &x.B) // Field is B. 157 // } 158 func (s Sink) Save(slot int, objPtr any) { 159 s.internal.save(slot, reflect.ValueOf(objPtr).Elem()) 160 } 161 162 // SaveValue adds the given object value to the map. 163 // 164 // This should be used for values where pointers are not available, or casts 165 // are required during Save/Load. 166 // 167 // For example, if we want to cast external package type P.Foo to int64: 168 // 169 // func (x *X) StateSave(m Sink) { 170 // m.SaveValue(0, "A", int64(x.A)) 171 // } 172 // 173 // func (x *X) StateLoad(m Source) { 174 // m.LoadValue(0, new(int64), func(x any) { 175 // x.A = P.Foo(x.(int64)) 176 // }) 177 // } 178 func (s Sink) SaveValue(slot int, obj any) { 179 s.internal.save(slot, reflect.ValueOf(obj)) 180 } 181 182 // Context returns the context object provided at save time. 183 func (s Sink) Context() context.Context { 184 return s.internal.es.ctx 185 } 186 187 // Type is an interface that must be implemented by Struct objects. This allows 188 // these objects to be serialized while minimizing runtime reflection required. 189 // 190 // All these methods can be automatically generated by the go_statify tool. 191 type Type interface { 192 // StateTypeName returns the type's name. 193 // 194 // This is used for matching type information during encoding and 195 // decoding, as well as dynamic interface dispatch. This should be 196 // globally unique. 197 StateTypeName() string 198 199 // StateFields returns information about the type. 200 // 201 // Fields is the set of fields for the object. Calls to Sink.Save and 202 // Source.Load must be made in-order with respect to these fields. 203 // 204 // This will be called at most once per serialization. 205 StateFields() []string 206 } 207 208 // SaverLoader must be implemented by struct types. 209 type SaverLoader interface { 210 // StateSave saves the state of the object to the given Map. 211 StateSave(Sink) 212 213 // StateLoad loads the state of the object. 214 StateLoad(Source) 215 } 216 217 // Source is used for Type.StateLoad. 218 type Source struct { 219 internal objectDecoder 220 } 221 222 // Load loads the given object passed as a pointer.. 223 // 224 // See Sink.Save for an example. 225 func (s Source) Load(slot int, objPtr any) { 226 s.internal.load(slot, reflect.ValueOf(objPtr), false, nil) 227 } 228 229 // LoadWait loads the given objects from the map, and marks it as requiring all 230 // AfterLoad executions to complete prior to running this object's AfterLoad. 231 // 232 // See Sink.Save for an example. 233 func (s Source) LoadWait(slot int, objPtr any) { 234 s.internal.load(slot, reflect.ValueOf(objPtr), true, nil) 235 } 236 237 // LoadValue loads the given object value from the map. 238 // 239 // See Sink.SaveValue for an example. 240 func (s Source) LoadValue(slot int, objPtr any, fn func(any)) { 241 o := reflect.ValueOf(objPtr) 242 s.internal.load(slot, o, true, func() { fn(o.Elem().Interface()) }) 243 } 244 245 // AfterLoad schedules a function execution when all objects have been 246 // allocated and their automated loading and customized load logic have been 247 // executed. fn will not be executed until all of current object's 248 // dependencies' AfterLoad() logic, if exist, have been executed. 249 func (s Source) AfterLoad(fn func()) { 250 s.internal.afterLoad(fn) 251 } 252 253 // Context returns the context object provided at load time. 254 func (s Source) Context() context.Context { 255 return s.internal.ds.ctx 256 } 257 258 // IsZeroValue checks if the given value is the zero value. 259 // 260 // This function is used by the stateify tool. 261 func IsZeroValue(val any) bool { 262 return val == nil || reflect.ValueOf(val).Elem().IsZero() 263 } 264 265 // Failf is a wrapper around panic that should be used to generate errors that 266 // can be caught during saving and loading. 267 func Failf(fmtStr string, v ...any) { 268 panic(fmt.Errorf(fmtStr, v...)) 269 } 270 271 // safely executes the given function, catching a panic and unpacking as an 272 // error. 273 // 274 // The error flow through the state package uses panic and recover. There are 275 // two important reasons for this: 276 // 277 // 1) Many of the reflection methods will already panic with invalid data or 278 // violated assumptions. We would want to recover anyways here. 279 // 280 // 2) It allows us to eliminate boilerplate within Save() and Load() functions. 281 // In nearly all cases, when the low-level serialization functions fail, you 282 // will want the checkpoint to fail anyways. Plumbing errors through every 283 // method doesn't add a lot of value. If there are specific error conditions 284 // that you'd like to handle, you should add appropriate functionality to 285 // objects themselves prior to calling Save() and Load(). 286 func safely(fn func()) (err error) { 287 defer func() { 288 if r := recover(); r != nil { 289 if es, ok := r.(*ErrState); ok { 290 err = es // Propagate. 291 return 292 } 293 294 // Build a new state error. 295 es := new(ErrState) 296 if e, ok := r.(error); ok { 297 es.err = e 298 } else { 299 es.err = fmt.Errorf("%v", r) 300 } 301 302 // Make a stack. We don't know how big it will be ahead 303 // of time, but want to make sure we get the whole 304 // thing. So we just do a stupid brute force approach. 305 var stack []byte 306 for sz := 1024; ; sz *= 2 { 307 stack = make([]byte, sz) 308 n := runtime.Stack(stack, false) 309 if n < sz { 310 es.trace = string(stack[:n]) 311 break 312 } 313 } 314 315 // Set the error. 316 err = es 317 } 318 }() 319 320 // Execute the function. 321 fn() 322 return nil 323 }